The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review
Abstract
:1. Introduction
1.1. Definitions of Cold Region
1.2. Characterstics of Cold Regions and Their Significance
1.3. Objectives and Scope of This Paper
2. The Potential of Earth Observation for Cold Region Delineation
2.1. Multi-Temporal Cold Region Mapping
- (1)
- Air temperature below 0 °C observed half of the time during the coldest month of the year;
- (2)
- Maximum observed snow depth on the ground no less than 30 cm;
- (3)
- 30 cm frost penetration into the ground.
2.2. Potential of Snow Cover Duration as an Indicator for Cold Region Mapping
3. The Potential of EO for the Analysis of Cold Region Characteristics
3.1. Glaciers
3.1.1. Glacier Delineation
- Generally, DN based simple ratio methods had the best results (fast, robust and strict to the pixel boundary). Digitization and the band-ratio method are consistent in clean glaciers;
- Simple ratios are relatively insensitive to threshold selection. Yet the additional TM1 threshold is of higher threshold sensitivity;
- Atmospheric correction for TM2 is important when NDSI is used;
- Manual correction is recommended to correct miss-classifications caused by debris cover, proglacial lakes, shadowed areas, and clouds.
- Using thresholds of the panchromatic band (e.g., OLI8) divided by SWIR could improve the spatial resolution, but this increases the workload in manual correction.
3.1.2. Glacier Motion
3.1.3. Glacier Elevation and Volumetric Change
- (1)
- The Shuttle Radar Topography Mission (SRTM) C-band DEM covers 60°N to 57°S with spatial resolution levels of 1 and 3 arc sec; the vertical accuracy of SRTM DEM is of ±16 m at 90% confidence [121].
- (2)
- The ASTER Global Digital Elevation Model (GDEM, updated to Version 2 on 17 October 2011), is the most representative stereoscopic DEM. It has spatial coverage from 83°N to 83°S (~99% of Earth’s landmass) with 30 m resolution in 1° × 1° tiles. The vertical accuracy of ASTER GDEM is specified as 17 m at the 95% confidence level [122].
- (3)
- The Ice, Cloud, and land Elevation Satellite—Geoscience Laser Altimeter System (ICESat-GLAS), which is not only an elevation data input for DEM differencing, but also important as auxiliary data for calibrating and validating interferometric DEM and stereoscopic DEM.
3.1.4. Glacier Mass Balance
3.1.5. Glacier Inventory
- Glaciers in Europe are shrinking, a few have completely disappeared between the “Little Ice Age” and the present [73]. The average glacier area loss is approximately −0.4%·a−1~−2%·a−1 for land-terminating glaciers since the 1970s [80,81,157,160], and the reduction rate is increasing in some of the observed glaciers [157]. Over the past three decades, the reduction rate is comparably small (ca. −0.23%·a−1) in the whole Svalbard Archipelago [159] and below −0.2% in the Svaritisen and the Jostedalsbreen regions of Norway [82,83].
- In Svalbard, the velocity of surging glaciers ranges from 1.9 m·d−1 to 5 m·d−1 during the past 20 years [112,116,161,162,163], for example, at Fridtjovbreen, Kronebreen, Kongsbreen, Monacobreen, Nathorstbreen, and Perseibreen. For land-terminating glaciers, Berthier et al. [105] identified the highest velocity as 500 m·a−1 on the icefalls of glaciers in the Mont Blanc region in the year 2003.
- European glaciers are experiencing mass loss [71,120,136]. In terms of the geodetic mass balance, the highest mass loss (approximately −1.5 m. w. e.·a−1) was observed by Hannesdóttir et al. [120] in the outlet glaciers of southeast Vatnajökull (Iceland) from 2002 to 2010. The average glacier-wide mass loss in the French Alps is between −0.39 m. w. e.·a−1 and −0.93 m. w. e.·a−1 between 1979 and 2011 [136], and around −0.02 m. w. e.·a−1 to −0.41 m. w. e.·a−1 in Kongsvegen and Kronebreen (Svalbard, Norway) for the periods 1966–1990/95 and 1990/95–2007 [144].
3.2. Snow
3.2.1. Snow Cover Area
3.2.2. Snow Cover Fraction
3.2.3. Snow Characterization
3.2.4. Snowmelt
3.2.5. Operational Snow Products
- The pattern of snow cover duration is strongly latitude and altitude dependent. Iceland and Norway have the longest snow cover duration.
- An increasing amount of impurities are contained in European snowpack, frequently in spring, which increased the surface radiation of snowpack and may result in earlier snowmelt.
4. Discussion
4.1. Challenges with Respect to Spatiotemporal Scale and Study Area Settings
4.2. Challenges with Respect to Data Availability, Costs and Suitability of Different EO Sensor Types
4.3. Challenges with Respect to Method Applicability
5. Conclusions and Outlook
- Delineating glaciers in a fast and fully automated manner is difficult;
- Correction for snow/ice penetration of SAR data with regard to snow/glacier monitoring is desirable;
- Mapping snow in forested areas, and precisely retrieving Snow Water Equivalent (SWE) and Snow Depth (SD) determination at high to medium resolution remain challenging;
- Further studies on synergetic multi-sensor EO data application in cold regions is desired;
- Key features of recently available sensors (e.g., Sentinel fleet) are so far underexplored;
- Suitable validation data sets for assessing snow cover and glacier extent are scarce;
- The pattern of glacier dynamics at a meso-/continental and long-term scale is unclear;
- In some areas, regional responses of snow distribution to ongoing climate change remain uncertain;
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moon, T. Saying goodbye to glaciers. Science 2017, 356, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Roe, G.H.; Baker, M.B.; Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci. 2017, 10, 95–99. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. Clim. Chang. 2013, 2103, 317–382. [Google Scholar]
- Ramsay, B.H. The interactive multisensor snow and ice mapping system. Hydrol. Process. 1998, 12, 1537–1546. [Google Scholar] [CrossRef]
- Helfrich, S.R.; McNamara, D.; Ramsay, B.H.; Baldwin, T.; Kasheta, T. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process. 2007, 21, 1576–1586. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Raup, B.; Kääb, A.; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S.; et al. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Comput. Geosci. 2007, 33, 104–125. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Metsämäki, S.; Pulliainen, J.; Salminen, M.; Luojus, K.; Wiesmann, A.; Solberg, R.; Böttcher, K.; Hiltunen, M.; Ripper, E. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sens. Environ. 2015, 156, 96–108. [Google Scholar] [CrossRef]
- Solberg, R.; Wangensteen, B.; Metsämäki, S.; Nagler, T.; Sandner, R.; Rott, H.; Wiesmann, A.; Luojus, K.; Kangwa, M.; Pulliainen, J. GlobSnow Snow Extent Product Guide Product Version 1.0. Available online: http://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/GlobSnow_SE_product_readme_v1.2.pdf (accessed on 24 October 2011).
