Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar
Abstract
:1. Introduction
1.1. Remote Sensing and Forest Mapping
1.2. Forest/Non-Forest Mapping Using SAR
1.3. Potential of S-Band Data for Forest Mapping
2. Experimental Section
2.1. Site Description
2.2. SAR Data and Processing
2.3. Ancillary Data
2.4. S-Band Radar Scattering Characteristics in Forest/Non-Forest Areas
2.5. Forest Cover Classification
3. Results and Discussion
3.1. MIMICS-I Model Simulation Experiment
3.2. Forest/Non-Forest Classification Results and Accuracy Assessment
3.3. Detailed Land Cover Classification Results and Accuracy Assessment
3.4. Forest Cover Change Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Foley, J.A.; Kutzbach, J.E.; Coe, M.T.; Levis, S. Feedbacks between climate and boreal forests during the holocene epoch. Nature 1994, 371, 52–54. [Google Scholar] [CrossRef]
- Ciais, P.; Denning, A.S.; Tans, P.P.; Berry, J.A.; Randall, D.A.; Collatz, G.J.; Sellers, P.J.; White, J.W.C.; Trolier, M.; Meijer, H.A.J.; et al. A three-dimensional synthesis study of δ18o in atmospheric co2: 1. Surface fluxes. J. Geophys. Res. 1997, 102, 5857. [Google Scholar] [CrossRef]
- Groombridge, B.; Jenkins, M.D. World Atlas of Biodiversity; University of California Press: Berkeley, CA, USA, 2002. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Global Forest Land-Use Change 1990–2005; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Grainger, A. An evaluation of the fao tropical forest resource assessment, 1990. Geogr. J. 1996, 162, 73–79. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Forest Resource Assessment (fra) 2010; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- DeFries, R.S.; Hansen, M.; Townshend, J.R.G.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 2012, 16. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Castel, T.; Guerra, F.; Caraglio, Y.; Houllier, F. Retrieval biomass of a large venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on Radar signature. Remote Sens. Environ. 2002, 79, 30–41. [Google Scholar] [CrossRef]
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys. Geogr. 2005, 29, 1–26. [Google Scholar] [CrossRef]
- Billington, C.; Kapos, V.; Edwards, M.; Blyth, S.; Iremonger, S. Estimated Original Forest Cover Map—A First Attempt. World Conservation Monitoring Centre. Available online: http://www.Unep-wcmc.Org/forest/original.Htm (accessed on 17 February 2016).
- Shvidenko, A.; Barber, C.V.; Persson, R. Forests and woodland systems. Chapter 21. In Ecosystems and Human Well-Being: Current State and Trends; Hassan, R., Scholes, R., Ahs, N., Eds.; Island Press: Washington, DC, USA, 2005; pp. 585–621. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP); Food and Agriculture Organization (FAO); United~Nations Forum on Forests (UNFF). Vital Forest Graphics; United Nations Environment Programme: Nairobi, Kenya, 2009. [Google Scholar]
- Thiel, C.; Drezet, P.; Weise, C.; Quegan, S.; Schmullius, C. Radar remote sensing for the delineation of forest cover maps and the detection of deforestation. Forestry 2006, 79, 589–597. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motohka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from alos PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Simard, M.; Saatchi, S.S.; De Grandi, G.D. The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2310–2321. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Nelson, B.; Podest, E.; Holt, J. Mapping Land Cover Types in the Amazon Basin Using 1 km JERS-1 Mosaic. Int. J. Remote Sens. 2000, 21, 1201–1234. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Mermoz, S.; Réjou-Méchain, M.; Villard, L.; Le Toan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of l-band SAR backscatter with biomass of dense forests. Remote Sens. Environ. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Brolly, M.; Woodhouse, I.H. Vertical backscatter profile of forests predicted by a macroecological plant model. Int. J. Remote Sens. 2013, 34, 1026–1040. [Google Scholar] [CrossRef]
- Beaudoin, A.; Le Toan, T.; Goze, S.; Nezry, E.; Lopes, A.; Mougin, E.; Hsu, C.C.; Han, H.C.; Kong, J.A.; Shin, R.T. Retrieval of forest biomass from SAR data. Int. J. Remote Sens. 1994, 15, 2777–2796. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; McDonald, K.; Whitt, M.; Dobson, M.C. Michigan microwave canopy scattering model. Int. J. Remote Sens. 1990, 11, 1223–1253. [Google Scholar] [CrossRef]
- Du, J.; Shi, J.; Sun, R. The development of HJ SAR soil moisture retrieval algorithm. Int. J. Remote Sens. 2010, 31, 3691–3705. [Google Scholar] [CrossRef]
- Bird, R.; Whittaker, P.; Stern, B.; Angli, N.; Cohen, M.; Guida, R. NovaSAR-S a low cost approach to SAR applications, synthetic aperture Radar. In Proceedings of the IEEE on Asia-Pacific Conference 2013, Tsukuba, Japan, 23–27 September 2013; pp. 84–87.
