Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lakes Analyzed
2.2. MUR LSWT Analyses
2.3. In Situ Buoy Data
3. Results
3.1. Evaluation Metrics
3.2. MUR-Specific Sources of Error
- Errors introduced by MRVA spatial scale used for interpolating the data as the MRVA system is designed for the open ocean. Analysis values from unrepresentative distant lakes or ocean surfaces may be “spread” to other lake surfaces during periods when no clear-sky retrievals are available over a given lake (Section 3.5).
- Errors resulting from spurious or inaccurate ice cover estimates (i.e., incorrectly specifying open water as ice or vice versa).
- Sampling “gap” errors introduced by only utilizing nighttime satellite imagery, which decreases the frequncy of available clear-sky imagery compared to analysis techniques that utilize both daytime and nighttime data.
- Representativeness errors by only utilizing nighttime data. This is not an issue if a daily foundation temperature is deemed to be sufficient for the analysis, which is the current goal of MUR. However, complications arise on prescribing an appropriate analysis for shallow lakes with climatologically large diurnal temperature ranges through a relatively deep water column.
- Potential under-sampling errors due to the restrictive use of only the data flagged as the highest possible quality in MUR. Some studies have found that the highest quality control consistently throws out large amounts of good data over some lakes [14].
3.3. In Situ Temperature versus MUR LSWT
3.4. Evaluation of Spatial MUR LSWT
3.5. Evaluation of Temporal Variability of MUR LSWT
3.6. Evaluation of MUR LSWT Interannual Climatology and Trends
4. Discussion
- Utilize additional high-resolution satellite thermal infrared retrievals over lakes to enhance temporal coverage (e.g., Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership spacecraft [54], as well as the (Sea and Land Surface Temperature Radiometer (SLSTR) onboard the European Space Agency Sentinel-3 fleet of satellites [55], and the GOES-16 Advanced Baseline Imager (ABI) currently onboard the most recently launched National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellite (GOES-16) [56]. As discussed by Chin et al. [43] plans are already underway to incorporate VIIRS in MUR.
- Incorporate lake-specific cloud masking and other quality-control procedures to reduce both contamination and removal of clear-sky imagery.
- Improve ancillary ice cover analyses to reduce spurious unphysical ice coverage impacting LSWT analyses, and develop higher-resolution ice cover analyses to improve coverage for small lakes.
- Reduce the spatial footprint of the MRVA technique to preclude non-representative analysis values from adjacent lakes or oceans to be spread to another lake. Plans to flag input footprints as well as to reduce quality threshold barriers to include microwave LSWT samples are both underway for next version of MUR.
- Determine if a shorter or longer analysis window than the 5 days currently used in MUR would improve the LSWT analyses. Over some lakes where cloud cover is low, a shorter window could allow for a more responsive analysis; over cloudy lakes, a longer window may improve analysis coverage.
- Allow climatological LSWT values derived from the MUR period of record (such as shown in Figure 8) or from external data sets such as ARC-Lake (for lakes >5 km in diameter) to become the default field for MUR LSWT during prolonged cloudy gap periods in lakes with no available in situ observations.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adrian, R.A.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Wendel, K.; Livingstone, D.M.; Sommaruga, R.; Dietmar, S.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; et al. Modeling lakes and reservoirs in the climate system. Limnol. Oceanogr. 2009, 54, 2315–2329. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Boschetti, L. Multi-temporal assessment of bio-physical parameters in lakes Garda and Trasimeno from MODIS and MERIS. European. Ital. J. Remote Sens. 2011, 43, 49–62. [Google Scholar]
- Hook, S.J.; Wilson, R.C.; MacCallum, S.; Merchant, C.J. Lake Surface Temperature [in “State Absolute of the Climate in 2011”]. Available online: ftp://ftp.ncdc.noaa.gov/pub/data/cmb/bams-sotc/climate-assessment-2011.pdf (accessed on 10 July 2017).
