Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Landsat-7 ETM+ Datasets
3.2. Methodology and Data Processing
3.3. Accuracy Estimation
4. Results
4.1. Spatial Pattern of the Glacier Velocity
4.2. Temporal Changes of Glacier Velocity during 1999–2003
4.2.1. Baltoro Glacier
4.2.2. Siachen Glacier
5. Discussion
5.1. A Comparison with Previous Studies
5.2. Surge-Type Glacier Dynamics
5.3. Interpretation of the Velocity Differences between Glaciers on the Southern and Northern Slopes
5.4. Glacier Motion Mechanism
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rankl, M.; Kienholz, C.; Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 2014, 8, 977–989. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; Pu, J.; Lu, A.; Xiang, Y. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, K. The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Bishop, M.P.; Kääb, A.; Raup, B.H. (Eds.) Global Land Ice Measurements from Space; Springer: Berlin, Germany, 2014. [Google Scholar]
- Searle, M.P. Geology and Tectonics of the Karakoram Mountains; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief communication contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Minora, U.; Bocchiola, D.; D’Agata, C.; Maragno, D.; Mayer, C.; Lambrecht, A.; Mosconi, B.; Vuillermoz, E.; Senese, A.; Compostella, C.; et al. 2001–2010 glacier changes in the central Karakoram national park: A contribution to evaluate the magnitude and rate of the “Karakoram anomaly”. Cryosphere Discuss. 2013, 7, 2891–2941. [Google Scholar] [CrossRef]
- Feng, Q. Characteristics of glacier outburst flood in the Yarkant River, Karakorum Mountains. GeoJournal 1991, 25, 255–263. [Google Scholar] [CrossRef]
- Kääb, A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ. 2005, 94, 463–474. [Google Scholar] [CrossRef]
- Mayer, C.; Fowler, A.C.; Lambrecht, A.; Scharrer, K. A surge of North Gasherbrum glacier, Karakoram, China. J. Glaciol. 2011, 57, 904–916. [Google Scholar] [CrossRef]
- Paul, F. Revealing glacier flow and surge dynamics from animated satellite image sequences: Examples from the Karakoram. Cryosphere 2015, 9, 2201–2214. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Strozzi, T.; Schellenberger, T.; Kääb, A. The 2015 Surge of Hispar Glacier in the Karakoram. Remote Sens. 2017, 9, 888. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sens. Environ. 2013, 128, 87–106. [Google Scholar] [CrossRef]
- Quincey, D.J.; Copland, L.; Mayer, C.; Bishop, M.; Luckman, A.; Belo, M. Ice velocity and climate variations for Baltoro glacier, Pakistan. J. Glaciol. 2009, 55, 1061–1071. [Google Scholar] [CrossRef]
- Scherler, D.; Strecker, M.R. Large surface velocity fluctuations of Biafo glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J. Glaciol. 2012, 58, 569–580. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 2012, 6, 467–478. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Trouve, E. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir-Karakoram-Himalaya. Remote Sens. Environ. 2015, 162, 55–66. [Google Scholar] [CrossRef]
- Copland, L.; Pope, S.; Bishop, M.P.; Shroder, J.F., Jr.; Clendon, P.; Bush, A.; Kamp, U.; Seong, Y.B.; Owen, L.A. Glacier velocities across the central Karakoram. Ann. Glaciol. 2009, 50, 1–9. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0; Global Land Ice Measurements from Space: Boulder, CO, USA, 2015. [Google Scholar]
- Seonga, Y.B.; Owena, L.A.; Bishopb, M.P.; Bushc, A.; Clendond, P.; Coplande, L.; Finkelf, R.; Kampg, U.; Shroder, J.F., Jr. Quaternary glacial history of the central Karakoram. Quat. Sci. Rev. 2007, 26, 3384–3405. [Google Scholar] [CrossRef]
- Hewitt, K.; Wake, C.P.; Young, G.J.; David, C. Hydrological investigations at Biafo glacier, Karakoram Range, Himalaya; an important source of water for the Indus River. Ann. Glaciol. 1989, 13, 103–108. [Google Scholar] [CrossRef]
- Kumar, V.; Venkataramana, G.; Hogda, K.A. Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 545–551. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Owen, L.A.; Derbyshire, E. Glacially deformed diamictons in the Karakoram mountains, Northern Pakistan. In Glaciotectonics: Forms and Processes; Croot, D.G., Ed.; Balkema: Rotterdam, The Netherlands, 1988; pp. 149–176. [Google Scholar]
- Rankl, M.; Braun, M. Glacier elevation and mass changes over the Central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Ann. Glaciol. 2016, 57, 273–281. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Travis, D. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach. Int. J. Remote Sens. 2007, 28, 5103–5122. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS) EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 6 July 2013).
