A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Site and In Situ Data
2.2. Landsat Data
3. Method
3.1. Selection of Landsat Spectral Bands and Ground Data
3.2. Remote Sensing Reflectance for Different Chl-a Concentrations
3.3. Chl-a Algorithm Development and Validation
3.4. Bloom Occurrence, Extent and Magnitude Extraction
4. Results
4.1. Chl-a Model Calibration and Validation
4.2. Spatial and Temporal Analysis of Blooms
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Callisto, M.; Molozzi, J.; Barbosa, J.L.E. Eutrophication of lakes. In Eutrophication: Causes, Consequences and Control: Volume 2; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 55–71. [Google Scholar]
- Ho, J.C.; Michalak, A.M. Challenges in tracking harmful algal blooms: A synthesis of evidence from lake erie. J. Great Lakes Res. 2015, 41, 317–325. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Validation of satellite data for quality assurance in lake monitoring applications. Sci. Total Environ. 2001, 268, 3–18. [Google Scholar] [CrossRef]
- Ma, R.; Dai, J. Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in taihu lake, China. Int. J. Remote Sens. 2005, 26, 2779–2795. [Google Scholar] [CrossRef]
- Mayo, M.; Gitelson, A.; Yacobi, Y.Z.; Ben-Avraham, Z. Chlorophyll distribution in lake Kinneret determined from Landsat thematic mapper data. Int. J. Remote Sens. 1995, 16, 175–182. [Google Scholar] [CrossRef]
- Wheeler, S.M.; Morrissey, L.A.; Levine, S.N.; Livingston, G.P.; Vincent, W.F. Mapping cyanobacterial blooms in lake Champlain’s missisquoi bay using Quickbird and MERIS satellite data. J. Great Lakes Res. 2012, 38, 68–75. [Google Scholar] [CrossRef]
- Allan, M.G.; Hamilton, D.P.; Hicks, B.; Brabyn, L. Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of new zealand lakes using Landsat. Environ. Monit. Assess. 2015, 187, 364. [Google Scholar] [CrossRef] [PubMed]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in río tercero reservoir (argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Ho, J.C.; Stumpf, R.P.; Bridgeman, T.B.; Michalak, A.M. Using Landsat to extend the historical record of lacustrine phytoplankton blooms: A lake Erie case study. Remote Sens. Environ. 2017, 191, 273–285. [Google Scholar] [CrossRef]
- Yip, H.D.; Johansson, J.; Hudson, J.J. A 29-year assessment of the water clarity and chlorophyll-a concentration of a large reservoir: Investigating spatial and temporal changes using Landsat imagery. J. Great Lakes Res. 2015, 41, 34–44. [Google Scholar] [CrossRef]
- Han, X.; Feng, L.; Chen, X.; Yesou, H. Meris observations of chlorophyll-adynamics in Erhai Lake between 2003 and 2009. Int. J. Remote Sens. 2014, 35, 8309–8322. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual variability of cyanobacterial blooms in lake Erie. PLoS ONE 2012, 7, e42444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, R.; Zhang, M.; Duan, H.; Loiselle, S.; Xu, J. Fourteen-year record (2000–2013) of the spatial and temporal dynamics of floating algae blooms in lake Chaohu, observed from time series of MODIS images. Remote Sens. 2015, 7, 10523. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Chen, G.; Duan, L.; Zhang, Z.; Wang, S.; Li, H. The research status and problems on ecology and environment of lake Erhai. Adv. Geosci. 2013, 241–252. [Google Scholar]
- Yang, W.; Deng, D.; Zhang, S.; Hu, C. Seasonal dynamics of crustacean zooplankton community structure in Erhai Lake, a plateau lake, with reference to phytoplankton and environmental factors. Chin. J. Oceanol. Limnol. 2014, 32, 1074–1082. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Yu, G.; Oyama, Y.; Yoshimura, K.; Fukushima, T. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in asian inland waters. ISPRS J. Photogramm. Remote Sens. 2015, 102, 28–37. [Google Scholar] [CrossRef]
- Yu, G.; Yang, W.; Matsushita, B.; Li, R.; Oyama, Y.; Fukushima, T. Remote estimation of chlorophyll-a in inland waters by a NIR-red-based algorithm: Validation in asian lakes. Remote Sens. 2014, 6, 3492–3510. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Schmidt, G.; Jenkerson, C.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (Ledaps) Algorithm Description; Open-File Report 2013–1057; U.S. Geological Survey: Reston, VA, USA, 2013; p. 27.