- Lenters, J.D.; Hook, S.J.; McIntyre, P.B. Workshop examines warming of lakes worldwide. Eos Trans. Am. Geophys. Union 2012, 93, 427. [Google Scholar] [CrossRef]
- Lenters, J. The Global Lake Temperature Collaboration (GLTC). LakeLine 2015, 35, 9–12. [Google Scholar]
- Woolway, R.I.; Cinque, K.; de Eyto, E.; DeGasperi, C.; Dokulil, M.; Korhonen, J.; Maberly, S.; Marszelewski, W.; May, L.; Merchant, C.J.; et al. Lake surface temperature [in “State of the climate in 2015”]. Bull. Am. Meteorol. Soc. 2016, 97, S17–S18. [Google Scholar]
- Dutra, E.; Stepanenko, V.M.; Balsamo, G.; Viterbo, P.; Miranda, P.M.A.; Mironov, D.; Schär, C. An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ. Res. 2010, 15, 100–112. [Google Scholar]
- Balsamo, G.; Salgado, R.; Dutra, E.; Boussetta, S.; Stockdale, T.; Potes, M. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus A 2012, 64, 15829. [Google Scholar] [CrossRef]
- Javaheri, A.; Babbar-Sebens, M.; Miller, R.N. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies. Adv. Water Resour. 2016, 92, 284–298. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Schneider, P. Optimized split-window coefficients for deriving surface temperatures from inland water bodies. Remote Sens. Environ. 2011, 115, 3758–3769. [Google Scholar] [CrossRef]
- Grim, J.A.; Knievel, J.C.; Crosman, E.T. Techniques for using MODIS data to remotely sense lake water surface temperatures. J. Atmos. Ocean. Technol. 2013, 30, 2434–2451. [Google Scholar] [CrossRef]
- Fiedler, E.; Martin, M.; Roberts-Jones, J. An operational analysis of lake surface water temperature. Tellus A 2014, 66, 21247. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- MacCallum, S.N.; Merchant, C.J. Surface Water Temperature Observations of large lakes by optimal estimation. Can. J. Remote Sens. 2012, 38, 25–45. [Google Scholar] [CrossRef]
- Hook, S.J.; Vaughnan, R.G.; Tonooka, H.; Schladow, S.G. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra Spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- Layden, A.; Merchant, C.; MacCallum, S. Global climatology of surface water temperatures of large lakes by remote sensing. Int. J. Climatol. 2015, 35, 4464–4479. [Google Scholar] [CrossRef]
- Riffler, M.; Lieberherr, G.; Wunderle, S. Lake surface water temperatures of European Alpine lakes (1989–2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set. Earth Syst. Sci. Data 2015, 7, 1–17. [Google Scholar] [CrossRef]
- Wilson, R.C.; Hook, S.J.; Schneider, P.; Schladow, S.G. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect. J. Geophys. Res. Atmos. 2012, 118, 10332–10346. [Google Scholar] [CrossRef]
- Donlon, C.; Rayner, N.; Robinson, N.; Poulter, D.J.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Bingham, A.; Arino, O.; Gentemann, C.; et al. The Global Ocean Data Assimilation Experiment High0resolution Sea Surface Temperature Pilot Project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Oesch, D.C.; Jaquet, J.M.; Klaus, R.; Schenker, P. Multi-scale thermal pattern monitoring of a large lake (Lake Geneva) using a multi-sensor approach. Int. J. Remote Sens. 2008, 29, 5785–5808. [Google Scholar]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Torbick, N.; Ziniti, B.; Wu, S.; Linder, E. Spatiotemporal lake skin summer temperature trends in the Northeastern United States. Earth Interact. 2016, 20, 1–21. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Embury, O.; Merchant, C.J. Sampling uncertainty in gridded sea surface temperature products and Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data. Remote Sens. Environ. 2016, 117, 287–294. [Google Scholar] [CrossRef]
- Castro, S.L.; Wick, G.A.; Steele, M. Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sens. Environ. 2016, 187, 458–475. [Google Scholar] [CrossRef]