- Bartsch, A.; Grosse, G.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C.; Seifert, F.M.; Obu, J.; Goler, R. GlobPermafrost—How Space-BasedEarth Observation Supports Understanding of Permafrost. Living Planet Symp. 2016, 740, 332. [Google Scholar]
- Kim, Y.; Kimball, J.S.; Zhang, K.; McDonald, K.C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ. 2012, 121, 472–487. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Dech, S. Global SnowPack: A new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sens. Lett. 2015, 6, 844–853. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Chapman, B.; McDonald, K.; De Grandi, G.; Jonsson, H.; Williams, C.; Rauste, Y.; Nilsson, M.; Sango, D.; et al. An overview of the JERS-1 SAR global boreal forest mapping (GBFM) project. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 1033–1036. [Google Scholar]
- Qiu, Y.; Massimo, M.; Li, X.; Birendra, B.; Joni, K.; Narantuya, D.; Liu, S.; Gao, Y.; Cheng, B.; Wu, T.; et al. Observing and Understanding High Mountain and Cold Regions Using Big Earth Data. Bull. Chin. Acad. Sci. 2017, 32, 82–94. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Vincent, C. Influence of climate change over the 20th century on four French glacier mass balances. J. Geophys. Res. Atmos. 2002, 107, ACL 4-1–ACL 4-12. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.K.; Laprise, R.; et al. Regional climate projections. In Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; University Press: Cambridge, UK, 2007; Chapter 11; pp. 847–940. [Google Scholar]
- Luterbacher, J.; Dietrich, D.; Xoplaki, E.; Grosjean, M.; Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 2004, 303, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.H.; Christensen, O.B. Climate modelling: Severe summertime flooding in Europe. Nature 2003, 421, 805–806. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Füssel, H.-M.; Jol, A. Climate Change, Impacts and Vulnerability in Europe 2012: An Indicator-Based Report; EEA Report No. 12/2012; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Haigh, I.; Nicholls, R.; Wells, N. Assessing changes in extreme sea levels: Application to the English Channel, 1900–2006. Cont. Shelf Res. 2010, 30, 1042–1055. [Google Scholar] [CrossRef]
- Menéndez, M.; Woodworth, P.L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. Ocean 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, F.; Wahl, T.; Jensen, J.; Weisse, R. Determining sea level change in the German Bight. Ocean Dyn. 2011, 61, 2037–2050. [Google Scholar] [CrossRef]
- Van der Linden, P.J.; Hanson, C.E. Climate Change 2007: Impacts, Adaptation and Vulnerability; Parry, M., Canziani, O., Palutikof, J., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; ALM-KÜBLER, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Sardans, J.; Estiarte, M.; Ogaya, R.; Carnicer, J.; Coll, M.; Barbeta, A.; Rivas-Ubach, A.; Llusia, J.; Garbulsky, M.; et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Chang. Biol. 2013, 19, 2303–2338. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A.J.; Wohner, C.; Kuenzer, C. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens. 2012, 4, 2432–2454. [Google Scholar] [CrossRef]
- Petrow, T.; Merz, B. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J. Hydrol. 2009, 371, 129–141. [Google Scholar] [CrossRef]
- Giuntoli, I.; Renard, B.; Lang, M. Floods in France. Chang. Flood Risk Eur. 2012, 199–211. [Google Scholar]
- Van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Köppen, W.P. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 1884, 1, 5–226. [Google Scholar]
- Qiu, Y.; Savela, H.; Key, J.R.; Menenti, M.; Vitale, V.; Cheng, X.; Friddell, J.E.; Larsen, J.R.; Enomoto, H.; Guo, X.; et al. Statement on the GEO Cold Region Initiative (GEOCRI). Available online: http://www.arcticobservingsummit.org/sites/arcticobservingsummit.org/files/Qiu-REVISEDRC--GEOCRI-Statement-20160201-revised.pdf (accessed on 17 October 2017).
- Heal, O.W. Global Change in Europe’s Cold Regions: Report on the Arteri Workshops Held at the Danish Polar Centre, Copenhagen, from 8 to 10 November (Part 1) and 4 to 7 November (Part 2) 1996; European Commission Ecosystems Research Report 27; Office for Official Publications of the European Communities: Luxembourg, 1998. [Google Scholar]
- Li, J.; Liu, Y. Study on Design Strategies for Improving Outdoor Thermal Comfort in the Cold Regions of China. Adv. Mater. Res. 2011, 250, 3798–3801. [Google Scholar] [CrossRef]
- Chen, R.; Kang, E.; Ji, X.; Yang, J.; Yang, Y. Cold regions in China. Cold Reg. Sci. Technol. 2006, 45, 95–102. [Google Scholar] [CrossRef]
- Yang, Z.N.; Liu, X.R.; Zeng, Q.Z.; Chen, Z.T. Hydrology in Cold Regions of China; Science Press: Beijing, China, 2000; pp. 90–124. (In Chinese) [Google Scholar]
- Andersland, O.B.; Ladanyi, B. An Introduction to Frozen Ground Engineering; Springer: Boston, MA, USA, 2013. [Google Scholar]
- Bates, R.E.; Bilello, M.A. Defining the Cold Regions of the Northern Hemisphere; Technical Report No. 178; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1966. [Google Scholar]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Ciscar, J.-C.; Iglesias, A.; Feyen, L.; Szabó, L.; Van Regemorter, D.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, O.A. Potential feedback of thawing permafrost to the global climate system through methane emission. Environ. Res. Lett. 2007, 2, 45016. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Vogel, J.G.; Crummer, K.G.; Lee, H.; Sickman, J.O.; Osterkamp, T.E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [PubMed]
- Radić, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 2014, 42, 37–58. [Google Scholar] [CrossRef]
- Nasholm, T.; Ekblad, A.; Nordin, A.; Giesler, R. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Shotyk, W. Biogeochemistry: Arctic plants take up mercury vapour. Nature 2017, 547, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Obrist, D.; Agnan, Y.; Jiskra, M.; Olson, C.L.; Colegrove, D.P.; Hueber, J.; Moore, C.W.; Sonke, J.E.; Helmig, D. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 2017, 547, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of boreal forest vegetation on global climate. Nature 1992, 359, 716–718. [Google Scholar] [CrossRef]
- Östlund, L.; Zackrisson, O.; Axelsson, A.-L. The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Can. J. For. Res. 1997, 27, 1198–1206. [Google Scholar] [CrossRef]
- Bogdanski, B.E.C. Canada’s Boreal Forest Economy: Economic and Socioeconomic Issues and Research Opportunities; Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada, 2008; Volume 414. [Google Scholar]
- Pisarenko, A.I.; Strakhov, V.V. Socio-Economic Assessment of the Russian Boreal Forests. IIASA Working Paper, 1996. Available online: http://pure.iiasa.ac.at/4968/1/WP-96-058.pdf (accessed on 12 October 2017).
