Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data
Abstract
:1. Introduction
1.1. Vegetation Indices and Vegetative Vigor
1.2. Linear Modeling in Time Series Analysis
1.3. Study Area
2. Materials and Methods
2.1. Indices of Vegetative Vigor
2.2. Temperature, Precipitation and Elevation Data
2.3. Land Cover Dynamics
2.4. Multiple Linear Regression
2.5. Statistics of Variability and Model Performance
2.6. Selected Sample Regions
3. Results
3.1. Average Characteristics of Dependent and Independent Variables by Series
3.2. Average Characteristics of Dependent and Independent Series by Land Cover Type and Dynamics
3.3. Model Performance by Series
3.4. Model Performance by Land Cover Type and Dynamics
3.5. Model Performance, Confusion, and Land Change in Selected Samples
- The first region (Figure 5a), a parcel of intact forest on the border of the states of Zacatecas and Aguascalientes, is representative of poor model performance with low potential for spurious change assessments and was selected for its low CI (0.170) and low R2 (0.290). In the land cover assessments for both the 2001 and 2007, 100% of the pixels were classified as forest, and the average EVI value over all years was 0.283. Examination of the EVI profiles for 2001 and 2007 indicated similar pattern variability in values over each year.
- The second region (Figure 5b), a stretch of irrigated agriculture in the state of Nayarit, at the very end of the Rio Grande de Santiago delta, is representative of poor model performance with high potential for spurious change assessments and was selected for its high CI (0.932) and low R2 (0.336). In both 2001 and 2007 land cover assessments, 100% of the pixels were classified as agriculture, with an average EVI value of 0.315 for this period. Examination of the EVI profiles for 2001 and 2007 indicated increased vegetative vigor during the growing seasons of July, August, and September in 2007 compared to 2001.
- The third region (Figure 5c), a stretch of seasonal agriculture in the northern portion of the state of Michoacán near the border of Guanajuato, is representative of high model performance with low potential for spurious change assessments and was selected for its low CI (0.331) and high R2 (0.726). In the 2001 land cover map, 49% of the pixels were classified as cropland, and 51% as mosaic cover. In the 2007 assessment, mosaic cover increased to 72% of the classified pixels, cropland decreased to 25%, and forest and shrub covered 1% and 2% of the pixels in the parcel, respectively. The average EVI value for this sample was 0.291 for this period. EVI profiles for 2001 and 2007 demonstrated a very similar pattern for both years.
- The fourth region (Figure 5d) is a heterogeneous plot of shrub, forest, and mosaic cover in the northern region of the state of Jalisco, in an area along a small river basin, where logging is prevalent. This region demonstrates high potential for spurious change assessments and had high model performance, as indicated by its high CI (0.955) and high R2 (0.740). In the 2001 land cover map, the parcel was comprised of mosaic (57% of classified pixels), forest (27%), shrub (11%), crop (3%), and water (2%) covers. In 2007, the land cover types included shrub (58% of classified pixels), mosaic (34%) and forest (8%). The average EVI value from 2001 to 2007 was 0.304. Examination of the average monthly EVI values revealed that values for 2007 were lower in July than in 2001, but higher in August and September.
