Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Estimation of 15-Year Mean LST Rasters
- The “first” type of LST composition was built by means of a simple arithmetic mean with no regard for any metadata; and,
- The “second” type of LST composition was built by means of a weighted arithmetic mean whose weights were based on the MODIS QC metadata.
2.4. SUHI Indicators
3. Results
3.1. Density Distribution of Rural and Urban LST
3.2. LST Spatial Distribution Obtained by Means of Different Types of Weight
3.3. Spatial Distribution of LST in Different Seasons
3.4. SUHI Intensity
3.5. Comparison of the Impact of the First and Second Types of Temporal Composition on the Spatial Pattern of LST—A Differential Approach
4. Discussion
4.1. The Representativeness of Satellite Remote Sensing Data in Terms of MODIS Observations
4.2. Findings of This Study in Light of Previous Studies of SUHI in Warsaw
4.3. SUHI Indicators
4.4. The Amount of Data Utilized
4.5. The Location of the Most Profound Impact of MODIS QC on a Long-Term LST Composite
4.6. The Emphasis of the View Angle in Temporal Composition
4.7. Applicability of Presented Methodology to Similar Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oke, T.R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. In Wind Climate in Cities; Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1995; pp. 81–107. [Google Scholar]
- Sahin, M. Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv. Space Res. 2012, 50, 973–985. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Hu, L.; Brunsell, N.A. The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens. Environ. 2013, 134, 162–174. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Met. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Stroppiana, D. Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. Eur. J. Remote Sens. 2014, 47, 133–152. [Google Scholar] [CrossRef]
- Goïta, K.; Royer, A.; Bussières, N. Characterization of land surface thermal structure from NOAA-AVHRR data over a northern ecosystem. Remote Sens. Environ. 1997, 60, 282–298. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Kant, Y.; Bharath, B.D.; Mallick, J.; Atzberger, C.; Kerle, N. Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. J. Ind. Soc. Remote Sens. 2009, 37, 201–214. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Tan, J. The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ. Earth Sci. 2011, 65, 1687–1694. [Google Scholar] [CrossRef]
- Walawender, J.P.; Szymanowski, M.; Hajto, M.J.; Bokwa, A. Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data. Pure Appl. Geophys. 2014, 171, 913–940. [Google Scholar] [CrossRef]
- Frey, C.M.; Kuenzer, C.; Dech, S. Cross-Comparison of Daily Land Surface Temperature Products from NOAA-AVHRR and MODIS. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 215–232. [Google Scholar]
- Nichol, J.E.; Fung, W.Y.; Lam, K.; Wong, M.S. Urban heat island diagnosis using ASTER satellite images and “in situ” air temperature. Atmos. Res. 2009, 94, 276–284. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Azevedo, J.A.; Chapman, L.; Muller, C.L. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens. 2016, 8, 153. [Google Scholar] [CrossRef]
- Ho, H.C.; Knudby, A.; Xu, Y.; Hodul, M.; Aminipouri, M. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Sci. Total Environ. 2016, 544, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Xiao, R.; Ouyang, Z.; Zheng, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2009, 25, 17–33. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.; Ying, S.; Yu, Z.; Li, Z.; Lan, H. Impact of land cover and population density on land surface temperature: Case study in Wuhan, China. J. Appl. Remote Sens. 2014, 8, 084993. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2006, 22, 353–365. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gong, C.; Wu, J.; Yu, S. The influence of socioeconomic and topographic factors on nocturnal urban heat islands: A case study in Shenzhen, China. Int. J. Remote Sens. 2012, 33, 3834–3849. [Google Scholar] [CrossRef]
- Nichol, J.E.; To, P.H. Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS J. Photogramm. Remote Sens. 2012, 74, 153–162. [Google Scholar] [CrossRef]
