Seedless Fruit Production by Hormonal Regulation of Fruit Set
Abstract
:1. Introduction
2. Auxin
3. Gibberellins
4. Ethylene
Gene | Function | Genetic modification | Fruit Phenotype | Vegetative alterations | Reference |
---|---|---|---|---|---|
DeH9-iaaM | Auxin synthesis | Ovule specific transgene expression | Obligate and facultative parthenocarpy, seedless, early fruit growth, normal size and shape. (tobacco, eggplant, tomato, raspberry, cucumber) | no | [17,18,19,20] |
rolB | Auxin response | Ovary/ fruit specific transgene expression | Obligate and facultative parthenocarpy, seedless, size and shape similar to wt. (tomato) | no | [27] |
SlIAA9 | Auxin signaling | Antisense downregulation, constitutive promoter | Parthenocarpy, seedless, early fruit growth, normal size and shape. (tomato) | yes | [22] |
AtARF8 | Auxin signaling | Expression of mutant AtARF8-4 gene | Parthenocarpy, seedless/pseudoembryos, size and shape similar to wt. (tomato, A. thaliana) | not indicated | [24] |
SlARF7 | Auxin signaling | RNAi-mediated silencing, constitutive promoter | Parthenocarpy, seedless, altered shape. (tomato) | no | [25] |
SlAUCSIA | Auxin response | RNAi-mediated silencing, phloem-specific promoter | Facultative and obligate parthenocarpy, seedless, reduced size. (tomato) | yes | [26] |
SlChs | Flavonoid biosynthesis (auxin transport?) | RNAi-mediated silencing, constitutive promoter | Parthenocarpy, seedless, altered size, shape and colour. (tomato) | no | [28] |
SlDELLA | Gibberellin signaling | Antisense downregulation, constitutive promoter | Facultative parthenocarpy, seedless, reduced size, altered morphology. (tomato) | yes | [35] |
SlTPR1 | Ethylene signaling | Overexpression | Parthenocarpy, seedless, altered morphology. (tomato) | yes | [36] |
5. Other hormones
6. Conclusions
References
- Gillaspy, G.; Ben-David, H.; Gruissem, W. Fruits: a developmental perspective. Plant Cell 1993, 5, 1439–1451. [Google Scholar]
- Gourget, B.; van Heusden, A.W.; Lindhout, P. Parthenocarpic fruit development in tomato. Plant Biol. 2005, 7, 131–139. [Google Scholar]
- Voraquaux, F.; Blanvillain, R.; Delseny, M.; Gallois, P. Less is better: new approaches for seedless fruit production. Trends Biotechnol. 2000, 18, 233–242. [Google Scholar]
- Maestrelli, A.; Lo Scalzo, R.; Rotino, G.L.; Acciarri, N.; Spena, A.; Vitelli, G.; Bertolo, G. Freezing effect on some quality parameters of transgenic parthenocarpic eggplants. J. Food Eng. 2003, 56, 285–287. [Google Scholar]
- Ficcadenti, N.; Sestili, S.; Pandolfini, T.; Cirillo, C.; Rotino, G.L.; Spena, A. Genetic engineering of parthenocarpic fruit development in tomato. Mol. Breed. 1999, 5, 463–470. [Google Scholar]
- Acciarri, N.; Restaino, F.; Vitelli, G.; Perrone, D.; Zottini, M.; Pandolfini, T.; Spena, A.; Rotino, G.L. Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnol. 2002, 2, 1–7. [Google Scholar]
- Vriezen, W.H.; Feron, R.; Maretto, F.; Keijman, J.; Mariani, C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008, 177, 60–76. [Google Scholar]
- Wang, H.; Schauer, N.; Usadel, B.; Frasse, P.; Zouine, M.; Hernould, M.; Latché, A.; Pech, J.C.; Fernie, A.R.; Bouzayen, M. Regulatory features underlying pollination–dependent and-independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 2009, 21, 1428–1452. [Google Scholar]
- Pascual, L.; Blanca, J.M.; Caňizares, J.; Nuez, F. Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biol. 2009, 9, 1–18. [Google Scholar]
- Molesini, B.; Rotino, G.L.; Spena, A.; Pandolfini, T. Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res. Notes 2009, 2, 1–7. [Google Scholar]
- Nitsch, J.P. Plant hormones in the development of fruits. Quart.Rev. Biol. 1952, 27, 33–57. [Google Scholar]
- Schwabe, W.W.; Mills, J.J. Hormones and parthenocarpic fruit set: A literature survey. Hort. Abstracts 1981, 51, 661–698. [Google Scholar]
- Dorcey, E.; Urbez, C.; Blazquez, M.A.; Carbonell, J.; Perez-Amador, A. Fertilization-dependent auxin response in ovules triggers fruit development through modulation of gibberellin metabolism in Arabidopsis. Plant J. 2009, 58, 318–332. [Google Scholar]
- Pandolfini, T.; Molesini, B.; Spena, A. Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci. 2007, 12, 327–329. [Google Scholar]
- Leiser, O. Dynamic integration of auxin transport and signalling. Curr.Biol. 2006, 16, R424–R433. [Google Scholar]
- Dharmosiri, N.; Estelle, M. Auxin signaling and regulated protein degradation. Trends Plant Sci. 2004, 9, 302–308. [Google Scholar]
- Rotino, G.L.; Perri, E.; Zottini, M.; Sommer, H.; Spena, A. Genetic engineering of parthenocarpic plants. Nat. Biotechnol. 1997, 15, 1398–1401. [Google Scholar]
- Pandolfini, T.; Rotino, G.L.; Camerini, S.; Defez, R.; Spena, A. Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol. 2002, 2, 1–11. [Google Scholar]
- Yin, Z.; Malinowski, R.; Ziółkowska, A.; Sommer, H.; Pląder, W.; Malepszy, S. The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell.Mol. Biol. Lett. 2006, 11, 279–290. [Google Scholar]