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0; ERA Report Series 1; ECMWF, Shinfield Park: Reading, UK, 2011. [Google Scholar]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef]
- Berthier, E.; Arnaud, Y.; Baratoux, D.; Vincent, C.; Rémy, F. Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Rabatel, A.; Dedieu, J.-P.; Vincent, C. Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994–2002. J. Glaciol. 2005, 51, 539–546. [Google Scholar] [CrossRef]
- Greuell, W.; Kohler, J.; Obleitner, F.; Glowacki, P.; Melvold, K.; Bernsen, E.; Oerlemans, J. Assessment of interannual variations in the surface mass balance of 18 Svalbard glaciers from the Moderate Resolution Imaging Spectroradiometer/Terra albedo product. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Zumbühl, H.J.; Steiner, D.; Nussbaumer, S.U. 19th century glacier representations and fluctuations in the central and western European Alps: An interdisciplinary approach. Glob. Planet. Chang. 2008, 60, 42–57. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of past, current and future issues. Cryosph. Discuss 2017. [Google Scholar] [CrossRef]
- Raup, B.; Khalsa, S.J.S. GLIMS Analysis Tutorial; National Snow: Boulder, CO, USA, 2010. [Google Scholar]
- Błaszczyk, M.; Jania, J.A.; Hagen, J.O. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Pol. Polar Res. 2009, 30, 85–142. [Google Scholar]
- Paul, F.; Kääb, A.; Haeberli, W. Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Glob. Planet. Chang. 2007, 56, 111–122. [Google Scholar] [CrossRef]
- Baumann, S.; Winkler, S.; Andreassen, L.M. Mapping glaciers in Jotunheimen, South-Norway, during the “Little Ice Age” maximum. Cryosphere 2009, 3, 231. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Follestad, B.A.; Fredin, O. Late Weichselian ice flow evolution in south-central Norway? Nor. Geol. Tidsskr. 2007, 87, 281. [Google Scholar]
- Hall, D.K.; Ormsby, J.P.; Bindschadler, R.A.; Siddalingaiah, H. Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data. Ann. Glaciol. 1987, 9, 104–108. [Google Scholar] [CrossRef]
- Bayr, K.J.; Hall, D.K.; Kovalick, W.M. Observations on glaciers in the eastern Austrian Alps using satellite data. Int. J. Remote Sens. 1994, 15, 1733–1742. [Google Scholar] [CrossRef]
- Paul, F. Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian Glacier Inventory data. Int. J. Remote Sens. 2002, 23, 787–799. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef]
- Winsvold, S.H.; Andreassen, L.M.; Kienholz, C. Glacier area and length changes in Norway from repeat inventories. Cryosphere 2014, 8, 1885–1903. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Frey, H.; Le Bris, R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results. Ann. Glaciol. 2011, 52, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Andreassen, L.M.; Winsvold, S.H. A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966. Ann. Glaciol. 2011, 52, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Andreassen, L.M. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: Challenges and change assessment. J. Glaciol. 2009, 55, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Drolon, V.; Maisongrande, P.; Berthier, E.; Swinnen, E.; Huss, M. Monitoring of seasonal glacier mass balance over the European Alps using low-resolution optical satellite images. J. Glaciol. 2016, 62, 1–16. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Carturan, L.; Filippi, R.; Seppi, R.; Gabrielli, P.; Notarnicola, C.; Bertoldi, L.; Paul, F.; Rastner, P.; Cazorzi, F.; Dinale, R.; et al. Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): Controls and imbalance of the remaining glaciers. Cryosphere 2013, 7, 1339. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Serandrei-Barbero, R.; Rabagliati, R.; Binaghi, E.; Rampini, A. Glacial retreat in the 1980s in the Breonie, Aurine and Pusteresi groups (eastern Alps, Italy) in Landsat TM images. Hydrol. Sci. J. 1999, 44, 279–296. [Google Scholar] [CrossRef]
- Robson, B.A.; Hölbling, D.; Nuth, C.; Strozzi, T.; Dahl, S.O. Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis. Remote Sens. 2016, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Paul, F. Evaluation of different methods for glacier mapping using Landsat TM. In Proceedings of the EARSeL-SIG Workshop, Dresden, Germany, 16–17 June 2000. [Google Scholar]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Racoviteanu, A.E.; Paul, F.; Raup, B.; Khalsa, S.J.S.; Armstrong, R. Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol. 2009, 50, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Lougeay, R. Detection of buried glacial and ground ice with thermal infrared remote sensing. In Advanced Con-cepts and Techniques in the Study of Snow and Ice Resources; National Academy of Sciences: Washington, DC, USA, 1974. [Google Scholar]
- Taschner, S.; Ranzi, R. Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 2, pp. 1044–1046. [Google Scholar]
- Ranzi, R.; Grossi, G.; Iacovelli, L.; Taschner, S. Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 1144–1147. [Google Scholar]
- Mihalcea, C.; Brock, B.W.; Diolaiuti, G.; D’Agata, C.; Citterio, M.; Kirkbride, M.P.; Cutler, M.E.J.; Smiraglia, C. Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Reg. Sci. Technol. 2008, 52, 341–354. [Google Scholar] [CrossRef]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Foster, L.A.; Brock, B.W.; Cutler, M.E.J.; Diotri, F. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol. 2012, 58, 677–691. [Google Scholar] [CrossRef]
- Rott, H. Thematic studies in alpine areas by means of polarimetric SAR and optical imagery. Adv. Space Res. 1994, 14, 217–226. [Google Scholar] [CrossRef]
- Raup, B.H.; Andreassen, L.M.; Bolch, T.; Bevan, S. Remote sensing of glaciers. In Remote Sensingof the Cryosphere; John Wiley & Sons: Oxford, UK, 2015; pp. 123–156. [Google Scholar]
- Atwood, D.K.; Meyer, F.; Arendt, A. Using L-band SAR coherence to delineate glacier extent. Can. J. Remote Sens. 2010, 36, S186–S195. [Google Scholar] [CrossRef]
- Holobâcă, I.-H. Recent retreat of the Elbrus glacier system. J. Glaciol. 2016, 62, 94–102. [Google Scholar] [CrossRef]