- Gawuc, L. Analysis of high temperature risk during a heat wave event in Warsaw, Poland—A case study by means of surface temperature and vegetation index. PhD Interdiscip. J. 2014, 157–166. [Google Scholar]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Gallo, K.P.; Tarpley, J.D.; McNab, A.L.; Karl, T.R. Assessment of urban heat islands: a satellite perspective. Atmos. Res. 1995, 37, 37–43. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Owen, T.W. Using DMSP-OLS light frequency data to categorize urban environments associated with US climate observing stations. Int. J. Remote Sens. 1998, 19, 3451–3456. [Google Scholar] [CrossRef]
- Sutton, P.C.; Taylor, M.J.; Elvidge, C.D. Using DMSP OLS Imagery to Characterize Urban Populations in Developed and Developing Countries. In Remote Sensing of Urban and Suburban Areas; Rashed, T., Jürgens, C., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 329–348. [Google Scholar]
- Kotarba, A.Z.; Aleksandrowicz, S. Impervious surface detection with nighttime photography from the International Space Station. Remote Sens. Environ. 2016, 176, 295–307. [Google Scholar] [CrossRef]
- Struzik, P. Application of the AVHRR/NOAA Satellite Information for Urban Heat Island Investigation. Acta Univ. Lodz. Folia Geogr. Phys. 1998, 3, 161–171. [Google Scholar]
- Kozlowska-Szczesna, T. The Atlas of Warsaw; Institute of Geography and Spatial Organization Polish Academy of Sciences: Warsaw, Poland, 1996. [Google Scholar]
- Osinska-Skotak, K.; Madany, A. Use of LANDSAT TM satellite data to determine the characteristics of the warsaw urban heat island. Sci. Pap. Warsaw Univ. Technol. Environ. Eng. Ser. 1998, 26, 5–33. [Google Scholar]
- Adamczyk, A.B. Differentiation of Thermal Active Surface area Of Warsaw and the Surrounding Area (Using the Methods of Remote Sensing). Ph.D. Thesis, Institute of Geography and Spatial Organization Polish Academy of Science, Warsaw, Poland, 2005. [Google Scholar]
- Gawuc, L. Diurnal variability of surface urban heat island during a heat wave in selected cities in Poland in august 2013 by means of satellite imagery. Sci. Pap. Warsaw Univ. Technol. Environ. Eng. Ser. 2014, 68, 19–34. [Google Scholar]
- Weng, Q.; Fu, P. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sens. Environ. 2014, 140, 267–278. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, P.K. Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data—An anomaly based approach. Urban Clim. 2014, 9, 19–34. [Google Scholar] [CrossRef]
- Kłysik, K.; Fortuniak, K. Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ. 1999, 33, 3885–3895. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Spatial and Temporal Structure of the Urban Heat Island in Seoul. J. Appl. Met. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Fortuniak, K.; Kłysik, K.; Wibig, J. Urban–rural contrasts of meteorological parameters in Łódź. Theor. Appl. Climatol. 2006, 84, 91–101. [Google Scholar] [CrossRef]
- Van Hove, L.W.A.; Jacobs, C.M.J.; Heusinkveld, B.G.; Elbers, J.A.; van Driel, B.L.; Holtslag, A.A.M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build. Environ. 2015, 83, 91–103. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Wang, M. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sens. Environ. 2014, 149, 33–46. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Ceriola, G.; Weng, Q.; Rajasekar, U. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens. Environ. 2011, 115, 3080–3090. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Pinheiro, A.C.T.; Privette, J.L.; Mahoney, R.; Tucker, C.J. Directional effects in a daily AVHRR land surface temperature dataset over Africa. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1941–1954. [Google Scholar] [CrossRef]
- Stoms; Bueno, M.J.; Davis, F.W. Viewing geometry of AVHRR image composites derived using multiple criteria. Photogramm. Eng. Remote Sens. 1997, 63, 681–689. [Google Scholar]
- Sobrino, J.A.; Cuenca, J. Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt. 1999, 38, 3931. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products User Guide. In Proceedings of the International Conference on Education and Social Sciences, Santa Barbara, CA, USA, 30 May–6 June 2006.