4. Discussion
4.1. Variability of Dependent and Independent across Land Cover Types, 2001–2007
4.2. The Modeled Relationship of Temperature, Precipitation, and Elevation on EVI
4.3. Land Cover Confusion and Natural Variability in Selected Sample Regions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EVI | Enhanced Vegetation Index |
MODIS | Moderate Resolution Imaging Spectroradiometer |
TRMM | Tropical Rainfall Measuring Mission |
LST | Land Surface Temperature |
SRTM | Shuttle Radar Topography Mission |
AVHRR | Advanced Very High Resolution Radiometer |
NDVI | Normalized Difference Vegetation Index |
IGBP-DIS | International Geosphere-Biosphere Program Data and Information System |
DEM | Digital Elevation Model |
References
- Christman, Z.; Rogan, J.; Eastman, J.R.; Turner, B.L. Quantifying uncertainty and confusion in land change analyses: A case study from central Mexico using MODIS data. GISci. Remote Sens. 2015, 52, 543–570. [Google Scholar] [CrossRef]
- Christman, Z.J. Land Change in Central Mexico: Landscape Heterogeneity, Natural Variability, and Classification Uncertainty; Clark University: Worcester, MA, USA, 2010. [Google Scholar]
- Escamilla, M.; Kurtycz, A. Social participation in the Lerma-Santiago basin: Water and social life project. Int. J. Water Resour. Dev. 1995, 11, 457–466. [Google Scholar] [CrossRef]
- Cotler, H. La cuenca Lerma-Chapala: Algunas ideas para un antiguo problema. Gac. Ecol. 2004, 71, 5–10. [Google Scholar]
- Cihlar, J.; St.-Laurent, L.; Dyer, J.A. Relation between the normalized difference vegetation index and ecological variables. Remote Sens. Environ. 1991, 35, 279–298. [Google Scholar] [CrossRef]
- Schultz, P.A.; Halpert, M.S. Global analysis of the relationships among a vegetation index, precipitation and land-surface temperature. Int. J. Remote Sens. 1995, 16, 2755–2777. [Google Scholar] [CrossRef]
- Braswell, B.H.; Schimel, D.S.; Linder, E.; Moore, B., III. The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability. Science 1997, 278, 870–873. [Google Scholar] [CrossRef]
- Rian, S.; Xue, Y.; MacDonald, G.; Touré, M.; Yu, Y.; De Sales, F.; Levine, P.; Doumbia, S.; Taylor, C. Analysis of climate and vegetation characteristics along the savanna-desert ecotone in mali using modis data. GISci. Remote Sens. 2009, 46, 424–450. [Google Scholar] [CrossRef]
- Davenport, M.L.; Nicholson, S.E. On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa. Int. J. Remote Sens. 1993, 14, 2369–2389. [Google Scholar] [CrossRef]
- Gomez-Mendoza, L.; Galicia, L.; Cuevas-Fernandez, M.L.; Magana, V.; Gomez, G.; Palacio-Prieto, J.L. Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships. Int. J. Biometeorol. 2008, 52, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.Q.; Yang, T.B.; Dai, J.G.; Shi, L.; Lu, Z.Y. Vegetation cover changes and their relationship to climate variation in the source region of the Yellow River, China, 1990–2000. Int. J. Remote Sens. 2008, 29, 2085–2103. [Google Scholar] [CrossRef]
- Bradley, B.A.; Mustard, J. Identifying land cover variability distinct from land cover changes: Cheatgrass in the Great Basin. Remote Sens. Environ. 2005, 94, 204–213. [Google Scholar] [CrossRef]
- Jordan, C.C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Sellers, P.J. Relations between canopy reflectance, photosynthesis and transpiration: Links between optics, biophysics and canopy architecture. Adv. Space Res. 1987, 7, 27–44. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Glob. Chang. Biol. 2005, 11, 779–790. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.; Schaaf, C.; Strahler, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- White, M.A.; Nemani, R.R. Real-Time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ. 2006, 104, 43–49. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Glenn, E.P.P.; Huete, A.R.; Nagler, P.L.L.; Nelson, S.G.G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Silveira, E.M.D.; de Carvalho, L.M.T.; Acerbi-Junior, F.W.; de Mello, J.M. The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS. Cerne 2008, 14, 177–184. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Stisen, S. Evaluating MODIS, MERIS, and VEGETATION - Vegetation indices using in situ measurements in a semiarid environment. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1774–1786. [Google Scholar] [CrossRef]
- Liu, X.; Kafatos, M. Land-Cover mixing and spectral vegetation indices. Int. J. Remote Sens. 2005, 26, 3321–3327. [Google Scholar] [CrossRef]
- Du Plessis, W.P. Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. J. Arid Environ. 1999, 42, 235–260. [Google Scholar] [CrossRef]