- Liu, Y.; Minnett, P.J. Sampling errors in satellite-derived infrared sea-surface temperatures. Part I: Global and regional MODIS fields. Remote Sens. Environ. 2016, 177, 48–64. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, T.; Singh, V.P.; Zhang, J.; Yu, R.; Zhang, Z. Validation of MODIS Sea Surface Temperature Product in the Coastal Waters of the Yellow Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1667–1680. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Maturi, E.; MacCallum, S. Probabilistic physically-based cloud screening of satellite infra-red imagery for operational sea surface temperature retrieval. Q. J. R. Meteorol. Soc. 2005, 131, 2735–2755. [Google Scholar] [CrossRef]
- Hulley, G.C. MODIS Cloud Detection over Large Inland Water Bodies: Algorithm Theoretical Basis Document; Jet Propulsion Laboratory-California Institute of Technology: Pasadena, CA, USA, 2009. [Google Scholar]
- MacCallum, S.N.; Merchant, C.J. ARC-Lake Algorithm Theoretical Basis Document–ARC-Lake. v1.1, 1995–2009 [Dataset]. The University of Edinburgh, School of GeoSciences/European Space Agency. Available online: http://hdl.handle.net/10283/88 (accessed on 10 July 2017).
- Fan, X.; Tang, B.; Wu, H.; Yan, G.; Li, Z. Daytime land surface temperature extraction from MODIS thermal infrared data under cirrus clouds. Sensors 2015, 15, 9942–9961. [Google Scholar] [CrossRef] [PubMed]
- Castendyk, D.N.; Obryk, M.K.; Leidman, S.Z.; Gooseff, M.; Hawes, I. Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica. Glob. Planet. Chang. 2016, 144, 213–227. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Politi, E.; Cutler, M.J.; Rowan, J.S. Using the NOAA Advanced Very High Resolution Radiometer to Characterize temporal and spatial trends in water temperature of large European lakes. Remote Sens. Environ. 2012, 126, 1–11. [Google Scholar] [CrossRef]
- Politi, E.; MacCallum, S.; Cutler, M.E.J.; Merchant, C.J.; Rowan, J.S.; Dawson, T.P. Selection of a network of large lakes and reservoirs suitable for global environmental change analysis using Earth Observation. Int. J. Remote Sens. 2016, 37, 3042–3060. [Google Scholar] [CrossRef]
- Mason, L.A.; Riseng, C.M.; Gronewold, A.D.; Rutherford, E.S.; Wang, J.; Clites, A.; Smith, S.D.; McIntyre, P.B. Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Clim. Chang. 2016, 138, 71–83. [Google Scholar] [CrossRef]
- Moukomla, S.; Blanken, P.D. Remote Sensing of the North American Laurentian Great Lakes’ Surface Temperature. Remote Sens. 2016, 8, 286. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, J.; Wang, S.Y.; Ek, M.B. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. J. Geophys. Res. 2012, 117, D09102. [Google Scholar] [CrossRef]
- Kourzeneva, E. Assimilation of lake water surface temperature observations using an extended Kalman filter. Tellus A. 2014, 66, 21510. [Google Scholar] [CrossRef]
- Strong, C.; Kochanski, A.K.; Crosman, E.T. A slab model of the Great Salt Lake for regional climate simulation. J. Adv. Model. Earth Syst. 2014, 6, 602–615. [Google Scholar] [CrossRef]
- Chao, Y.; Li, Z.; Farrara, J.; Hung, P. Blending sea surface temperatures for multiple satellites and in situ observations for coastal oceans. J. Atmos. Ocean. Technol. 2009, 26, 1415–1426. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and ultra-high resolution processing of satellite sea surface temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017. in review. [Google Scholar]
- Pareeth, S.; Salmaso, N.; Adrian, R.; Neteler, M. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake. Sci. Rep. 2016, 6, 31251. [Google Scholar] [CrossRef] [PubMed]
- Thiebaux, J.; Rogers, E.; Wang, W.; Katz, B. A new high resolution blended real-time global sea surface temperature analysis. Bull. Am. Meteorol. Soc. 2004, 84, 645–656. [Google Scholar] [CrossRef]
- Schwab, D.J.; Leshkevich, G.A.; Muhr, G.C. Automated mapping of surface water temperature in the Great Lakes. J. Great Lakes Res. 1999, 25, 468–481. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. Error characterization in iQuam SSTs using triple collocations with satellite measurements. Geophys. Res. Lett. 2016, 43, 10826–10834. [Google Scholar] [CrossRef]
- National Data Buoy Center (NDBC), NDBC Technical Document 09-02: Handbook of Automated Data Quality Control Checks and Procedures. 2009. Available online: http://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf (accessed on 27 June 2017).