- Kääb, A.; Lefauconnier, B.; Melvold, K. Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data. Ann. Glaciol. 2005, 42, 7–13. [Google Scholar] [CrossRef]
- Berthier, E.; Vadon, H.; Baratoux, D.; Arnaud, Y.; Vincent, C.; Feigl, K.L.; Rémy, F.; Legresy, B. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ. 2005, 95, 14–28. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 2012, 6, 467–478. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Schubert, A.; Faes, A.; Kääb, A.; Meier, E. Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet-vs. correlation-based image matching. ISPRS J. Photogramm. Remote Sens. 2013, 82, 49–62. [Google Scholar] [CrossRef]
- Schellenberger, T.; Dunse, T.; Kääb, A.; Schuler, T.V.; Ove, J. Multi-year surface velocities and sea-level rise contribution of the Basin-3 and Basin-2 surges, Austfonna, Svalbard. Cryosph. Discuss 2017. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Schellenberger, T.; Van Wychen, W.; Copland, L.; Kääb, A.; Gray, L. An Inter-Comparison of Techniques for Determining Velocities of Maritime Arctic Glaciers, Svalbard, Using Radarsat-2 Wide Fine Mode Data. Remote Sens. 2016, 8, 785. [Google Scholar] [CrossRef]
- Strozzi, T.; Wiesmann, A.; Sharov, A.; Kouraev, A.; Wegmüller, U.; Werner, C. Capabilities of L-band SAR data for arctic glacier motion estimation. In Proceedings of the IGARSS, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Adam, N.; Jonsson, S. Comparison of two differential interferometry techniques for the monitoring of geodynamic events. In SPIE Proceedings Series, Proceedings of the Earth Surface Remote Sensing, London, UK, 30 December 1997; pp. 319–328. [Google Scholar]
- Strozzi, T.; Gudmundsson, G.H.; Wegmüller, U. Estimation of the Surface Displacement of Swiss Alpine Glaciers Using Satellite Radar Interferometry. In Proceedings of the EARSeL-SIG-Land Ice and Snow Workshop, Berne, Switzerland, 11–13 March 2002; Available online: http://www.eproceedings.org/static/vol02_1/02_1_strozzi1.pdf (accessed on 17 June 2013).
- Murray, T.; Strozzi, T.; Luckman, A.; Jiskoot, H.; Christakos, P. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Joughin, I.R.; Kwok, R.; Fahnestock, M.A. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans. Geosci. Remote Sens. 1998, 36, 25–37. [Google Scholar] [CrossRef]
- Paterson, W.S.B. The Physics of Glaciers, 3rd ed.; Pergamon: New York, NY, USA, 1994. [Google Scholar]
- Oerlemans, J. Glaciers and Climate Change; CRC Press: Lisse, The Netherlands, 2001. [Google Scholar]
- Hannesdóttir, H.; Björnsson, H.; Pálsson, F.; Aðalgeirsdóttir, G.; Guðmundsson, S. Changes in the southeast Vatnajökull ice cap, Iceland, between 1890 and 2010. Cryosphere 2015, 9, 565–585. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. Aster Global Digital Elevation Model Version 2—Summary of Validation Results; NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science Team: Sioux Falls, SD, USA, 2011.
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271. [Google Scholar] [CrossRef]
- Berthier, E.; Vincent, C.; Magnússon, E.; Gunnlaugsson, Á.; Pitte, P.; Le Meur, E.; Masiokas, M.; Ruiz, L.; Pálsson, F.; Belart, J.M.C.; et al. Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere 2014, 8, 2275–2291. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- Magnússon, E.; Björnsson, H.; Rott, H.; Roberts, M.J.; Pálsson, F.; Gudmundsson, S.; Bennett, R.A.; Geirsson, H.; Sturkell, E. Localized uplift of Vatnajökull, Iceland: Subglacial water accumulation deduced from InSAR and GPS observations. J. Glaciol. 2011, 57, 475–484. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Kääb, A. Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry. A test study on Edgeøya, Eastern Svalbard. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2823–2830. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Arthern, R.J.; Vaughan, D.G.; Edwards, L.A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 2009, 461, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Moholdt, G.; Nuth, C.; Hagen, J.O.; Kohler, J. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ. 2010, 114, 2756–2767. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Kropáček, J.; Neckel, N.; Bauder, A. Estimation of mass balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat laser altimetry data and digital elevation models. Remote Sens. 2014, 6, 5614–5632. [Google Scholar] [CrossRef]
- Hilbert, C.; Schmullius, C. Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape. Remote Sens. 2012, 4, 2210–2235. [Google Scholar] [CrossRef]
- Nuth, C.; Moholdt, G.; Kohler, J.; Hagen, J.O.; Kääb, A. Svalbard glacier elevation changes and contribution to sea level rise. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Dedieu, J.P.; Vincent, C. Spatio-temporal changes in glacier-wide mass balance quantified by optical remote sensing on 30 glaciers in the French Alps for the period 1983–2014. J. Glaciol. 2016, 62, 1153–1166. [Google Scholar] [CrossRef]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86; IACS Contribution No. 2; UNESCO-IHP: Paris, France, 2011. [Google Scholar]
- Braithwaite, R.J. Glacier mass balance: The first 50 years of international monitoring. Prog. Phys. Geogr. 2002, 26, 76–95. [Google Scholar] [CrossRef]
- Rabatel, A.; Letréguilly, A.; Dedieu, J.P.; Eckert, N. Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: Evaluation by remote sensing and modeling of the morpho-topographic and climate controls. Cryosphere 2013, 7, 1455. [Google Scholar] [CrossRef] [Green Version]
- Finsterwalder, R. Photogrammetry and glacier research with special reference to glacier retreat in the eastern Alps. J. Glaciol. 1954, 2, 306–315. [Google Scholar] [CrossRef]
- Cogley, J.G. Geodetic and direct mass-balance measurements: Comparison and joint analysis. Ann. Glaciol. 2009, 50, 96–100. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef]
- Sapiano, J.J.; Harrison, W.D.T.; Echelmeyer, K.A. Elevation, volume and terminus changes of nine glaciers in North America. J. Glaciol. 1998, 44, 119–135. [Google Scholar] [CrossRef]
