First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe
Abstract
:1. Introduction
- i)
- how well object-based classifiers compare against a pixel-based approaches, and
- ii)
- which S2 spectral bands contribute most to the classification accuracy.
2. Materials and Methods
2.1. Overview
- during a field survey for the cropland test site, and
- from inventory data and visual interpretation of high spatial resolution images for the forest test site.
2.2. Sentinel-2 Data Sets
2.3. Test Site 1: Marchfeld Cropland
2.4. Test Site 2: Ebersberg and Altoetting Forests
2.5. Segmentation
- Spatial Radius hs (spatial distance between classes)
- Range Radius hr (spectral difference between classes)
- Minimum size ms (merging criterion)
2.6. Random Forest (RF) Classification
2.7. Accuracy Assessment
3. Results and Discussion
3.1. Crop Classification
3.2. Tree Species Classification
3.3. Potential of Sentinel-2 for Vegetation Classification
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ATKIS | Amtliches Topographisch-Kartographische Informationssystem |
BL | broadleaf trees |
CORINE | Coordination of Information on the Environment |
GSD | Ground Sampling Distance |
LCLU | Land Cover and Land Use |
LSMS | Large Scale Mean Shift |
MDA | Mean Decrease in Accuracy |
MSI | Multi-Spectral Imager |
NIR | Near Infrared |
OA | Overall Accuracy |
OBIA | Object Based Image Analysis |
OSM | Open Street Map |
PA | Producer’s Accuracy |
PC | Principle Component |
PCA | Principle Component Analysis |
RF | Random Forest |
S2 | Sentinel-2 |
SWIR | Shortwave Infrared |
ToA | Top-of-Atmosphere |
UA | User’s accuracy |
Appendix A
References
- ESA Sentinel-2 Delivers First Images. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Sentinel-2_delivers_first_images (accessed on 7 January 2016).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA Introducing Sentinel-2. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2 (accessed on 17 December 2015).
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2 and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Evaluating the Potentials of Sentinel-2 for Archaeological Perspective. Remote Sens. 2014, 6, 2176–2194. [Google Scholar] [CrossRef]
- Clasen, A.; Somers, B.; Pipkins, K.; Tits, L.; Segl, K.; Brell, M.; Kleinschmit, B.; Spengler, D.; Lausch, A.; Förster, M. Spectral unmixing of forest crown components at close range, airborne and simulated Sentinel-2 and EnMAP spectral imaging scale. Remote Sens. 2015, 7, 15361–15387. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth. Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B. Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4049–4059. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55–65. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Sykioti, O.; Zlinszky, A.; Tóth, V.R. Evaluating sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data. Sens. Switz. 2015, 15, 22956–22969. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; Koetz, B. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with Random Forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C. Satellites: Make Earth observations open access. Nature 2014, 513, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P. Geography of forest disturbance. Proc. Natl. Acad. Sci. 2013, 110, 3711–3712. [Google Scholar] [CrossRef] [PubMed]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence; 1995; Volume 14, pp. 1137–1145. [Google Scholar]
- EEA Corine Land Cover 2000 Raster Data. Available online: http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster-3 (accessed on 7 January 2016).
- AdV Amtliches Topographisch-Kartographisches Informationssystem (ATKIS). Available online: http://www.adv-online.de/AAA-Modell/ATKIS/ (accessed on 7 January 2016).
- EC Copernicus Europe’s Eyes on Earth; Copernicus Brochure; European Commission: Burssels, B, 2015; Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4 (accessed on 27 October 2015).
- Eitzinger, J.; Kersebaum, K.C.; Formayer, H. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa; Agrimedia: Clenze, Germany, 2009. [Google Scholar]
- Thaler, S.; Eitzinger, J.; Dubrovskỳ, M.; Trnka, M. Climate change impacts on selected crops in Marchfeld, Eastern Austria. In Proceedings of the 28th Conference on Agricultural and Forest Meteorology, Orlando, FL, USA, 28 April–2 May 2008.
- Rischbeck, P. Der Einfluss von Klimaänderung, Bodenbearbeitung und Saattermin auf den Wasserhaushalt und das Ertragspotential von Getreide im Marchfeld. Ph.D. Thesis, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria, September 2007. [Google Scholar]
- Neugebauer, N.; Vuolo, F. Crop water requirements on regional level using remote sensing data—A case study in the Marchfeld Region. Photogramm. Fernerkund. Geoinformation. 2014, 2014, 369–381. [Google Scholar] [CrossRef]
- BaySF. Regionales Naturschutzkonzept für den Forstbetrieb Wasserburg am Inn; Bayerische Staatsforsten Forstbetrieb Wasserburg: Wasserburg, Germany, 2013; p. 65. Available online: http://www.baysf.de/fileadmin/user_upload/01-ueber_uns/05-standorte/FB_Wasserburg_a._Inn/Naturschutzkonzept_Wasserburg.pdf (accessed on 15 December 2015).
- Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 1975, 21, 32–40. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Ming, D.; Ci, T.; Cai, H.; Li, L.; Qiao, C.; Du, J. Semivariogram-Based Spatial Bandwidth Selection for Remote Sensing Image Segmentation With Mean-Shift Algorithm. IEEE Geosci. Remote Sens. Lett. 2012, 9, 813–817. [Google Scholar] [CrossRef]
- Michel, J.; Youssefi, D.; Grizonnet, M. Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 952–964. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Toscani, P.; Immitzer, M.; Atzberger, C. Texturanalyse mittels diskreter Wavelet Transformation für die objektbasierte Klassifikation von Orthophotos. Photogramm. Fernerkund. Geoinformation. 2013, 2, 105–121. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Rodríguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Conrad, C.; Rahmann, M.; Machwitz, M.; Stulina, G.; Paeth, H.; Dech, S. Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan. Glob. Planet. Change 2013, 110(Part A), 88–98. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C. Early Detection of Bark Beetle Infestation in Norway Spruce (Picea abies, L.) using WorldView-2 Data. Photogramm. Fernerkund. Geoinformation. 2014, 2014, 351–367. [Google Scholar] [CrossRef]
- Schultz, B.; Immitzer, M.; Formaggio, A.R.; Sanches, I.D.A.; Luiz, A.J.B.; Atzberger, C. Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Immitzer, M.; Stepper, C.; Böck, S.; Straub, C.; Atzberger, C. Use of WorldView-2 stereo imagery and National Forest Inventory data for wall-to-wall mapping of growing stock. For. Ecol. Manag. 2016, 359, 232–246. [Google Scholar] [CrossRef]
- Stepper, C.; Straub, C.; Pretzsch, H. Using semi-global matching point clouds to estimate growing stock at the plot and stand levels: application for a broadleaf-dominated forest in central Europe. Can. J. For. Res. 2015, 45, 111–123. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.R-project.org/ (accessed on 10 December 2015).
- Diaz-Uriarte, R.; Alvarez de Andres, S. Gene selection and classification of microarray data using Random Forest. BMC Bioinformatics 2006, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Vuolo, F.; Atzberger, C. Improving land cover maps in areas of disagreement of existing products using NDVI time series of MODIS—Example for Europe. Photogramm. Fernerkund. Geoinformation. 2014, 2014, 393–407. [Google Scholar] [CrossRef]
- Beyer, F.; Jarmer, T.; Siegmann, B. Identification of Agricultural Crop Types in Northern Israel using Multitemporal RapidEye Data. Photogramm. Fernerkund. Geoinformation. 2015, 2015, 21–32. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74. [Google Scholar] [CrossRef]
- Schmidt, T.; Schuster, C.; Kleinschmit, B.; Forster, M. Evaluating an Intra-Annual Time Series for Grassland Classification - How Many Acquisitions and What Seasonal Origin Are Optimal? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3428–3439. [Google Scholar] [CrossRef]
- Vuolo, F.; Richter, K.; Atzberger, C. Evaluation of time-series and phenological indicators for land cover classification based on MODIS data. In Proceedings of SPIE 8174, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII; Neale, C.M.U., Maltese, A., Eds.; Prague, Czech Republic, 19 September 2011.