- Sharma, S.; Gray, D.K.; Read, J.S.; O’Reilly, C.M.; Schneider, P.; Qudrat, A.; Gries, C.; Stefanoff, S.; Hampton, S.E.; Hook, S.; et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2015, 2, 150008. [Google Scholar] [CrossRef] [PubMed]
- Rudstam, L.G. Limnological Data and Depth Profile from Oneida Lake, New York, 1975-Present. Web Data on Knowledge Network for Biocomplexity, 2015. Available online: http://knb.ecoinformatics.org/#view/kgordon.35.70 (accessed on 26 June 2017).
- Lavergne, T.; Tonboe, R.; Lavelle, J.; Eastwood, S. Algorithm Theoretical Basis Document for the OSI SAF Global Sea Ice Concentration Climate Data Record. 2016. Available online: https://www.researchgate.net/profile/Thomas_Lavergne3/publication/306365213_Algorithm_Theoretical_Basis_Document_ATBD_for_the_OSI_SAF_Global_Sea_Ice_Concentration_Climate_Data_Record_v11/links/57baff8108ae202e6a579100.pdf (accessed on 20 June 2017).
- Blaylock, B.K.; Horel, J.D.; Crosman, E.T. Impact of a lake breeze on summer ozone concentrations in the Salt Lake Valley. J. Appl. Meteorol. Climatol. 2017, 56, 353–370. [Google Scholar] [CrossRef]
- Spero, T.L.; Nolte, C.G.; Bowden, J.H.; Mallard, M.S.; Herwehe, J.A. The impact of incongruous lake temperature on regional climate extremes downscales from the CMIP5 archive using the WRF model. J. Clim. 2016, 29, 839–853. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T.; Rink, T. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
Lake Michigan | Bias (MUR LSWT–In Situ, °C) | Root Mean Squared Error (RMSE, °C) | |||||||
---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Fall | All Months | Spring | Summer | Fall | All Months | ||
Year | (MAM) | (JJA) | (SON) | (MAM) | (JJA) | (SON) | |||
2007 | −0.07 | −0.2 | −0.39 | −0.24 | 0.61 | 1 | 0.78 | 0.84 | |
2008 | 0.43 | 0.1 | −0.41 | −0.02 | 0.59 | 0.72 | 0.71 | 0.69 | |
2009 | 0.14 | −0.43 | −0.38 | −0.29 | 0.67 | 1.4 | 0.7 | 1.08 | |
2010 | −0.13 | −0.56 | −0.44 | −0.41 | 0.56 | 0.76 | 0.82 | 0.73 | |
2011 | −0.03 | −0.47 | −0.23 | −0.28 | 0.77 | 0.87 | 0.75 | 0.8 | |
2012 | −0.09 | −0.29 | −0.5 | −0.32 | 0.59 | 0.65 | 0.68 | 0.64 | |
2013 | −0.15 | −0.27 | −0.06 | −0.16 | 0.86 | 0.68 | 0.42 | 0.61 | |
2014 | 1.92 | 0.89 | −0.07 | 0.47 | 2.52 | 2.19 | 0.55 | 1.62 | |
2015 | NA | −0.79 | −0.33 | −0.32 | NA | 1.03 | 0.7 | 0.7 | |