- Nuth, C.; Schuler, T.V.; Kohler, J.; Altena, B.; Hagen, J.O. Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J. Glaciol. 2012, 58, 119–133. [Google Scholar] [CrossRef]
- Pope, A.; Willis, I.C.; Pálsson, F.; Arnold, N.S.; Rees, W.G.; Björnsson, H.; Grey, L. Elevation change, mass balance, dynamics and surging of Langjökull, Iceland from 1997 to 2007. J. Glaciol. 2016, 62, 497–511. [Google Scholar] [CrossRef]
- Zemp, M.; Thibert, E.; Huss, M.; Stumm, D.; Denby, C.R.; Nuth, C.; Nussbaumer, S.U.; Moholdt, G.; Mercer, A.; Mayer, C.; et al. Reanalysing glacier mass balance measurement series. Cryosphere 2013, 7, 1227–1245. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, R.J. Short Notes: Can the Mass Balance of a Glacier be Estimated from its Equilibrium-Line Altitude? J. Glaciol. 1984, 30, 364–368. [Google Scholar] [CrossRef]
- Rabatel, A.; Dedieu, J.-P.; Thibert, E.; Letréguilly, A.; Vincent, C. 25 years (1981–2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data. J. Glaciol. 2008, 54, 307–314. [Google Scholar] [CrossRef]
- Kuhn, M. Mass budget imbalances as criterion for a climatic classification of glaciers. Geogr. Ann. Ser. A Phys. Geogr. 1984, 229–238. [Google Scholar] [CrossRef]
- Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data. Cryosphere 2012, 6, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Calluy, G.H.K.; Björnsson, H.; Greuell, J.W.; Oerlemans, J. Estimating the mass balance of Vatnajökull, Iceland, from NOAA AVHRR imagery. Ann. Glaciol. 2005, 42, 118–124. [Google Scholar] [CrossRef]
- Dumont, M.; Durand, Y.; Arnaud, Y.; Six, D. Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier. J. Glaciol. 2012, 58, 151–164. [Google Scholar] [CrossRef]
- Kulkarni, A. V Mass balance of Himalayan glaciers using AAR and ELA methods. J. Glaciol. 1992, 38, 101–104. [Google Scholar] [CrossRef]
- Cogley, J.G. A more complete version of the World Glacier Inventory. Ann. Glaciol. 2009, 50, 32–38. [Google Scholar] [CrossRef]
- Paul, F.; Barry, R.G.; Cogley, J.G.; Frey, H.; Haeberli, W.; Ohmura, A.; Ommanney, C.S.L.; Raup, B.; Rivera, A.; Zemp, M. Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol. 2009, 50, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C.; et al. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0; GLIMS Tech. Rep.; GLIMS: Boulder, CO, USA, 2015. [Google Scholar]
- Gardent, M.; Rabatel, A.; Dedieu, J.-P.; Deline, P. Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Glob. Planet. Chang. 2014, 120, 24–37. [Google Scholar] [CrossRef]
- Kääb, A.; Paul, F.; Maisch, M.; Hoelzle, M.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: II. First results. Ann. Glaciol. 2002, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Kohler, J.; König, M.; Deschwanden, A.; Hagen, J.O.M.; Kääb, A.; Moholdt, G.; Pettersson, R. Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 2013, 7, 1603–1621. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Huss, M.; Barboux, C.; Hoelzle, M. The new Swiss Glacier Inventory SGI2010: Relevance of using high-resolution source data in areas dominated by very small glaciers. Arctic Antarct. Alp. Res. 2014, 46, 933–945. [Google Scholar] [CrossRef]
- Murray, T.; Luckman, A.; Strozzi, T.; Nuttall, A.-M. The initiation of glacier surging at Fridtjovbreen, Svalbard. Ann. Glaciol. 2003, 36, 110–116. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Benham, T.J. A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high resolution satellite imagery. Polar Res. 2003, 22, 373–383. [Google Scholar] [CrossRef]
- Eldhuset, K.; Andersen, P.H.; Hauge, S.; Isaksson, E.; Weydahl, D.J. ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. Int. J. Remote Sens. 2003, 24, 1415–1437. [Google Scholar] [CrossRef]
- Miller, P.E.; Kunz, M.; Mills, J.P.; King, M.A.; Murray, T.; James, T.D.; Marsh, S.H. Assessment of glacier volume change using ASTER-based surface matching of historical photography. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1971–1979. [Google Scholar] [CrossRef] [Green Version]
- Swamy, A.N.; Brivio, P.A. Hydrological modelling of snowmelt in the Italian Alps using visible and infrared remote sensing. Remote Sens. 1996, 17, 3169–3188. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. A snow index for the Landsat thematic mapper and moderate resolution imaging spectroradiometer. In Proceedings of the 1994 International Geoscience and Remote Sensing Symposium: Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 1942–1944. [Google Scholar]
- Xiao, X.; Shen, Z.; Qin, X. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: A Normalized Difference Snow and Ice Index. Int. J. Remote Sens. 2001, 22, 2479–2487. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Boles, S.; Rawlins, M.; Moore, B., III. Mapping snow cover in the pan-Arctic zone, using multi-year (1998–2001) images from optical VEGETATION sensor. Int. J. Remote Sens. 2004, 25, 5731–5744. [Google Scholar] [CrossRef]
- Winther, J.-G.; Hall, D.K. Satellite-derived snow coverage related to hydropower production in Norway: Present and future. Int. J. Remote Sens. 1999, 20, 2991–3008. [Google Scholar] [CrossRef]
- Foster, J.L.; Hall, D.K.; Eylander, J.B.; Riggs, G.A.; Nghiem, S.V.; Tedesco, M.; Kim, E.; Montesano, P.M.; Kelly, R.E.J.; Casey, K.A.; et al. A blended global snow product using visible, passive microwave and scatterometer satellite data. Int. J. Remote Sens. 2011, 32, 1371–1395. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Romanov, P.; Gutman, G.; Csiszar, I. Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteorol. 2000, 39, 1866–1880. [Google Scholar] [CrossRef]
- Turpin, O.; Ferguson, R.; Johansson, B. Use of remote sensing to test and update simulated snow cover in hydrological models. Hydrol. Process. 1999, 13, 2067–2077. [Google Scholar] [CrossRef]
- Malcher, P.; Floricioiu, D.; Rott, H. Snow mapping in Alpine areas using medium resolution spectrometric sensors. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 4, pp. 2835–2837. [Google Scholar]