- JPL. Mission to Earth: Nasa-Isro Synthetic Aperture Radar. Available online: http://www.Jpl.Nasa.Gov/missions/nasa-isro-synthetic-aperture-radar-nisar/ (accessed on 15 December 2015).
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Fortuny-Guasch, J. Indoor wide-band polarimetric measurements on maize plants a study of the differential extinction. IEEE Trans. Geosci. Remote Sens. 2006, 44, 758–767. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, F.; Shao, Y.; Liu, L.; Wang, G.; Bian, Z.; Li, K. S-band backscattering analysis of wheat using tower-based scatterometer. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4621–4624.
- Lopez-Sanchez, J.M.; Fortuny-Guasch, J.; Cloude, S.R.; Sieber, A.J. Indoor polarimetric Radar measurements on vegetation samples at L, S, C and X band. J. Electromagn. Waves Appl. 2000, 14, 205–231. [Google Scholar] [CrossRef]
- Guida, R.; Natale, A.; Bird, R.; Whittaker, P.; Cohen, M.; Hall, D. Canopy classification with S-band polarimetric SAR data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6535–6538.
- Natale, A.; Guida, R.; Bird, R.; Whittaker, P.; Hall, D.; Cohen, M. Validation of s-band data performance for future space borne SAR missions. In Proceedings of the European Conference on Synthetic Aperture Radar, Nurnberg, Germany, 23–26 April 2012; pp. 75–78.
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical rs data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Yatabe, S.M.; Leckie, D.G. Clearcut and forest-type discrimination in satellite SAR imagery. Can. J. Remote Sens. 1995, 21, 455–467. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Walter, F.; Olsson, H. Identification of Clear Felled Areas using SPOT P and Almaz-1 SAR Data. Int. J. Remote Sens. 1999, 20, 3583–3593. [Google Scholar] [CrossRef]
- Crutchley, S.P.; Small, F.; Bowden, M. Savernake Forest: A Report for the National Mapping Programme; English Heritage: Swindon, UK, 2009; pp. 1–75. [Google Scholar]
- Baker, J.R.; Mitchell, P.L.; Cordey, R.A.; Groom, G.B.; Settle, J.J.; Stileman, M.R. Relationships between physical characteristics and polarimetric Radar backscatter for corsican pine stands in thetford forest, UK. Int. J. Remote Sens. 1994, 15, 2827–2849. [Google Scholar] [CrossRef]
- Airbus. Airborne SAR Demonstrator Facility (Airsar) Flight Plan; Airbus Defence and Space: Hampshire, UK, 2013; pp. 1–98. [Google Scholar]
- Airbus. Airborne SAR Demonstrator Facility (Airsar) d2: User Guide; Airbus Defence and Space: Hampshire, UK, 2013; pp. 1–43. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Batjes, N.H. World Soil Property Estimates for Broad-Scale Modelling (Wise30sec); Report 2015/01; Isric—World Soil Information: Wageningen, The Netherlands, 2015. [Google Scholar]
- Ulaby, F.T.; Sarabandi, K.; McDonald, K.; Whitt, M.; Dobson, M.C. Michigan Microwave Canopy Scattering Model (Mimics); Report 022486-t-1; University of Michigan Radiation Laboratory: Ann Arbor, MI, USA, 1988. [Google Scholar]
- Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping tropical forest biomass with Radar and spaceborne LiDAR in lopé national park, gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef]
