The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. LST Retrieval
2.3.2. Urban Parks Mapping
2.3.3. Park Cool Island
2.3.4. Spatial Analysis
3. Results
3.1. The Urban Thermal Environment
3.2. Urban Parks Characteristics
3.3. Relationships between Urban Parks Interior LST and Characteristics
3.4. PCI Characteristics
3.4.1. Monthly PCI Variations
3.4.2. The Cooling Effect Extent
3.4.3. The Effects of Land Use and Landscape Metrics on PCIs
4. Discussion
4.1. Urban Park LST and Impact Factors
4.2. The Relationships between the PCI and Impact Factors
4.3. Implication for Urban Park Planning
4.4. Limitations and Future Research
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. The World’s Cities in 2016—Data Booklet; st/esa/ ser.A/392; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2016. [Google Scholar]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.-C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.; Chunho, L. A review on the generation, determination and mitigation of urban heat island. J. Environ.Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H. Effects of urban parks on the local urban thermal environment. Urban For. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 2016, 20, 407–418. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.-D.; Gao, J.-X.; Yang, Y. The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Build. Environ. 2014, 76, 37–43. [Google Scholar] [CrossRef]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Xu, X.; Sun, S.; Liu, W.; García, E.H.; He, L.; Cai, Q.; Xu, S.; Wang, J.; Zhu, J. The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. Energy Build. 2017, 149, 91–100. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.; Dell’Osso, G. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Camilloni, I.; Barrucand, M. Temporal variability of the Buenos Aires, Argentina, urban heat island. Theor. Appl. Climatol. 2012, 107, 47–58. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Rogan, J.; Ziemer, M.; Martin, D.; Ratick, S.; Cuba, N.; DeLauer, V. The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. Appl. Geogr. 2013, 45, 49–57. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Ho, H.C.; Knudby, A.; Xu, Y.; Hodul, M.; Aminipouri, M. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Sci. Total Environ. 2016, 544, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Hamada, S.; Tanaka, T.; Ohta, T. Impacts of land use and topography on the cooling effect of green areas on surrounding urban areas. Urban For. Urban Green. 2013, 12, 426–434. [Google Scholar] [CrossRef]
- Derkzen, M.L.; Teeffelen, A.J.; Verburg, P.H. Review: Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, The Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Yang, C.; He, X.; Wang, R.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. The effect of urban green spaces on the urban thermal environment and its seasonal variations. Forests 2017, 8, 153. [Google Scholar] [CrossRef]
- Spronken-Smith, R.; Oke, T. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 2006, 26, 1695–1711. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data: A case study in Guangzhou, Southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Chan, S.; Chau, C.; Leung, T. On the study of thermal comfort and perceptions of environmental features in urban parks: A structural equation modeling approach. Build. Environ. 2017, 122, 171–183. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time aster satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Cui, Y.Y.; De Foy, B. Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteorol. Climatol. 2012, 51, 855–868. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Yang, C.; He, X.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. Mapping the influence of land use/land cover changes on the urban heat island effect—A case study of Changchun, China. Sustainability 2017, 9, 312. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.; Loveland, T.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Qin, Z.-H.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S. Designing urban parks that ameliorate the effects of climate change. Landsc. Urban Plan. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, T.-P.; Hwang, R.-L. Thermal comfort for urban parks in subtropics: Understanding visitor’s perceptions, behavior and attendance. Adv. Meteorol. 2013, 2013, 640473. [Google Scholar] [CrossRef]