- Hüsler, F.; Jonas, T.; Wunderle, S.; Albrecht, S. Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps. Remote Sens. Environ. 2012, 121, 497–515. [Google Scholar] [CrossRef]
- Siljamo, N.; Hyvärinen, O. New Geostationary Satellite–Based Snow-Cover Algorithm. J. Appl. Meteorol. Climatol. 2011, 50, 1275–1290. [Google Scholar] [CrossRef]
- Pepe, M.; Boschetti, L.; Brivio, P.A.; Rampini, A. Comparing the performance of fuzzy and crisp classifiers on remotely sensed images: A case of snow classification. Int. J. Remote Sens. 2010, 31, 6189–6203. [Google Scholar] [CrossRef]
- Metsämäki, S.; Vepsäläinen, J.; Pulliainen, J.; Sucksdorff, Y. Improved linear interpolation method for the estimation of snow-covered area from optical data. Remote Sens. Environ. 2002, 82, 64–78. [Google Scholar] [CrossRef]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, Part 1: Algorithm description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef]
- Grody, N.C. Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res. Atmos. 1991, 96, 7423–7435. [Google Scholar] [CrossRef]
- Grody, N.C.; Basist, A.N. Global identification of snowcover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens. 1996, 34, 237–249. [Google Scholar] [CrossRef]
- Kongoli, C.; Dean, C.A.; Helfrich, S.R.; Ferraro, R.R. Evaluating the potential of a blended passive microwave-interactive multi-sensor product for improved mapping of snow cover and estimations of snow water equivalent. Hydrol. Process. 2007, 21, 1597–1607. [Google Scholar] [CrossRef]
- Kurvonen, L.; Hallikainen, M. Influence of land-cover category on brightness temperature of snow. IEEE Trans. Geosci. Remote Sens. 1997, 35, 367–377. [Google Scholar] [CrossRef]
- Foster, J.; Hall, D.; Eylander, J. A new blended snow product using visible, microwave and scatterometer satellite data. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 2. [Google Scholar]
- Foster, J.; Hall, D.K.; Eylander, J.; Kim, E.; Riggs, G.; Tedesco, M.; Nghiem, S.; Kelly, R.; Choudhury, B.; Reichle, R.; et al. Blended visible, passive microwave and scatterometer global snow products. In Proceedings of the 64th Eastern Snow Conference, St. John’s, NL, Canada, 29 May–1 June 2007; Volume 28. [Google Scholar]
- Casey, K.A.; Kim, E.J.; Hallikainen, M.T.; Foster, J.L.; Hall, D.K.; Riggs, G.A. Validation of the AFWA-NASA blended snow-cover product in Finland, 2006–2007. In Proceedings of the 64th Eastern Snow Conference, St. John’s, NL, Canada, 29 May–1 June 2007. [Google Scholar]
- Wang, X.; Xie, H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol. 2009, 371, 192–200. [Google Scholar] [CrossRef]
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361. [Google Scholar] [CrossRef]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping. Water Resour. Res. 2008, 44, W03406. [Google Scholar] [CrossRef]
- Da Ronco, P.; De Michele, C. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci. 2014, 18, 4579. [Google Scholar] [CrossRef]
- Andersen, T. Operational snow mapping by satellites. In Proceedings of the Exeter Symposium: Hydrological Aspects of Alpine and High Mountain Areas, Exeter, UK, 19–30 July 1982; pp. 149–154. [Google Scholar]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Solberg, R.; Wangensteen, B.; Amlien, J.; Koren, H.; Metsämäki, S.; Nagler, T.; Luojus, K.; Pulliainen, J. A new global snow extent product based on ATSR-2 and AATSR. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 1780–1783. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Nolin, A.W.; Dozier, J.; Mertes, L.A.K. Mapping alpine snow using a spectral mixture modeling technique. Ann. Glaciol. 1993, 17, 121–124. [Google Scholar] [CrossRef]
- Rosenthal, W.; Dozier, J. Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res. 1996, 32, 115–130. [Google Scholar] [CrossRef]
- Painter, T.H.; Dozier, J.; Roberts, D.A.; Davis, R.E.; Green, R.O. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens. Environ. 2003, 85, 64–77. [Google Scholar] [CrossRef]
- Painter, T.H.; Roberts, D.A.; Green, R.O.; Dozier, J. The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sens. Environ. 1998, 65, 320–332. [Google Scholar] [CrossRef]
- Foppa, N.; Wunderle, S.; Hauser, A.; Oesch, D.; Kuchen, F. Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data. Ann. Glaciol. 2004, 38, 245–252. [Google Scholar] [CrossRef]
- Foppa, N.; Hauser, A.; Oesch, D.; Wunderle, S.; Meister, R. Validation of operational AVHRR subpixel snow retrievals over the European Alps based on ASTER data. Int. J. Remote Sens. 2007, 28, 4841–4865. [Google Scholar] [CrossRef]
- Veganzones, M.A.; Dalla Mura, M.; Dumont, M.; Zin, I.; Chanussot, J. Improved subpixel monitoring of seasonal snow cover: A case study in the Alps. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 3976–3979. [Google Scholar]
- Vikhamar, D.; Solberg, R. Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sens. Environ. 2003, 84, 69–82. [Google Scholar] [CrossRef]
- Vikhamar, D.; Solberg, R. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sens. Environ. 2003, 88, 309–323. [Google Scholar] [CrossRef]
- Metsämäki, S.; Mattila, O.-P.; Pulliainen, J.; Niemi, K.; Luojus, K.; Böttcher, K. An optical reflectance model-based method for fractional snow cover mapping applicable to continental scale. Remote Sens. Environ. 2012, 123, 508–521. [Google Scholar] [CrossRef]
- Vepsalainen, J.; Metsamaki, S.; Koskinen, J.; Huttunen, M.; Pulliainen, J. Estimation of snow covered area by applying apparent regional transmissivity. In Proceedings of the 2001 IEEE International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; Volume 7, pp. 3237–3239. [Google Scholar]
- Metsämäki, S.J.; Anttila, S.T.; Markus, H.J.; Vepsäläinen, J.M. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sens. Environ. 2005, 95, 77–95. [Google Scholar] [CrossRef]
- Metsämäki, S.; Huttunen, M.; Anttila, S. The operative remote sensing of snow covered area in a service of hydrological modeling in Finland. Remote Sens. Transit. 2004. Available online: https://is.muni.cz/el/1431/podzim2013/Z0059/um/43842215/45505521/article_7.txt (accessed on 7 September 2017).