- Kozłowska, Z.; Czerwińska-Jędrusiak, B.; Ajdyn, A.; Branicka, A.; Cuch, K.; Gałązka-Seliga, P.; Kowalski, K.; Lipińska, E.; Nowakowska, G.; Polanowska, E.; et al. Warsaw Metropolitan Area; Central Statistical Office of Poland: Warsaw, Poland, 2014; pp. 25–52. [Google Scholar]
- Lorenc, H. Climatological Atlas of Poland; Institute of Meteorology and Water Management: Warsaw, Poland, 2005. [Google Scholar]
- Coll, C.; Caselles, V.; Galve, J.M.; Valor, E.; Niclòs, R.; Sánchez, J.M.; Rivas, R. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ. 2005, 97, 288–300. [Google Scholar] [CrossRef]
- Williamson, S.N.; Hik, D.S.; Gamon, J.A.; Kavanaugh, J.L.; Koh, S. Evaluating Cloud Contamination in Clear-Sky MODIS Terra Daytime Land Surface Temperatures Using Ground-Based Meteorology Station Observations. J. Clim. 2013, 26, 1551–1560. [Google Scholar] [CrossRef]
- Rajasekar, U.; Weng, Q. Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis. ISPRS J. Photogramm. Remote Sens. 2009, 64, 86–96. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Yue, J. Analysis of urban heat island (UHI) in the Beijing metropolitan area by time-series MODIS data. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 3327–3330.
- Zhang, P.; Imhoff, M.L.; Wolfe, R.E.; Bounoua, L. Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Can. J. Remote Sens. 2010, 36, 185–196. [Google Scholar] [CrossRef]
- Roy, D.P.; Borak, J.S.; Devadiga, S.; Wolfe, R.E.; Zheng, M.; Descloitres, J. The MODIS Land product quality assessment approach. Remote Sens. Environ. 2002, 83, 62–76. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing Information Reconstruction of Remote Sensing Data: A Technical Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 61–85. [Google Scholar] [CrossRef]
- Wu, P.; Shen, H.; Zhang, L.; Göttsche, F.-M. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sens. Environ. 2015, 156, 169–181. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Colditz, R.R.; Conrad, C.; Wehrmann, T.; Schmidt, M.; Dech, S. TiSeG: A Flexible Software Tool for Time-Series Generation of MODIS Data Utilizing the Quality Assessment Science Data Set. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3296–3308. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances. J. Geophys. Res. 2000, 105, 27037–27047. [Google Scholar] [CrossRef]
- Kotarba, A.Z. Regional high-resolution cloud climatology based on MODIS cloud detection data. Int. J. Climatol. 2015. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. 2008, 113, D17108. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Kuchcik, M.; Milewski, P.; Dudek, W.; Kręcisz, B.; Błażejczyk, A.; Szmyd, J.; Degórska, B.; Pałczyński, C. Urban Heat Island in Warsaw; Institute of Geography and Spatial Organization Polish Academy of Science: Warsaw, Poland, 2014. [Google Scholar]
- Sobrino, J.A.; Yven, J. Time Series Corrections and Analyses in Thermal Remote Sensing. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Springer: Dordrecht, The Netherland, 2013; Volume 17, pp. 267–286. [Google Scholar]
- Chehbouni, A.; Nouvellon, Y.; Kerr, Y.H.; Moran, M.S.; Watts, C.; Prevot, L.; Goodrich, D.C.; Rambal, S. Directional effect on radiative surface temperature measurements over a semiarid grassland site. Remote Sens. Environ. 2001, 76, 360–372. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Yu, Y.; Goldberg, M.D.; Tarpley, D.; Romanov, P.; Laszlo, I.; Chen, M. Angular anisotropy of satellite observations of land surface temperature. Geophys. Res. Lett. 2012, 39, L23802. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S.; Meyers, T. Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ. 2008, 112, 623–635. [Google Scholar] [CrossRef]
- ATSR Land Surface Temperature (LST) Product (UOL_LST_L2) Level 2 User Guide 2013. Available online: https://earth.esa.int/documents/10174/1415229/ATSR_UOL_LST_L2_User_Guide_v1-0 (accessed on 25 April 2016).