- Waldner, F.; Lambert, M.-J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.; Defourny, P. Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series. Remote Sens. 2015, 7, 10400–10424. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef]
- Feilhauer, H.; Dahlke, C.; Doktor, D.; Lausch, A.; Schmidtlein, S.; Schulz, G.; Stenzel, S. Mapping the local variability of Natura 2000 habitats with remote sensing. Appl. Veg. Sci. 2014, 17, 765–779. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P. Accounting for the area of polygon sampling units for the prediction of primary accuracy assessment indices. Remote Sens. Environ. 2014, 142, 9–19. [Google Scholar] [CrossRef]
- Ozdemir, I. Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data. GIScience Remote Sens. 2014, 51, 288–300. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Tree Species and Age Class Mapping in a Central European Woodland Using Optical Remote Sensing Imagery and Orthophoto Derived Stem Density–Performance of Multispectral and Hyperspectral Sensors. In Geoinformation for European-wide integration. Proceedings of the 22nd Symposium of the European Association of Remote Sensing Laboratories, Prague, Czech Republic, 4–6 June 2002; 2003; pp. 413–418. [Google Scholar]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Leckie, D.G.; Tinis, S.; Nelson, T.; Burnett, C.; Gougeon, F.A.; Cloney, E.; Paradine, D. Issues in species classification of trees in old growth conifer stands. Can. J. Remote Sens. 2005, 31, 175–190. [Google Scholar] [CrossRef]
- Carleer, A.; Wolff, E. Exploitation of very high resolution satellite data for tree species identification. Photogramm. Eng. Remote Sens. 2004, 70, 135–140. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Eignung von WorldView-2 Satellitenbildern für die Baumartenklassifizierung unter besonderer Berücksichtigung der vier neuen Spektralkanäle. Photogramm. Fernerkund. Geoinformation. 2012, 5, 573–588. [Google Scholar] [CrossRef]
- Kim, S.-R.; Lee, W.-K.; Kwak, D.-A.; Biging, G.S.; Gong, P.; Lee, J.-H.; Cho, H.-K. Forest cover classification by optimal segmentation of high resolution satellite imagery. Sensors 2011, 11, 1943–1958. [Google Scholar] [CrossRef] [PubMed]
- Immitzer, M.; Toscani, P.; Atzberger, C. The Utility of Wavelet-based Texture Measures to Improve Object-based Classification of Aerial Images. South.-East. Eur. J. Earth Obs. Geomat. 2014, 3, 79–84. [Google Scholar]
- Liu, X.; Bo, Y. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data. Remote Sens. 2015, 7, 922–950. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.; Mathieu, R.; Skidmore, A.K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 2015, 9. [Google Scholar] [CrossRef]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Elatawneh, A.; Rappl, A.; Rehush, N.; Schneider, T.; Knoke, T. Forest tree species identification using phenological stages and RapidEye data: A case study in the forest of Freising. In Proceedings of the 5th RESA Workshop, Neustrelitz, Germany, 20–21 March 2013; pp. 21–38.
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hilker, T.; White, J.C.; Coops, N.C.; Masek, J.G.; Pflugmacher, D.; Crevier, Y. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 2015, 170, 62–76. [Google Scholar] [CrossRef]
Crop type | Number of polygons | Average polygon size (in pixel) | Number of pixels |
---|---|---|---|
Carrots | 32 | 290 | 9279 |
Maize | 73 | 546 | 39,834 |
Onions | 15 | 311 | 4672 |
Soya | 53 | 383 | 20,299 |
Sugar beet | 86 | 382 | 32,824 |
Sunflower | 32 | 314 | 10,045 |
Winter crops 1 | 161 | 703 | 113,222 |
Dominate Tree Species | Number of Polygons | Average Polygon Size (in pixel) | Number of Pixels |