- Salminen, M.; Pulliainen, J.; Metsämäki, S.; Kontu, A.; Suokanerva, H. The behaviour of snow and snow-free surface reflectance in boreal forests: Implications to the performance of snow covered area monitoring. Remote Sens. Environ. 2009, 113, 907–918. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Fily, M.; Bourdelles, B.; Dedieu, J.P.; Sergent, C. Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the Alps. Remote Sens. Environ. 1997, 59, 452–460. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef]
- Di Mauro, B.; Fava, F.; Ferrero, L.; Garzonio, R.; Baccolo, G.; Delmonte, B.; Colombo, R. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res. Atmos. 2015, 120, 6080–6097. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Jolma, P.A. Retrieval of the water equivalent of snow cover in Finland by satellite microwave radiometry. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 855–862. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Jolma, P.A. Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland. IEEE Trans. Geosci. Remote Sens. 1992, 30, 124–131. [Google Scholar] [CrossRef]
- Kunzi, K.F.; Patil, S.; Rott, H. Snow-cover parameters retrieved from Nimbus-7 scanning multichannel microwave radiometer (SMMR) data. IEEE Trans. Geosci. Remote Sens. 1982, GE-20, 452–467. [Google Scholar] [CrossRef]
- Hallikainen, M. Retrieval of snow water equivalent from Nimbus-7 SMMR data: Effect of land-cover categories and weather conditions. IEEE J. Ocean. Eng. 1984, 9, 372–376. [Google Scholar] [CrossRef]
- Aschbacher, J. Land Surface Studies and Atmospheric Effects by Satellite Microwave Radiometry. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1989. [Google Scholar]
- Armstrong, R.L.; Brodzik, M.J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett. 2001, 28, 3673–3676. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Pulliainen, J.; Karna, J.; Tauriainen, S.; Pihlflyckt, J.; Hallikainen, M. Spatial Microwave Brightness Temperature Variations of Boreal Forests under Dry Snow Cover Conditions. In Proceedings of the 2006 IEEE MicroRad, San Juan, PR, USA, 28 February–3 March 2006; pp. 142–147. [Google Scholar]
- Santi, E.; Pettinato, S.; Paloscia, S.; Pampaloni, P.; Macelloni, G.; Brogioni, M. An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo. Hydrol. Earth Syst. Sci. 2012, 16, 3659–3676. [Google Scholar] [CrossRef]
- Santi, E.; Pettinato, S.; Paloscia, S.; Pampaloni, P.; Fontanelli, G.; Crepaz, A.; Valt, M. Monitoring of Alpine snow using satellite radiometers and artificial neural networks. Remote Sens. Environ. 2014, 144, 179–186. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1378–1390. [Google Scholar] [CrossRef]
- Pulliainen, J.; Hallikainen, M. Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ. 2001, 75, 76–85. [Google Scholar] [CrossRef]
- Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 2004, 90, 76–85. [Google Scholar] [CrossRef]
- Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ. 2006, 101, 257–269. [Google Scholar] [CrossRef]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.-P.; Koskinen, J.; Bojkov, B. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Halme, P.; Takala, M.; Pulliainen, J. Combined active and passive microwave remote sensing of snow in Finland. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 2, pp. 830–832. [Google Scholar]
- Montomoli, F.; Macelloni, G.; Brogioni, M.; Lemmetyinen, J.; Cohen, J.; Rott, H. Observations and Simulation of Multifrequency SAR Data Over a Snow-Covered Boreal Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1216–1228. [Google Scholar] [CrossRef]
- Cui, Y.; Xiong, C.; Lemmetyinen, J.; Shi, J.; Jiang, L.; Peng, B.; Li, H.; Zhao, T.; Ji, D.; Hu, T. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss. Remote Sens. 2016, 8, 505. [Google Scholar] [CrossRef]
- Koskinen, J.T.; Pulliainen, J.T.; Hallikainen, M.T. The use of ERS-1 SAR data in snow melt monitoring. IEEE Trans. Geosci. Remote Sens. 1997, 35, 601–610. [Google Scholar] [CrossRef]
- Pulliainen, J.; Koskinen, J.; Hallikainen, M. Compensation of forest canopy effects in the estimation of snow covered area from SAR data. In Proceedings of the 2001 IEEE International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; Volume 2, pp. 813–815. [Google Scholar]
- Luojus, K.P.; Pulliainen, J.T.; Metsamaki, S.J.; Hallikainen, M.T. Accuracy assessment of SAR data-based snow-covered area estimation method. IEEE Trans. Geosci. Remote Sens. 2006, 44, 277–287. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for snowmelt monitoring by means of Sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef]
- Rawlins, M.A.; McDonald, K.C.; Frolking, S.; Lammers, R.B.; Fahnestock, M.; Kimball, J.S.; Vörösmarty, C.J. Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer. J. Hydrol. 2005, 312, 294–311. [Google Scholar] [CrossRef]
- Rotschky, G.; Schuler, T.V.; Haarpaintner, J.; Kohler, J.; Isaksson, E. Spatio-temporal variability of snowmelt across Svalbard during the period 2000–08 derived from QuikSCAT/SeaWinds scatterometry. Polar Res. 2011, 30. [Google Scholar] [CrossRef]
- Wang, L.; Wolken, G.J.; Sharp, M.J.; Howell, S.E.L.; Derksen, C.; Brown, R.D.; Markus, T.; Cole, J. Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000–2009. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Roberts, R.; Baumgartner, M.F. Snowmelt Runoff Model (SRM) User’s Manual; Department of Geography, University of Berne: Bern, Switzerland, 1998. [Google Scholar]
- Martinec, J. Snowmelt-runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar]
- Nagler, T.; Rott, H.; Malcher, P.; Müller, F. Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens. Environ. 2008, 112, 1408–1420. [Google Scholar] [CrossRef]
- Matson, M.; Wiesnet, D.R. New data base for climate studies. Nature 1981, 289, 451–456. [Google Scholar] [CrossRef]
- Robinson, D.A.; Dewey, K.F.; Heim, R.R., Jr. Global snow cover monitoring: An update. Bull. Am. Meteorol. Soc. 1993, 74, 1689–1696. [Google Scholar] [CrossRef]
- Globsnow Snow Products. Available online: http://www.globsnow.info (accessed on 18 July 2017).
- The National Snow and Ice Data Center (NSIDC). Available online: https://nsidc.org/ (accessed on 18 July 2017).
- Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEX). Available online: http://snowpex.enveo.at (accessed on 18 July 2017).