- Cao, C.; Xiong, X.; Wolfe, R.; DeLuccia, F.; Liu, Q.; Blonski, S.; Lin, G.; Nishihama, M.; Pogorzala, D.; Oudrari, H.; et al. Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide. Available online: http://www.star.nesdis.noaa.gov/smcd/spb/nsun/snpp/VIIRS/VIIRS_SDR_Users_guide.pdf (accessed on 25 April 2016).
- Product User Manual Land Surface Temperature (LST). Land Surface Analysis Satellite Applications Facility (LSA SAF). 2010. Available online: http://landsaf.meteo.pt/GetDocument.do;jsessionid=938957250388737215A2D977829E1615?id=304 (accessed on 25 April 2016).
- Sentinel-3 SLSTR Land Surface Temperature ATBD. University of Leicester, NILU, 2010. Available online: https://sentinels.copernicus.eu/documents/247904/349589/SLSTR_Level-2_LST_ATBD.pdf (accessed on 25 April 2016).
Weights Type | Weight Value | Autumn Day | Autumn Night | Spring Day | Spring Night | Data Stratification |
---|---|---|---|---|---|---|
Rasters included: | 236 | 254 | 176 | 211 | Description: | |
Weights based on α view angle | 0 | 52% | 51% | 54% | 58% | −40° < α > 40° |
1 | 6% | 6% | 5% | 6% | −40° > α > −35°; 35° > α > 40° | |
2 | 8% | 7% | 8% | 4% | −35° > α > −30°; 30° > α > 35° | |
3 | 7% | 10% | 8% | 8% | −30° > α > −25°; 25° > α > 30° | |
4 | 3% | 4% | 2% | 5% | −25° > α > −20°; 20° > α > 25° | |
5 | 9% | 8% | 10% | 8% | −20° > α > −15°; 15° > α > 20° | |
6 | 4% | 6% | 3% | 3% | −15° > α > −10°; 10° > α > 15° | |
7 | 6% | 6% | 5% | 4% | −10° > α > −5°; 5 > α > 10° | |
8 | 5% | 3% | 5% | 4% | −5° > α < 5° | |
Weights based on LST retrieval errors | 0 | 22% | 12% | 23% | 21% | LST not available |
1 | 0% | 0% | 0% | 0% | Average emissivity error > 0.04 | |
2 | 1% | 0% | 1% | 0% | Average emissivity error ≤ 0.03 | |
3 | 25% | 26% | 28% | 27% | Average emissivity error ≤ 0.02 | |
4 | 4% | 5% | 3% | 5% | Average emissivity error ≤ 0.01 | |
5 | 48% | 56% | 45% | 48% | Good quality, not necessary to examine more detailed QC | |
Weights based on emissivity errors | 0 | 22% | 12% | 23% | 21% | LST not available |
1 | 3% | 2% | 3% | 3% | Average LST error > 3 K | |
2 | 2% | 2% | 2% | 2% | Average LST error ≤ 3 K | |
3 | 11% | 13% | 10% | 10% | Average LST error ≤ 2 K | |
4 | 0% | 0% | 0% | 0% | Average LST error ≤ 1 K | |
5 | 63% | 71% | 62% | 65% | Good quality, not necessary to examine more detailed QC |
No | Name | Brief Definition |
---|---|---|
1 | Standard Deviation | Standard deviation of LST values within the city’s administrative borders |
2 | Magnitude | Maximum LST—mean LST (within city borders) |
3 | Range | Maximum LST—lowest LST (within city borders) |
4 | Urban mean—other | Mean LST (within city borders)—mean LST (areas outside borders within a buffer zone) |
5 | Urban mean—water | Mean LST (within city borders)—LST of Zalew Zegrzyński Lake |
6 | Urban mean—agriculture | Mean LST (within city borders)—LST of cropland pixel |