- Gao, Z.-Q.; Dennis, O. The temporal and spatial relationship between NDVI and climatological parameters in Colorado. J. Geogr. Sci. 2001, 11, 411–419. [Google Scholar]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M.; Debeurs, K. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- West, R.C.; Augelli, J.P. Physical patterns of Middle America. In Middle America, Its Lands and Peoples; Prentice Hall: Upper Saddle River, NJ, USA, 1976; pp. 22–57. [Google Scholar]
- De Anda, J.; Quinones-Cisneros, S.E.; French, R.H.; Guzmán, M.; de Anda, J.; Quiñones-Cisneros, S.E.; Guzman, M. Hydrologic Balance of Lake Chapala (Mexico). J. Am. Water Resour. Assoc. 1998, 34, 1319–1331. [Google Scholar] [CrossRef]
- Magaña, V.O.; Vazquez, J.L.; Perez, J.L.; Perez, J.B. Impact of El Niño on Precipitation in Mexico. Geofica Int. 2003, 42, 313–330. [Google Scholar]
- Cavazos, T.; Hastenrath, S. Convection and rainfall over Mexico and their modulation by the Southern Oscillation. Int. J. Climatol. 1990, 10, 377–386. [Google Scholar] [CrossRef]
- MacDonald, G.M.; Stahle, D.W.; Villanueva Diaz, J.; Beer, N.; Busby, S.J.; Cerano-Paredes, J.; Cole, J.E.; Cook, E.R.; Endfield, G.; Gutierrez-Garcia, G.; et al. Climate warming and 21st-century drought in southwestern north America. EOS Trans. Am. Geophys. Union 2008, 89, 82. [Google Scholar] [CrossRef]
- Stahle, D.W.D.; Cook, E.R.; Villanueva Diaz, J.; Palacio, G.; Fye, F.K.; Burnette, D.J.; Griffin, R.D.; Seager, R.; Heim, R.R., Jr. Early 21st-century drought in Mexico. EOS Trans. Am. Geophys. Union 2009, 90, 89–100. [Google Scholar] [CrossRef]
- Pérez-Arteaga, A.; Gaston, K.J.K.J.; Kershaw, M. Undesignated sites in Mexico qualifying as wetlands of international importance. Biol. Conserv. 2002, 107, 47–57. [Google Scholar] [CrossRef]
- Lind, O.T.; Davalos-Lind, L.O. Interaction of water quantity with water quality: The Lake Chapala example. Hydrobiologia 2002, 467, 159–167. [Google Scholar] [CrossRef]
- Liverman, D. Vulnerability and adaptation to drought in Mexico. Nat. Resour. J. 1999, 39, 99–116. [Google Scholar]
- Luers, A.L.; Lobell, D.B.; Sklar, L.S.; Addams, C.L.; Matson, P.A. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar] [CrossRef]
- Tucker, C.M.; Eakin, H.; Castellanos, E.J. Perceptions of risk and adaptation: Coffee producers, market shocks, and extreme weather in Central America and Mexico. Glob. Environ. Chang. 2010, 20, 23–32. [Google Scholar] [CrossRef]
- Farjon, A. Biodiversity of Pinus (Pinaceae) in Mexico: Speciation and palaeo-endemism. Bot. J. Linn. Soc. 1996, 121, 365–384. [Google Scholar] [CrossRef]
- Styles, B.T. Genus Pinus: A Mexican purview. In Biological Diversity of Mexico: Origins and Distribution; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; Oxford University Press: Oxford, UK, 1993; pp. 397–420. [Google Scholar]
- Brower, L.P.; Castilleja, G.; Peralta, A.; Lopez-Garcia, J.; Bojorquez-Tapia, L.; Diaz, S.; Melgarejo, D.; Missrie, M. Quantitative changes in forest quality in a principal overwintering area of the monarch butterfly in Mexico, 1971–1999. Conserv. Biol. 2002, 16, 346–359. [Google Scholar] [CrossRef]
- Lopez, E.; López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Alvarez, R.; Bonifaz, R.; Lunetta, R.S.C.; García, C.; Gómez, G.; Castro, R.; Bernal, A.; Cabrera, A.L. Multitemporal land-cover classification of Mexico using Landsat MSS imagery. Int. J. Remote Sens. 2003, 24, 2501–2514. [Google Scholar] [CrossRef]
- Von Bertrab, E. Guadalajara’s water crisis and the fate of Lake Chapala: A reflection of poor water management in Mexico. Environ. Urban 2003, 15, 127. [Google Scholar] [CrossRef]
- Levine, G. The Lerma-Chapala river basin: A case study of water transfer in a closed basin. Paddy Water Environ. 2007, 5, 247–251. [Google Scholar] [CrossRef]
- Klooster, D. Campesinos and Mexican forest policy during the twentieth century. Lat. Am. Res. Rev. 2003, 38, 94–126. [Google Scholar] [CrossRef]
- Avalos, H.C.; Santander, A.G.P.; Rodríguez, C.; Guadarrama, C.E. Determinación de zonas prioritarias para la eco-rehabilitación de la cuenca Lerma-Chapala. Gac. Ecol. 2004, 71, 79. [Google Scholar]
- Sanderson, S.E. The Transformation of Mexican Agriculture: International Structure and the Politics of Rural Change; Princeton University: Princeton, NJ, USA, 1986. [Google Scholar]
- Appendini, K.; Liverman, D. Agricultural policy, climate change and food security in Mexico. Food Policy 1994, 19, 149–164. [Google Scholar] [CrossRef]
- Zahniser, S.; Link, J. Effects of North American Free Trade Agreement on Agriculuture and the Rural Economy; Agriculture and Trade Report No. (WRS-0201); Economic Research Service, United States Department of Agriculture: Washington, DC, USA, 2002.