- Mather, P.M.; Tso, B.; Koch, M. An evaluation of landsat tm spectral data and SAR-derived textural information for lithological discrimination in the red sea hills, sudan. Int. J. Remote Sens. 1998, 19, 587–604. [Google Scholar] [CrossRef]
- Alberga, V. A study of land cover classification using polarimetric SAR parameters. Int. J. Remote Sens. 2007, 28, 3851–3870. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency. New Global 25 m-Resolution Palsar-2/Palsar Mosaic and Global Forest/Non-Forest Map; Japan Aerospace Exploration Agency: Tsukuba, Japan, 2014. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. Global Forest Change 2000–2014; University of Maryland: College Park, MD, USA, 2014. [Google Scholar]
- Grover, K.; Quegan, S.; Freitas, C.D. Quantitative estimation of tropical forest cover by SAR. IEEE Trans. Geosci. Remote Sens. 1999, 37, 479–490. [Google Scholar] [CrossRef]
- Lynch, J.; Maslin, M.; Balzter, H.; Sweeting, M. Choose satellites to monitor deforestation. Nature 2013, 496, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Aplin, P. On scales and dynamics in observing the environment. Int. J. Remote Sens. 2006, 27, 2123–2140. [Google Scholar] [CrossRef]
- Atkinson, P.M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogramm. Eng. Remote Sens. 2005, 71, 839–846. [Google Scholar] [CrossRef]
- Kasetkasem, T.; Arora, M.K.; Varshney, P.K. Super-resolution land cover mapping using a markov random field based approach. Remote Sens. Environ. 2005, 96, 302–314. [Google Scholar] [CrossRef]
Site | Acquisition Date | Incidence Angles (°) | Polarisation | SLC Pixel Size (m) |
---|---|---|---|---|
Savernake | 16 June 2010 | 22–39.9 | Quad | 0.75 |
Savernake | 24 June 2014 | 16–42.5 | Quad | 0.75 |
Parameter | Deciduous (Birch) | Coniferous (Norway Spruce) |
---|---|---|
Trunk layer | ||
Height (m) | 8 | 8, 16 |
Diameter (m) | 2.4 | 2.08 |
Canopy density (m−2) | 0.11 | 0.2, 0.1, 0.05 |
Moisture (gravimetric) | 0.5 | 0.6 |
Crown layer | ||
Crown thickness (m) | 1, 2, 3, …, 10 | 11 |
Leaf/needle density (m−3) | 100, …, 2000 | 5000, …, 100,000 |
Leaf/needle moisture (gravimetric) | 0.8 | 0.8 |
Leaf Area Index (single-sided) | 5 | 11.9 |
Branch density (Primary, Secondary, 3rd, 4th) (m−3) | 4.1, 0.04, 0.45, 0.37 | 3.4 |
Branch length (Primary, Secondary, 3rd, 4th) (m) | 0.75, 1.15, 0.52, 0.33 | 2.0 |
Branch diameter (Primary, Secondary, 3rd, 4th) (cm) | 0.7, 1.6, 0.9, 0.57 | 2.0 |
Branch Moisture | 0.4 | 0.6 |
Soil root mean square height (cm) | 0.45, 1, 2, 3, 4, 5 | 0.45 |
Soil Correlation length (cm) | 18.75 | 18.75 |
Soil moisture (volumetric) | 0.15–0.5 | 0.15–0.5 |
Soil Sand (%) | 53 | 53 |
Soil Silt (%) | 28 | 28 |
Soil Clay (%) | 19 | 19 |
Leaf/needle/branch orientation | uniform | uniform |
dielectric constant (trunk, branch) | 0.4 | 0.6 |
Dielectric constant (Leaf) | 0.8 | 0.8 |
Class | Definition |
---|---|
Forest | Land dominated by deciduous, conifer and mixed trees with canopy height ≥3 m, >20 years old and at least 50 tonnes/ha of aboveground biomass. |
Grassland | Land dominated by non-woody annual vegetation less than 1 m in height. |