2007–2015 | 0.25 | −0.22 | −0.31 | −0.2 | 0.9 | 1.03 | 0.67 | 0.86 | |
Lake Okeechobee (* Statistics Only Calculated for Sample Size n > 6) | |||||||||
2007 | NA * | NA * | NA * | 0.27 | NA * | NA * | NA * | 0.73 | |
2008 | NA * | NA * | NA * | 0.22 | NA * | NA * | NA * | 0.99 | |
2009 | NA * | NA * | NA * | 0.27 | NA * | NA * | NA * | 0.9 | |
2010 | NA * | NA * | NA * | 0.1 | NA * | NA * | NA * | 1.11 | |
2011 | NA * | NA * | NA * | 0.15 | NA * | NA * | NA * | 0.9 | |
2012 | NA * | NA * | NA * | 0.28 | NA * | NA * | NA * | 1.01 | |
2013 | NA * | NA * | NA * | 0.25 | NA * | NA * | NA * | 0.81 | |
2014 | NA * | NA * | NA * | 0.24 | NA * | NA * | NA * | 0.8 | |
2007–2014 | 0.13 | −0.13 | 0.46 | 0.31 | 0.69 | 0.66 | 1.11 | 0.91 | |
Lake Oneida | |||||||||
2007 | −4.25 | −2.05 | 0.02 | −1.57 | 5.79 | 3.04 | 1.68 | 3.46 | |
2008 | −4.03 | −2.58 | 0.23 | −2.09 | 4.62 | 3.43 | 1.32 | 3.3 | |
2009 | −5.87 | −2.59 | 0.86 | −2.8 | 6.45 | 3.02 | 1.29 | 4.25 | |
2010 | −3.55 | −2.43 | 0.75 | −1.73 | 4.13 | 3.26 | 1.31 | 3.12 | |
2011 | −3.79 | −1.85 | 0.88 | −1.66 | 5.35 | 2.55 | 1.41 | 3.58 | |
2012 | −2.06 | −1.27 | 0.96 | −0.86 | 2.7 | 1.69 | 1.51 | 2.05 | |
2013 | −2.86 | −1.75 | 2.05 | −0.81 | 3.63 | 2.51 | 2.71 | 3.07 | |
2014 | −5.09 | −3.5 | 0.9 | −2.41 | 5.87 | 4.61 | 1.52 | 4.15 | |
2007–2014 | −3.78 | −2.65 | 0.98 | −1.74 | 4.83 | 3.51 | 1.78 | 3.42 | |
2007–2014 | March–15 July | 15 July–30 September | 1 October–30 November | March–15 July | 15 July–30 September | 1 October–30 November | |||
−3.88 | −0.7 | 1.67 | 4.71 | 1.13 | 2.23 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crosman, E.; Vazquez-Cuervo, J.; Chin, T.M. Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature. Remote Sens. 2017, 9, 723. https://doi.org/10.3390/rs9070723
Crosman E, Vazquez-Cuervo J, Chin TM. Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature. Remote Sensing. 2017; 9(7):723. https://doi.org/10.3390/rs9070723
Chicago/Turabian StyleCrosman, Erik, Jorge Vazquez-Cuervo, and Toshio Michael Chin. 2017. "Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature" Remote Sensing 9, no. 7: 723. https://doi.org/10.3390/rs9070723
APA StyleCrosman, E., Vazquez-Cuervo, J., & Chin, T. M. (2017). Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature. Remote Sensing, 9(7), 723. https://doi.org/10.3390/rs9070723