- Dalton, R. Saving the agave. Nature 2005, 438, 1070–1071. [Google Scholar] [CrossRef] [PubMed]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Friedl, M.; Strahler, A.; Zhang, X.J. The MODIS land cover product: Multi-attribute mapping of global vegetation and land cover properties from time series MODIS data. Geosci. Remote 2002, 6, 3199–3201. [Google Scholar]
- Olson, J.S. Global Ecosystems Framework: Definitions; Internal Report; USGS EROS Data Center: Sioux Falls, ND, USA, 1994. [Google Scholar]
- Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. (Moderate Resolution Imaging Spectroradiometer)(Special Issue on EOS AM-1 Platform, Instruments, and Scientific Data). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324–1338. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Lookingbill, T.R.; Urban, D.L. Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agric. For. Meteorol. 2003, 114, 141–151. [Google Scholar] [CrossRef]
- Huang, S.L.; Rich, P.M.; Crabtree, R.L.; Potter, C.S.; Fu, P.D. Modeling monthly near-surface air temperature from solar radiation and lapse rate: Application over complex terrain in Yellowstone National Park. Phys. Geogr. 2008, 29, 158–178. [Google Scholar] [CrossRef]
- Christman, Z.; Rogan, J. Error propagation in raster data integration: Impacts on landscape composition and configuration. Photogramm. Eng. Remote Sens. 2012, 78, 617–624. [Google Scholar] [CrossRef]
- Ronald Eastman, J.; Sangermano, F.; Ghimire, B.; Zhu, H.; Chen, H.; Neeti, N.; Cai, Y.; Machado, E.; Crema, S. Seasonal trend analysis of image time series. Int. J. Remote Sens. 2009, 30, 2721–2726. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.G. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.T.; Anderson, M.; Imhoff, M.L.L.; Gutman, G.G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Friedl, M.; Davis, F. Sources of variation in radiometric surface temperature over a tallgrass prairie. Remote Sens. Environ. 1994, 48, 1–17. [Google Scholar] [CrossRef]
- National Weather Service Climate Prediction Center. Cold & Warm Episodes by Season. Available online: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml (accessed on 30 March 2016).
- Boyd, R.; Ibarrarán, M.E. Extreme climate events and adaptation: An exploratory analysis of drought in Mexico. Environ. Dev. Econ. 2009, 14, 371–395. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A.S. The IGBP-DIS global 1 km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Honey-Rosés, J. Disentangling the proximate factors of deforestation: The case of the Monarch butterfly Biosphere Reserve in Mexico. Land Degrad. Dev. 2009, 20, 22–32. [Google Scholar] [CrossRef]
EVI | Precipitation | Temperature | |||||
---|---|---|---|---|---|---|---|
Series Year(s) | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
Temporal | Spatial | ||||||
2001–2007 | 0.270 | 0.100 | 0.058 | 1.793 | 2.158 | 30.357 | 5.980 |
2001 | 0.255 | 0.102 | 0.060 | 1.997 | 2.291 | 31.440 | 5.878 |
2002 | 0.270 | 0.101 | 0.061 | 2.134 | 2.125 | 30.309 | 6.321 |
2003 | 0.282 | 0.108 | 0.060 | 2.433 | 3.033 | 30.145 | 6.519 |
2004 | 0.284 | 0.109 | 0.062 | 2.579 | 2.810 | 28.457 | 5.525 |
2005 | 0.260 | 0.098 | 0.062 | 0.769 | 0.977 | 31.386 | 6.280 |
2006 | 0.267 | 0.096 | 0.059 | 1.227 | 1.302 | 30.633 | 6.713 |
2007 | 0.276 | 0.105 | 0.060 | 1.414 | 1.644 | 30.128 | 5.589 |