Sensors | Date | Resolution | Path/Row |
---|---|---|---|
Landsat 8 OLI/TIRS | 15 May 2015, 13 June 2014, 31 July 2014 5 August 2016, 17 September 2014, 3 October 2014 | 30 m | 118/30 |
GF-2 | 15 May 2015 | 1 m | 125.3°E, 43.8°N 125.4°E, 44.0°N |
Types and Abbreviation | Description |
---|---|
Park trees, PT | Covered by woodland and shrubs; other vegetation is less than 10% |
Park grass, PG | Dominated by herbs and lawn; other vegetation is less than 10% |
Park water bodies, PW | Rivers, lakes, and/or ponds |
Park soil land, PS | Covered by bare soil; less than 5% vegetation cover |
Park impervious surfaces, PI | Buildings, pavements, and other man-made impervious surfaces |
Landscape Metrics And Abbreviations | Descriptions and Calculations |
---|---|
Park area, PA | The area of parks (ha), PA > 0, without limit |
Park perimeter, PP | The perimeter (m) of parks, PP > 0, without limit |
Park landscape shape index, PLSI | LSI = PP/(2√πPA), LSI > 0, without limit |
Park patch density, PD | PD = n*100/PA, where n is the number of patches in a given park |
Values | PA (ha) | PP (m) | PLSI | PD | May (°C) | June (°C) | July (°C) | August (°C) | September (°C) | October (°C) |
---|---|---|---|---|---|---|---|---|---|---|
Max | 312.13 | 8171.59 | 2.11 | 296.51 | 24.56 | 36.04 | 36.32 | 39.45 | 26.69 | 16.64 |
Min | 2.03 | 576.67 | 1.01 | 10.74 | 18.14 | 27.47 | 28.20 | 30.23 | 21.79 | 13.21 |
Ave | 35.29 | 2348.69 | 1.33 | 112.49 | 20.23 | 30.73 | 31.68 | 34.23 | 23.39 | 14.32 |
Date | PA | PP | PLSI | PD | PT | PG | PW | PI | PS |
---|---|---|---|---|---|---|---|---|---|
15 May 2015 | −0.47 ** | −0.65 ** | −0.27 ** | 0.68 ** | 0.12 | 0.40 ** | −0.67 ** | 0.39 ** | −0.03 |
13 June 2014 | −0.43 ** | −0.63 ** | −0.30 * | 0.71 ** | 0.03 | 0.42 ** | −0.59 ** | 0.37 ** | −0.02 |
31 July 2014 | −0.52 ** | −0.67 ** | −0.22 | 0.70 ** | 0.07 | 0.37 ** | −0.57 ** | 0.37 ** | −0.08 |
5 August 2016 | −0.50 ** | −0.69 ** | −0.24 | 0.69 ** | 0.22 | 0.35 ** | −0.51 ** | 0.36 ** | −0.12 |
17 September 2014 | −0.48 ** | −0.62 ** | −0.25 * | 0.63 ** | −0.04 | 0.45 ** | −0.52 ** | 0.29 * | −0.02 |
3 October 2014 | −0.41 ** | −0.49 ** | −0.15 | 0.46 ** | −0.19 | 0.36 ** | −0.21 | 0.19 | −0.01 |
Date | 5 May 2015 | 13 June 2014 | 31 July 2014 | 5 August 2016 | 17 September 2014 | 3 October 2014 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Value | Sig. | Value | Sig. | Value | Sig. | Value | Sig. | Value | Sig. | Value | Sig. |
Intercept | 3.911 | 0.004 | 6.165 | 0.000 | 5.64 | 0.000 | 6.26 | 0.000 | 3.28 | 0.003 | 2.77 | 0.006 |
PG | −0.314 | 0.008 | −0.362 | 0.001 | −0.307 | 0.008 | −0.216 | 0.091 | −0.256 | 0.064 | −0.269 | 0.066 |
PW | 0.369 | 0.002 | 0.331 | 0.003 | 0.430 | 0.000 | 0.337 | 0.008 | 0.192 | 0.151 | −0.276 | 0.053 |
PI | −0.004 | 0.968 | −0.015 | 0.883 | −0.018 | 0.862 | 0.020 | 0.864 | −0.030 | 0.814 | −0.103 | 0.448 |
PS | −0.110 | 0.284 | −0.105 | 0.284 | −0.081 | 0.421 | −0.041 | 0.721 | −0.156 | 0.205 | −0.259 | 0.051 |
PD | −0.285 | 0.012 | −0.354 | 0.001 | −0.262 | 0.019 | −0.343 | 0.007 | −0.264 | 0.049 | −0.133 | 0.342 |
PLSI | 0.004 | 0.971 | −0.024 | 0.821 | −0.048 | 0.660 | −0.094 | 0.445 | −0.047 | 0.721 | −0.094 | 0.506 |
R2 | 0.48 | 0.54 | 0.50 | 0.37 | 0.27 | 0.17 | ||||||
Std. error | 1.10 | 1.24 | 1.25 | 1.27 | 0.90 | 0.80 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; He, X.; Yu, L.; Yang, J.; Yan, F.; Bu, K.; Chang, L.; Zhang, S. The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City. Remote Sens. 2017, 9, 1066. https://doi.org/10.3390/rs9101066
Yang C, He X, Yu L, Yang J, Yan F, Bu K, Chang L, Zhang S. The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City. Remote Sensing. 2017; 9(10):1066. https://doi.org/10.3390/rs9101066
Chicago/Turabian StyleYang, Chaobin, Xingyuan He, Lingxue Yu, Jiuchun Yang, Fengqin Yan, Kun Bu, Liping Chang, and Shuwen Zhang. 2017. "The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City" Remote Sensing 9, no. 10: 1066. https://doi.org/10.3390/rs9101066
APA StyleYang, C., He, X., Yu, L., Yang, J., Yan, F., Bu, K., Chang, L., & Zhang, S. (2017). The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City. Remote Sensing, 9(10), 1066. https://doi.org/10.3390/rs9101066