---|---|---|---|
Spruce (Picea sp.) | 77 | 1151 | 88,607 |
Pine (Pinus sp.) | 21 | 1622 | 34,062 |
Larch (Larix sp.) | 38 | 45 | 1700 |
Fir (Abies sp.) | 26 | 29 | 760 |
Beech (Fagus sp.) | 66 | 106 | 6977 |
Oak (Quercus sp.) | 32 | 275 | 8796 |
Other broadleaf trees 1 | 57 | 206 | 11,764 |
Test Site | Spatial Radius (hs) | Range Radius (hr) | Minimum Size (ms) |
---|---|---|---|
Cropland (Marchfeld) | 10 | 30 | 10 |
Forest (Ebersberg & Altoetting) | 10 | 10 | 4 |
OBJECT-BASED | Carrots | Maize | Onions | Soya | Sugar Beet | Sun-Flower | Winter Crops | UA |
---|---|---|---|---|---|---|---|---|
Carrots | 11 | 1 | 0 | 3 | 2 | 0 | 0 | 0.647 |
Maize | 8 | 58 | 1 | 9 | 9 | 5 | 3 | 0.624 |
Onions | 0 | 1 | 11 | 0 | 2 | 0 | 0 | 0.786 |
Soya | 3 | 4 | 2 | 33 | 3 | 0 | 0 | 0.733 |
Sugar beet | 10 | 6 | 1 | 5 | 70 | 1 | 0 | 0.753 |
Sunflower | 0 | 1 | 0 | 1 | 0 | 9 | 3 | 0.643 |
Winter crops | 0 | 2 | 0 | 2 | 0 | 17 | 155 | 0.881 |
PA | 0.344 | 0.795 | 0.733 | 0.623 | 0.814 | 0.281 | 0.963 | |
OA | 0.768 | |||||||
Kappa | 0.699 |
PIXEL-BASED | Carrots | Maize | Onions | Soya | Sugar Beet | Sun-flower | Winter Crops | UA |
---|---|---|---|---|---|---|---|---|
Carrots | 3130 | 248 | 40 | 1019 | 1225 | 23 | 140 | 0.537 |
Maize | 1133 | 32,246 | 89 | 3446 | 2676 | 426 | 1467 | 0.777 |
Onions | 48 | 42 | 3193 | 29 | 186 | 475 | 40 | 0.796 |
Soya | 698 | 2908 | 43 | 11,138 | 822 | 153 | 418 | 0.688 |
Sugar beet | 3923 | 2543 | 90 | 3298 | 27,467 | 48 | 224 | 0.731 |
Sunflower | 37 | 267 | 617 | 127 | 63 | 4427 | 1032 | 0.674 |
Winter crops | 310 | 1580 | 600 | 1242 | 385 | 4493 | 109,901 | 0.927 |
PA | 0.337 | 0.810 | 0.683 | 0.549 | 0.837 | 0.441 | 0.971 | |
OA | 0.832 | |||||||
Kappa | 0.754 |
Carrots | Maize | Onions | Soya | Sugar Beet | Sunflower | Winter Crops |
---|---|---|---|---|---|---|
1198 | 12,009 | 798 | 3302 | 7040 | 1943 | 33,234 |
OBJECT-BASED | Spruce | Pine | Larch | Fir | Beech | Oak | Other BL | UA |
---|---|---|---|---|---|---|---|---|
Spruce | 66 | 15 | 2 | 3 | 0 | 0 | 0 | 0.767 |
Pine | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 0.600 |
Larch | 5 | 2 | 28 | 1 | 0 | 2 | 6 | 0.636 |
Fir | 4 | 0 | 1 | 20 | 1 | 0 | 2 | 0.714 |
Beech | 0 | 0 | 0 | 0 | 48 | 8 | 9 | 0.738 |
Oak | 1 | 1 | 2 | 0 | 2 | 7 | 2 | 0.467 |
Other BL | 0 | 0 | 4 | 2 | 15 | 15 | 38 | 0.514 |
PA | 0.857 | 0.143 | 0.737 | 0.769 | 0.727 | 0.219 | 0.667 | |
OA | 0.662 | |||||||
Kappa | 0.588 |
PIXEL-BASED | Spruce | Pine | Larch | Fir | Beech | Oak | Other BL | UA |
---|---|---|---|---|---|---|---|---|
Spruce | 75,563 | 26,496 | 310 | 327 | 21 | 220 | 203 | 0.733 |
Pine | 12,616 | 6867 | 88 | 135 | 21 | 275 | 146 | 0.341 |
Larch | 60 | 180 | 748 | 2 | 35 | 60 | 343 | 0.524 |
Fir | 77 | 16 | 3 | 183 | 2 | 0 | 7 | 0.635 |
Beech | 11 | 8 | 24 | 10 | 3406 | 1761 | 2030 | 0.470 |
Oak | 107 | 233 | 92 | 32 | 1713 | 3653 | 2480 | 0.440 |
Other BL | 173 | 262 | 435 | 71 | 1779 | 2827 | 6555 | 0.542 |
PA | 0.853 | 0.202 | 0.440 | 0.241 | 0.488 | 0.415 | 0.557 | |
OA | 0.635 | |||||||
Kappa | 0.357 |
Spruce | Pine | Larch | Fir | Beech | Oak | Other BL |
---|---|---|---|---|---|---|
17,626 | 3050 | 2006 | 125 | 3456 | 5551 | 12,332 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. https://doi.org/10.3390/rs8030166
Immitzer M, Vuolo F, Atzberger C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing. 2016; 8(3):166. https://doi.org/10.3390/rs8030166
Chicago/Turabian StyleImmitzer, Markus, Francesco Vuolo, and Clement Atzberger. 2016. "First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe" Remote Sensing 8, no. 3: 166. https://doi.org/10.3390/rs8030166
APA StyleImmitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166