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens. 2009, 30, 4401–4425. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Moses, W.; Bowles, J.; Corson, M. Expected improvements in the quantitative remote sensing of optically complex waters with the use of an optically fast hyperspectral spectrometer—A modeling study. Sensors 2015, 15, 6152. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Yacobi, Y.Z.; Schalles, J.F.; Rundquist, D.C.; Han, L.; Stark, R.; Etzion, D. Remote estimation of phytoplankton density in productive waters. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 2000, 55, 121–136. [Google Scholar]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by the satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gómez-Chova, L.; Muñoz-Marí, J.; Vila-Francés, J.; Amorós-López, J.; Calpe-Maravilla, J. Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sens. Environ. 2006, 105, 23–33. [Google Scholar] [CrossRef]
- Bricaud, A.; Claustre, H.; Ras, J.; Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res. 2004, 109, C11010. [Google Scholar] [CrossRef]
- Vincent, R.K.; Qin, X.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. Phycocyanin detection from Landsat tm data for mapping cyanobacterial blooms in lake Erie. Remote Sens. Environ. 2004, 89, 381–392. [Google Scholar] [CrossRef]
- Falconer, I.; Bartram, J.; Chorus, I.; Kuiper-Goodman, T.; Utkilen, H.; Burch, M.; Codd, G.A. Safe levels and safe practices. In Toxic Cyanobacteria in Water; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK, 1999; pp. 155–178. [Google Scholar]
- Zhu, R.; Wang, H.; Yu, D.; Zeng, C.; Shen, H.; Chen, J. Dynamic changes of microcystins and phytoplankton during the cyanobacterial bloom in lake Erhai in 2013. J. Lake Sci. 2015, 27. [Google Scholar] [CrossRef]
- Du, B. Study on entrophication of Erhai Lake. J. Lake Sci. 1992, 4, 86–92. [Google Scholar]
- Han, T.; Peng, W.; Li, H.; Mao, Z. Evolution of eutrophication in the Erhai Lake and its relevant research progress. J. China Inst. Water Resour. Hydropower Res. 2005, 3, 71–78. [Google Scholar]
- Yang, W.; Deng, D.; Zhang, S.; Xie, P.; Guo, L.; Wang, S. Seasonal dynamic and spatial distribution of chlorophyll-a concentration in lake Erhai. J. Lake Sci. 2012, 24, 858–864. [Google Scholar]
- Du, B. Loss of biodiversity results in Erhai Lake eutrophication. Yunnan Environ. Sci. 1997, 16, 30–34. [Google Scholar]
- Li, J. Research and countermeasures for Erhai Lake eutrophication. J. Lake Sci. 2001, 2. [Google Scholar] [CrossRef]
- Wang, R.; Dearing, J.A.; Langdon, P.G.; Zhang, E.; Yang, X.; Dakos, V.; Scheffer, M. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 2012, 492, 419–422. [Google Scholar] [CrossRef] [PubMed]
Landsat5 (TM) | Landsat7 (ETM+) | ||
---|---|---|---|
Bands | Wavelength (μm) | Bands | Wavelength (μm) |
Band 1-Blue | 0.45–0.52 | Band 1-Blue | 0.45–0.52 |
Band 2-Green | 0.52–0.60 | Band 2-Green | 0.52–0.60 |
Band 3-Red | 0.63–0.69 | Band 3-Red | 0.63–0.69 |