7 | Inside urban—inside rural | Within city borders: mean LST of artificial areas—mean LST of natural areas |
8 | Urban core—rural ring | Mean LST of artificial areas within city borders—mean temperature in the ring of pixels outside the city |
9 | Urban core—deep forest | Mean LST of artificial areas within city borders—pixel covered with dense forest (Kampinos National Forest) |
10 | Hot island | Area (number of pixels) with LST higher than mean + one standard deviation |
11 | Micro-UHI | Percentage of area (without water surfaces) with LST higher than warmest LST associated with tree canopies |
No | Indicator (°C) | Autumn Day | Autumn Night | Spring Day | Spring Night |
---|---|---|---|---|---|
1 | Standard Deviation | 0.92 | 1.00 | 1.10 | 1.10 |
2 | Magnitude | 2.16 | 1.89 | 3.21 | 2.52 |
3 | Range | 4.81 | 4.81 | 6.38 | 5.24 |
4 | Urban mean—other | 0.76 | 1.52 | 1.52 | 0.96 |
5 | Urban mean—water | 4.29 | −2.05 | 6.57 | −1.92 |
6 | Urban mean—agriculture | −0.04 | 1.40 | 2.29 | 0.85 |
7 | Inside urban—inside rural | 1.12 | 1.34 | 1.42 | 1.02 |
8 | Urban core—rural ring | 1.04 | 2.26 | 1.84 | 1.4 |
9 | Urban core—deep forest | 3.08 | 1.32 | 3.52 | 0.05 |
10 | Hot island (pixels) | 45 | 67 | 51 | 45 |
11 | Micro-UHI (%) | 88.33 | 50.00 | 73.19 | 30.07 |
Season | Exponential Power | >0.5 °C | >1.0 °C | >1.5 °C | >2.0 °C | >2.5 °C | >3.0 °C |
---|---|---|---|---|---|---|---|
Autumn day | 1 | 98% | 46% | 11% | 2% | 0% | 0% |
2 | 98% | 58% | 16% | 3% | 0% | 0% | |
3 | 99% | 70% | 21% | 4% | 1% | 1% | |
4 | 99% | 81% | 34% | 7% | 1% | 1% | |
5 | 99% | 70% | 21% | 4% | 1% | 1% | |
Autumn night | 1 | 2% | 0% | 0% | 0% | 0% | 0% |
2 | 6% | 0% | 0% | 0% | 0% | 0% | |
3 | 13% | 0% | 0% | 0% | 0% | 0% | |
4 | 25% | 0% | 0% | 0% | 0% | 0% | |
5 | 37% | 2% | 0% | 0% | 0% | 0% | |
Spring day | 1 | 82% | 42 | 13% | 5% | 2% | 2% |
2 | 62% | 28% | 7% | 2% | 2% | 2% | |
3 | 50% | 15% | 5% | 2% | 1% | 1% | |
4 | 43% | 9% | 2% | 1% | 1% | 1% | |
5 | 42% | 11% | 2% | 1% | 1% | 1% | |
Spring night | 1 | 37% | 2% | 0% | 0% | 0% | 0% |
2 | 42% | 8% | 0% | 0% | 0% | 0% | |
3 | 41% | 9% | 0% | 0% | 0% | 0% | |
4 | 33% | 7% | 0% | 0% | 0% | 0% | |
5 | 29% | 5% | 0% | 0% | 0% | 0% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawuc, L.; Struzewska, J. Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity. Remote Sens. 2016, 8, 374. https://doi.org/10.3390/rs8050374
Gawuc L, Struzewska J. Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity. Remote Sensing. 2016; 8(5):374. https://doi.org/10.3390/rs8050374
Chicago/Turabian StyleGawuc, Lech, and Joanna Struzewska. 2016. "Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity" Remote Sensing 8, no. 5: 374. https://doi.org/10.3390/rs8050374
APA StyleGawuc, L., & Struzewska, J. (2016). Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity. Remote Sensing, 8(5), 374. https://doi.org/10.3390/rs8050374