- Solberg, R.; Amlien, J.; Koren, H.; Eikvil, L.; Malnes, E.; Storvold, R. Multi-sensor and time-series approaches for monitoring of snow parameters. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 3, pp. 1661–1666. [Google Scholar]
- Tampellini, L.; Ober, G.; Vescovi, F.D.; Power, D.; Strozzi, T.; Vincent, P.; Eikvil, L.; Malnes, E.; Nagler, T.; Rott, H. EO-hydro an earth observation service for hydropower plant management. In Proceedings of the ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Solberg, R.; Koren, H.; Amlien, J.; Malnes, E.; Schuler, D.V.; Orthe, N.K. The development of new algorithms for remote sensing of snow conditions based on data from the catchment of Øvre Heimdalsvatn and the vicinity. Hydrobiologia 2010, 642, 35–46. [Google Scholar] [CrossRef]
- Foster, J.L.; Winchester, J.W.; Dutton, E.G. The date of snow disappearance on the Arctic tundra as determined from satellite, meteorological station and radiometric in situ observations. IEEE Trans. Geosci. Remote Sens. 1992, 30, 793–798. [Google Scholar] [CrossRef]
- Dedieu, J.P.; Lessard-Fontaine, A.; Ravazzani, G.; Cremonese, E.; Shalpykova, G.; Beniston, M. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci. Total Environ. 2014, 493, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P. A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere 2014, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Dye, D.G. Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol. Process. 2002, 16, 3065–3077. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Bühler, Y.; Frauenfelder, R.; Malnes, E. Remote sensing of snow avalanches: Recent advances, potential, and limitations. Cold Reg. Sci. Technol. 2016, 121, 126–140. [Google Scholar] [CrossRef]
- Pandey, P.; Ramanathan, A.; Venkataraman, G. Remote Sensing of Mountain Glaciers and Related Hazards. In Environmental Applications of Remote Sensing; InTech: Rijeka, Croatia, 2016. [Google Scholar]
Location | Year | Sensor | DEM | Delineation Technology 1 | References |
---|---|---|---|---|---|
Globe (RGI) | 1999 or later | Landsat fleet, etc. | SRTM, SPOT DEM, ASTER GDEM2 | T + D | [9,156] |
European Alps | 2003 | Landsat fleet | STRM | T | [81] |
Austrian Alps | 1985, 1992 | Landsat fleet | — | T | [78] |
1985, 2003, 2013 | Landsat fleet, ALOS PALSAR | SRTM, Local DEM | S | [90] | |
French Alps | 1967/71, 1985/86, 2003, 2006/09 | Landsat fleet | Local DEM | S | [157] |
Italian Alps | 1987, 2009 | Landsat fleet | Local DEM | T | [87] |
Swiss Alps | 1985 | Landsat fleet, SPOT | Local DEM | S/U/T/M | [79,158] |
1985, 1992, 1998/99 | Landsat fleet | Local DEM | T | [88] | |
Iceland | 1890–2010 | Landsat fleet, MODIS, SPOT | Local DEM | D | [120] |
Norway | LIA-2003 | Landsat fleet | — | D | [73] |
1999 | Landsat fleet | Local DEM | T | [83] | |
1966, 1997, 2003, 2006 | Landsat fleet | Local DEM | T | [82] | |
1947/85, 1988/97, 1999–2006 | Landsat fleet | Local DEM | T | [80] | |
Svalbard | 1930s–2010 | ASTER, Landsat fleet, SPOT | SPOT DEM, ASTER GDEM2 | D | [159] |
2000–2006 | ASTER, Landsat fleet, | ASTER generated | T+D | [71] |
Equation | Annotation | Reference |
---|---|---|
[220] | ||
[220] | ||
[221] | ||
[61] | ||
α0 and α1 are empirical coefficients | [222] | |
c is the slope of linear fit 4.8 mm·K−1 | [223] | |
[223] | ||
α0 and α1 are empirical coefficients | [224] | |
[224] | ||
α0, α1, α2, α3 are empirical coefficients | [183] | |
[183] |
Aspect | Benefits | Limitation |
---|---|---|
Good data availability and accessibility | No usable data under cloud cover and polar darkness | |
General | Good global spatiotemporal coverage | Relatively few spectral bands to distinguish snow/ice |
Atmospheric absorption and scattering | ||
Glacier delineation | Fast, robust, semi-automated algorithm | Problematic identification in cases of debris cover |
Glacier elevation change | Automated algorithm | High optical contrast is needed |
No snow/ice penetration | Limited number and accessibility of stereo-geometric sensors | |
Glacier mass balance | Usefulness for building time series | SLA does not always represent ELA |
Albedo only provides relative mass balance | ||
Glacier motion | Long-term historic record | Error in image orthorectification processing and whisk-broom acquisition |
Snow Cover Area | Fast, robust, semi-automated algorithm | Confusion between snow and dark targets (e.g., black spruce forest, water bodies) |
Snow Cover Fraction | Fast, robust, straightforward algorithm | Proper endmember selection is required |
Limited number of bands in multispectral data | ||
Snow Grain Size & Impurity | High sensitivity | Only for the upper layer of the snowpack |
Snow Water Equivalent & Depth | N/A | N/A |
Snowmelt | High temporal resolution | Cannot distinguish between wet snow and dry snow |
Aspect | Benefits | Limitation |
---|---|---|
General | Day-night all-weather operation | Snow/ice penetration |
Complex format and big data size. | ||
Propagation effects in ionosphere | ||
Glacier delineation | Debris cover is less problematic | Unable to detect glaciers based on single frequency amplitude/phase image |
Glacier elevation change | Very accurate | Coherence requirement (InSAR & D-InSAR) |
Penetration correction is necessary | ||
Glacier mass balance | N/A | N/A |
Glacier motion | Most accurate (D-InSAR) and very | Need for retained coherence (Coherence tracking and D-InSAR) |
accurate for offset-tracking | Only slant-range motion (D-InSAR) | |
Requires large image patches for incoherent intensity tracking | ||
Snow Cover Area | N/A | Only able to detect wet snow |
Snow Cover Fraction | N/A | N/A |
Snow Grain Size & Impurity | N/A | N/A |
Snow Water Equivalent & Depth | Physical model based method | Mostly single frequency sensors |
Snowmelt | Can detect wet snow | N/A |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Kuenzer, C.; Dietz, A.J.; Dech, S. The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review. Remote Sens. 2017, 9, 1067. https://doi.org/10.3390/rs9101067
Hu Z, Kuenzer C, Dietz AJ, Dech S. The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review. Remote Sensing. 2017; 9(10):1067. https://doi.org/10.3390/rs9101067
Chicago/Turabian StyleHu, Zhongyang, Claudia Kuenzer, Andreas J. Dietz, and Stefan Dech. 2017. "The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review" Remote Sensing 9, no. 10: 1067. https://doi.org/10.3390/rs9101067
APA StyleHu, Z., Kuenzer, C., Dietz, A. J., & Dech, S. (2017). The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review. Remote Sensing, 9(10), 1067. https://doi.org/10.3390/rs9101067