Band 4-Near Infrared (NIR) | 0.76–0.90 | Band 4-Near Infrared (NIR) | 0.77–0.90 |
Band 5 -Shortwave Infrared (SWIR) 1 | 1.55–1.75 | Band 5-Shortwave Infrared (SWIR) 1 | 1.55–1.75 |
Band 6-Thermal | 10.40–12.50 | Band 6-Thermal | 10.40–12.50 |
Band 7-Shortwave Infrared (SWIR) 2 | 2.08–2.35 | Band 7-Shortwave Infrared (SWIR) 2 | 2.09–2.35 |
Band 8-Panchromatic | 0.52–0.90 |
Year | Jan.–Apr. | May–Aug. | Sept.–Dec. | Year | Jan.–Apr. | May–Aug. | Sept.–Dec. |
---|---|---|---|---|---|---|---|
1987 | 4 | 2 | 1 | 2002 | 9 | 4 | 8 |
1988 | 4 | 2 | 3 | 2003 | 13 | 2 | 8 |
1989 | 5 | 4 | 6 | 2004 | 10 | 3 | 7 |
1990 | 6 | 0 | 4 | 2005 | 7 | 3 | 5 |
1991 | 6 | 2 | 5 | 2006 | 6 | 6 | 7 |
1992 | 5 | 3 | 4 | 2007 | 4 | 4 | 3 |
1993 | 5 | 3 | 3 | 2008 | 8 | 2 | 5 |
1994 | 6 | 0 | 4 | 2009 | 8 | 0 | 7 |
1995 | 5 | 0 | 3 | 2010 | 9 | 1 | 4 |
1996 | 6 | 2 | 5 | 2011 | 6 | 2 | 6 |
1997 | 2 | 1 | 2 | 2012 | 1 | 2 | 4 |
1998 | 3 | 2 | 5 | 2013 | 5 | 2 | 5 |
1999 | 6 | 2 | 6 | 2014 | 6 | 1 | 6 |
2000 | 4 | 2 | 6 | 2015 | 1 | 2 | 2 |
2001 | 7 | 6 | 4 | 2016 | 5 | 2 | 5 |
Landsat Date | Sample Date | lag | Landsat Date | Sample Date | lag |
---|---|---|---|---|---|
7/4/2009 | 1/4/2009 | 6 | 25/12/2014 | 1/1/2015 | −7 |
30/9/2009 | 1/10/2009 | −1 | 2/5/2015 | 9/5/2015 | −7 |
24/10/2009 | 1/11/2009 | −8 | 25/10/2015 | 1/11/2015 | −7 |
12/27/2009 | 1/1/2010 | −5 | 26/11/2015 | 2/12/2015 | −6 |
28/1/2010 | 1/2/2010 | −4 | 29/1/2016 | 4/2/2016 | −6 |
1/3/2010 | 1/3/2010 | 0 | 1/3/2016 | 5/3/2016 | −4 |
9/9/2010 | 1/9/2010 | 8 | 4/5/2016 | 7/5/2016 | −3 |
30/12/2010 | 1/1/2011 | −2 | 9/9/2016 | 9/9/2016 | 0 |
11/10/2016 | 10/10/2016 | 1 |
# | Algorithm | ±8 Days & Samples:126 | ±5 Days & Samples: 73 | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | RRMSE (%) | R2 | RMSE | RRMSE (%) | ||
1 | (TM1 − TM3)/TM2 | 0.48 | 0.20 | 8.2 | 0.69 | 0.14 | 5.7 |
2 | TM2/TM1 | 0.47 | 0.20 | 8.2 | 0.44 | 0.25 | 10.2 |
3 | TM3/TM1 | 0.39 | 0.23 | 9.4 | 0.64 | 0.16 | 6.5 |
4 | (TM1−1 − TM2−1) × TM4 | 0.59 | 0.16 | 6.5 | 0.70 | 0.13 | 5.3 |
5 | MLR: TM1, TM2, TM4 | 0.59 | 0.16 | 6.5 | 0.78 | 0.10 | 4.1 |
Bloom Magnitude | Moderate | High | Very High |
---|---|---|---|
Mean Chl-a concentration (μg/L) | 20–25 | 25–30 | 30 |
year | 2010, 2012, 2015 | 2003, 2005, 2009, 2016 | 1996, 2006, 2013 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.; Liu, P.; Liu, Y.; Yang, S.; Feng, S. A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016. Remote Sens. 2017, 9, 1265. https://doi.org/10.3390/rs9121265
Tan W, Liu P, Liu Y, Yang S, Feng S. A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016. Remote Sensing. 2017; 9(12):1265. https://doi.org/10.3390/rs9121265
Chicago/Turabian StyleTan, Wenxia, Pengcheng Liu, Yi Liu, Shao Yang, and Shunan Feng. 2017. "A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016" Remote Sensing 9, no. 12: 1265. https://doi.org/10.3390/rs9121265
APA StyleTan, W., Liu, P., Liu, Y., Yang, S., & Feng, S. (2017). A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016. Remote Sensing, 9(12), 1265. https://doi.org/10.3390/rs9121265