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.-P. Automatic and precise ortho-rectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. EEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Scherler, D.; Leprince, S.; Strecker, M. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Motagh, M.; Wetzel, H.-U.; Roessner, S.; Kaufmann, H. The Inylchek glacier in Kyrgyzstan, central Asia: Insight on surface kinematics from optical remote sensing imagery. Remote Sens. 2014, 6, 841–856. [Google Scholar]
- Zhou, Y.; Li, Z.; Li, J.I.A. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol. 2017, 63, 331–342. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Avouac, J.-P. User’s Guide to COSI-Corr: Co-Registration of Optically Sensed Images and Correlation. Available online: http://www.tectonics.caltech.edu/slip_history/spot_coseis/pdf_files/CosiCorr-Guide2015a.pdf (accessed on 27 July 2015).
- Koblet, T.; Gärtner-Roer, I.; Zemp, M.; Jansson, P.; Thee, P.; Haeberli, W.; Holmlund, P. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99)—Part 1 Determination of length, area, and volume changes. Cryosphere 2010, 4, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.; Kamp, U. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Quincey, D.J.; Braun, M.; Glasser, N.F.; Bishop, M.P.; Hewitt, K.; Luckman, A. Karakoram glacier surge dynamics. Geophys. Res. Lett. 2011, 38, L18504. [Google Scholar] [CrossRef]
- Jiang, Z.-L.; Liu, S.-Y.; Peters, J.; Lin, J.; Long, S.-C.; Han, Y.-S.; Wang, X. Analyzing Yengisogat glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environ. Earth Sci. 2012, 67, 1033–1043. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef]
- Kotlyakov, V.M. Atlas Snezhno-Ledovykh Resursa Mira [World Atlas of Snow and Ice Resources]; Institute of Geography, Russian Academy of Sciences: Moscow, Russian, 1997; Volume 2, (In English and Russian). [Google Scholar]
- Mihalcea, C.; Mayer, C.; Diolaiuti, G.; D’agata, C.; Smiraglia, C.; Lambrecht, A.; Vuillermoz, E.; Tartari, G. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol. 2008, 48, 49–57. [Google Scholar] [CrossRef]
- Quincey, D.J.; Luckman, A.; Benn, D. Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol. 2009, 55, 596–606. [Google Scholar] [CrossRef]
- Jiskoot, H.; Curran, C.J.; Tessler, D.L.; Shenton, L.R. Changes in Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry, tributary detachment, length-slope and area-aspect relations. Ann. Glaciol. 2009, 50, 133–143. [Google Scholar] [CrossRef]
- Fountain, A.G.; Walder, J.S. Water flow through temperate glaciers. Rev. Geophys. 1998, 36, 299–328. [Google Scholar] [CrossRef]
- Kamb, B.; Engelhardt, H.; Fahnestock, M.A.; Humphrey, N.; Meier, M.; Stone, D. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 2. Interpretation. J. Geophys. Res. Solid Earth 1994, 99, 15231–15244. [Google Scholar] [CrossRef]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 2002, 297, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, I.J. Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett. 2013, 371–372, 16–25. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Elsevier: Burlington, MA, USA, 2010. [Google Scholar]