- Mezzetti, B.; Landi, L.; Pandolfini, T.; Spena, A. The DefH9-iaa Mauxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol. 2004, 4, 1–10. [Google Scholar]
- Rotino, G.L.; Acciarri, N.; Sabatini, E.; Mennella, G.; Lo Scalzo, R.; Maestrelli, A.; Molesini, B.; Pandolfini, T.; Scalzo, J.; Mezzetti, B.; Spena, A. Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol. 2005, 5, 1–8. [Google Scholar]
- Wang, H.; Jones, B.; Li, Z.; Frasse, P.; Delalande, C.; Regad, F.; Chaabouni, S.; Latché, A.; Pech, J.C.; Bouzayen, M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 2005, 17, 2676–2692. [Google Scholar]
- Goetz, M.; Vivian-Smith, A.; Johnson, S.D.; Koltunow, A.M. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 2006, 18, 1873–1886. [Google Scholar]
- Goetz, M.; Hooper, L.C.; Johnson, S.D.; Rodrigues, J.C.; Vivian-Smith, A.; Koltunow, A.M. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol. 2007, 145, 351–366. [Google Scholar]
- De Jong, M.; Wolters-Arts, M.; Feron, R.; Mariani, C.; Vriezen, W.H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 2009, 5, 160–170. [Google Scholar]
- Molesini, B.; Pandolfini, T.; Rotino, G.L.; Dani, V.; Spena, A. Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol. 2009, 149, 534–548. [Google Scholar]
- Carmi, N.; Salts, Y.; Dedicova, B.; Shabtai, S.; Barg, R. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 2003, 217, 726–735. [Google Scholar]
- Schijlen, E.G.W.M.; de Vos, R.C.H.; Martens, S.; Jonker, H.H.; Rosin, F.M.; Molthoff, J.W.; Tikunov, Y.M.; Angenent, G.C.; van Tunen, A.J.; Bovy, A.G. RNA Interference Silencing of Chalconesynthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol. 2007, 144, 1520–1530. [Google Scholar]
- de Jong, M.; Mariani, C.; Vriezen, W.H. The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot. 2009, 60, 1523–1532. [Google Scholar]
- Serrani, J.C; Sanjuán, R.; Ruiz-Rivero, O.; Fos, M.; Garcia-Martinez, J.L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 2007, 145, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Serrani, J.C; Ruiz-Rivero, O.; Fos, M.; Garcia-Martinez, J.L. Auxin-induced fruit set in tomato is mediated in part by gibberellin. Plant J. 2008, 56, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Fos, M.; Nuez, F.; Garcıa-Martınez, J.L. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol. 2000, 122, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Olimpieri, I.; Silicato, F.; Caccia, R.; Mariotti, L.; Ceccarelli, N.; Soressi, G.P.; Mazzucato, A. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 2007, 226, 877–888. [Google Scholar]
- Ozga, J.A.; Reinecke, D.M. Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development. Plant Growth Regul. 1999, 27, 33–38. [Google Scholar]
- Marti, C.; Orzaez, D.; Ellul, P.; Moreno, V.; Carbonell, J.; Granell, A. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J. 2007, 52, 865–876. [Google Scholar]
- Lin, Z.F.; Arciga-Reyes, L.; Zhong, S.; Alexander, L.; Hackett, R.; Wilson, I.; Grierson, D. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J. Exp. Bot. 2008, 59, 4271–4287. [Google Scholar]
- Kamuro, Y.; Takatsuto, S. Practical application of brassinosteroids in agricultural fields. In Brassinosteroids: steroidal plant hormones; Sakurai, A., Yokota, T., Clouse, S.D., Eds.; Springer-Verlag: Tokyo, Japan, 1999; pp. 223–241. [Google Scholar]
- Srivastava, A.; Handa, A.K. Hormonal regulation of tomato fruit development: a molecular perspective. J. Plant Growth Regul. 2005, 24, 67–82. [Google Scholar]
- Fu, F.Q.; Mao, W.H.; Shi, K.; Zhou, Y.H.; Asami, T.; Yu, J.Q. A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot. 2008, 59, 2299–2308. [Google Scholar]
- Martí, E.; Gisbert, C.; Bishop, G.J.; Dixon, M.S.; García-Martínez, J.L. Genetic and physiological characterization of tomato cv. Micro-Tom. J. Exp .Bot. 2006, 57, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Serrani, J.C.; Fos, M.; Atarés, A.; García-Martínez, J.L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. J. Plant Growth Regul. 2007, 26, 211–221. [Google Scholar]
- Pandolfini, T.; Molesini, B.; Spena, A. Parthenocarpy in crops. In Fruit Development and Seed Dispersal, Annual Plant Reviews; Ostergaard, L., Ed.; Wiley-Blackwell: Oxford, UK, 2009; Volume 38, pp. 326–345. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pandolfini, T. Seedless Fruit Production by Hormonal Regulation of Fruit Set. Nutrients 2009, 1, 168-177. https://doi.org/10.3390/nu1020168
Pandolfini T. Seedless Fruit Production by Hormonal Regulation of Fruit Set. Nutrients. 2009; 1(2):168-177. https://doi.org/10.3390/nu1020168
Chicago/Turabian StylePandolfini, Tiziana. 2009. "Seedless Fruit Production by Hormonal Regulation of Fruit Set" Nutrients 1, no. 2: 168-177. https://doi.org/10.3390/nu1020168
APA StylePandolfini, T. (2009). Seedless Fruit Production by Hormonal Regulation of Fruit Set. Nutrients, 1(2), 168-177. https://doi.org/10.3390/nu1020168