Clear-felled | Open area previously occupied by forest due to stand-replacement disturbance. The area is composed of left-over dry leaves, branches and grasses with few dead stumps. This took place between December 2012 and July 2013 in few sub-compartments and planted with Norway spruce and oak seedlings. |
Bare-ground | Land surface without any vegetation. This class includes natural and artificial bare surfaces e.g., bare soil, roads and pathways between sub-compartments in the forest. |
Class | 6 m Area (ha) | 20 m Area (ha) |
---|---|---|
Forest | 648.1 | 696.5 |
Non-forest | 94.05 | 48.0 |
Total (ha) | 742.15 | 744.5 |
Predicted Class | ||||
---|---|---|---|---|
Actual class | F * | NF * | Total | User’s Accuracy (%) |
F | 82 | 44 | 126 | 65.08 |
NF | 33 | 97 | 130 | 74.62 |
Total | 115 | 141 | 256 | |
Producers’ Accuracy (%) | 71.30 | 68.79 |
Predicted Class | ||||
---|---|---|---|---|
Actual class | F * | NF * | Total | Users’ Accuracy (%) |
F | 73 | 53 | 126 | 57.94 |
NF | 40 | 90 | 130 | 69.23 |
Total | 113 | 143 | 256 | |
Producers’ Accuracy (%) | 64.60 | 62.94 |
Class | 6 m Area (ha) | 20 m Area (ha) |
---|---|---|
Forest | 648.1 | 696.5 |
Clear-felled | 13.37 | 20.36 |
Grassland | 50.33 | 23.04 |
Bare-ground | 29.88 | 0 |
Unclassified | 0.47 | 4.6 |
Total (ha) | 742.15 | 744.5 |
Predicted Class | ||||||
---|---|---|---|---|---|---|
Actual class | F * | CF * | G * | BG * | Total | User’s Accuracy (%) |
F | 82 | 7 | 33 | 4 | 126 | 65.08 |
CF | 16 | 28 | 6 | 0 | 50 | 56.00 |
G | 9 | 1 | 22 | 3 | 35 | 62.86 |
BG | 8 | 3 | 32 | 2 | 45 | 4.44 |
Total | 115 | 39 | 93 | 9 | 256 | |
Producer’s Accuracy (%) | 71.30 | 71.79 | 23.66 | 22.22 |
Predicted Class | ||||||
---|---|---|---|---|---|---|
Actual class | F * | CF * | G * | BG * | Total | User’s Accuracy (%) |
F | 73 | 47 | 0 | 6 | 126 | 57.94 |
CF | 6 | 13 | 25 | 6 | 50 | 26.00 |
G | 5 | 12 | 5 | 13 | 35 | 14.29 |
BG | 29 | 12 | 1 | 3 | 45 | 6.67 |
Total | 113 | 84 | 31 | 28 | 256 | |
Producer’s Accuracy (%) | 64.60 | 15.48 | 16.13 | 10.71 |
Class | 6 m Area 2010 (%) | 6 m Area 2014 (%) |
---|---|---|
Forest | 88 | 80 |
Non-forest | 12 | 20 |
Total (ha) | 100 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ningthoujam, R.K.; Tansey, K.; Balzter, H.; Morrison, K.; Johnson, S.C.M.; Gerard, F.; George, C.; Burbidge, G.; Doody, S.; Veck, N.; et al. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar. Remote Sens. 2016, 8, 577. https://doi.org/10.3390/rs8070577
Ningthoujam RK, Tansey K, Balzter H, Morrison K, Johnson SCM, Gerard F, George C, Burbidge G, Doody S, Veck N, et al. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar. Remote Sensing. 2016; 8(7):577. https://doi.org/10.3390/rs8070577
Chicago/Turabian StyleNingthoujam, Ramesh K., Kevin Tansey, Heiko Balzter, Keith Morrison, Sarah C. M. Johnson, France Gerard, Charles George, Geoff Burbidge, Sam Doody, Nick Veck, and et al. 2016. "Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar" Remote Sensing 8, no. 7: 577. https://doi.org/10.3390/rs8070577
APA StyleNingthoujam, R. K., Tansey, K., Balzter, H., Morrison, K., Johnson, S. C. M., Gerard, F., George, C., Burbidge, G., Doody, S., Veck, N., Llewellyn, G. M., & Blythe, T. (2016). Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar. Remote Sensing, 8(7), 577. https://doi.org/10.3390/rs8070577