Land Cover Dynamic * | Land Cover Type | EVI (mean) | Precipitation (mean, mm/day) | Temperature (mean, degrees C) | Elevation (mean, meters) |
---|---|---|---|---|---|
Persistence | Water | 0.022 | 1.638 | 22.732 | 1518.002 |
Forest | 0.304 | 1.799 | 25.467 | 2360.186 | |
Shrub | 0.234 | 1.532 | 31.975 | 1918.243 | |
Grass | 0.204 | 1.395 | 32.025 | 2143.839 | |
Sparse | 0.186 | 1.587 | 34.401 | 1424.184 | |
Built | 0.151 | 1.809 | 32.578 | 1694.716 | |
Crop | 0.296 | 1.870 | 31.367 | 1825.303 | |
Mosaic | 0.289 | 1.903 | 30.336 | 1881.013 | |
All Land ** | 0.281 | 1.793 | 30.332 | 1934.101 | |
Change | All Changes | 0.260 | 1.787 | 30.903 | 1975.454 |
Series Year(s) | R2 | Slope1 (Precipitation) | Slope2 (Temperature) | Slope3 (Elevation) | Intercept | α |
---|---|---|---|---|---|---|
2001–2007 | 0.5910 | 2.955 × 10−2 | −5.592 × 10−3 | 3.300 × 10−5 | 0.3376 | <0.001 |
2001 | 0.7148 | 2.766 × 10−2 | −7.549 × 10−3 | 1.440 × 10−4 | 0.163 | <0.001 |
2002 | 0.7907 | 3.837 × 10−2 | −3.590 × 10−3 | 1.740 × 10−4 | 0.722 | <0.001 |
2003 | 0.7739 | 2.779 × 10−2 | −4.150 × 10−3 | 2.500 × 10−4 | −0.107 | <0.001 |
2004 | 0.7246 | 3.004 × 10−2 | −4.079 × 10−3 | −4.500 × 10−5 | 0.355 | <0.001 |
2005 | 0.5247 | 5.564 × 10−2 | −5.330 × 10−3 | 4.400 × 10−5 | 0.270 | <0.05 |
2006 | 0.7976 | 5.655 × 10−2 | −4.566 × 10−3 | −1.180 × 10−4 | 0.603 | <0.001 |
2007 | 0.6809 | 4.468 × 10−2 | −6.139 × 10−3 | 1.070 × 10−4 | 0.194 | <0.01 |
Land Cover Dynamic * | Land Cover Type | R2 | Slope1 (Precipitation) | Slope2 (Temperature) | Slope3 (Elevation) | Intercept Unmodified | α Unmodified |
---|---|---|---|---|---|---|---|
Persistence | Water | 0.0361 | −6.010 × 10−4 | −1.558 × 10−3 | 9.030 × 10−4 | −1.313 | <0.4 |
Forest | 0.4587 | 1.586 × 10−2 | −2.054 × 10−3 | 1.390 × 10−4 | 7.087 × 10−2 | <0.001 | |
Shrub | 0.6053 | 3.629 × 10−2 | −4.615 × 10−3 | −1.060 × 10−4 | 0.574 | <0.001 | |
Grass | 0.5583 | 2.808 × 10−2 | −3.437 × 10−3 | −3.740 × 10−4 | 0.952 | <0.001 | |
Sparse | 0.5666 | 1.907 × 10−2 | −1.940 × 10−3 | 5.250 × 10−4 | −0.559 | <0.001 | |
Built | 0.4423 | 1.045 × 10−2 | −7.150 × 10−4 | −1.467 × 10−3 | 2.615 | <0.001 | |
Crop | 0.5477 | 3.194 × 10−2 | −5.415 × 10−3 | 2.010 × 10−4 | −1.763 × 10−2 | <0.001 | |
Mosaic | 0.6796 | 3.590 × 10−2 | −7.773 × 10−3 | −1.010 × 10−4 | 0.839 | <0.001 | |
All Land ** | 0.5690 | 3.057 × 10−2 | −5.097 × 10−3 | 4.600 × 10−5 | 0.322 | <0.001 | |
Change | All Changes | 0.6453 | 3.425 × 10−2 | −6.162 × 10−3 | −2.820 × 10−4 | 1.060 | <0.001 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christman, Z.; Rogan, J.; Eastman, J.R.; Turner, B.L. Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data. Remote Sens. 2016, 8, 478. https://doi.org/10.3390/rs8060478
Christman Z, Rogan J, Eastman JR, Turner BL. Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data. Remote Sensing. 2016; 8(6):478. https://doi.org/10.3390/rs8060478
Chicago/Turabian StyleChristman, Zachary, John Rogan, J. Ronald Eastman, and B. L. Turner. 2016. "Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data" Remote Sensing 8, no. 6: 478. https://doi.org/10.3390/rs8060478
APA StyleChristman, Z., Rogan, J., Eastman, J. R., & Turner, B. L. (2016). Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data. Remote Sensing, 8(6), 478. https://doi.org/10.3390/rs8060478