Sensor | Date Image t1 | Date Image t2 | Path/Row |
---|---|---|---|
Landsat ETM+ | 16 July 1999 | 16 June 2000 | 148/35 |
Landsat ETM+ | 16 June 2000 | 21 July 2001 | 148/35 |
Landsat ETM+ | 21 July 2001 | 9 August 2002 | 148/35 |
Landsat ETM+ | 19 April 2002 | 21 March 2003 | 148/35 |
No. | Glacier | Type | Length of Centerline (km)/Altitude of the Start (m) | 1999–2000 Velocity (m/yr) | 2000–2001 Velocity (m/yr) | 2001–2002 Velocity (m/yr) | 2002–2003 Velocity (m/yr) | Diff. between Max. and Min. (m/yr) | 1999–2003 Average Velocity (m/yr) | 2007–2011 Average Velocity (m/yr) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Braldu (NS) | s | 10.79/3963 | 16.17 | 13.44 | 12.06 | 17.19 | 5.13 | 14.72 | No data |
2 | Skamri (NS) | s | 12.35/3995 | 36.60 | 51.43 | 35.61 | 43.92 | 15.82 | 41.89 | 58.34 |
3 | Sarpo Laggo(NS) | s | 8.97/4289 | 13.02 | 19.36 | 7.42 | 13.22 | 11.94 | 13.26 | No data |
4 | North Gasherbrum (NS) | s | 7.75/4299 | 21.67 | 25.93 | 25.97 | 34.75 | 13.08 | 27.08 | 71.89 |
5 | Urbak (NS) | s | 8.12/4468 | 11.70 | 10.20 | 3.78 | 23.80 | 20.02 | 12.37 | 5.73 |
6 | Singkhu (NS) | s | 8.07/4519 | 91.24 | 79.61 | 72.48 | 78.37 | 18.76 | 80.43 | 83.14 |
7 | Kyagar (NS) | s | 6.44/4891 | 24.52 | 23.13 | 10.88 | 20.32 | 13.64 | 19.71 | 13.66 |
8 | Siachen (SS) | n | 22.89/3698 | 94.48 | 89.10 | 89.67 | 90.99 | 5.38 | 91.06 | 90.97 |
9 | Kaberi (SS) | n | 12.24/3218 | 67.37 | 66.06 | 66.46 | 68.92 | 2.86 | 67.20 | 51.84 |
10 | Baltoro (SS) | n | 19.03/3525 | 55.06 | 49.13 | 46.98 | 48.95 | 8.08 | 50.03 | 75.23 |
11 | Panmah (SS) | n | 9.99/3593 | 55.15 | 60.35 | 55.99 | 47.29 | 13.06 | 54.70 | No data |
12 | Biafo (SS) | n | 20.34/3184 | 138.97 | 123.04 | 119.50 | 114.90 | 24.07 | 124.10 | 92.53 |
Variable | Parameter Estimate | Standard Error | t | p-Value |
---|---|---|---|---|
area | 0.61 | 0.024 | 2.576 | 0.019 |
median elevation | −0.041 | 0.035 | −1.146 | 0.267 |
mean slope | −1.878 | 2.877 | −0.653 | 0.522 |
debris cover | 0.071 | 0.043 | 1.643 | 0.118 |
mean aspect | −1.226 | 1.388 | −0.883 | 0.389 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jiang, L.; Liu, L.; Sun, Y.; Wang, H. Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images. Remote Sens. 2017, 9, 1064. https://doi.org/10.3390/rs9101064
Sun Y, Jiang L, Liu L, Sun Y, Wang H. Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images. Remote Sensing. 2017; 9(10):1064. https://doi.org/10.3390/rs9101064
Chicago/Turabian StyleSun, Yongling, Liming Jiang, Lin Liu, Yafei Sun, and Hansheng Wang. 2017. "Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images" Remote Sensing 9, no. 10: 1064. https://doi.org/10.3390/rs9101064
APA StyleSun, Y., Jiang, L., Liu, L., Sun, Y., & Wang, H. (2017). Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images. Remote Sensing, 9(10), 1064. https://doi.org/10.3390/rs9101064