Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection Criteria
2.2. Literature Search
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Soy Intake and PCa Risk
3.4. Circulating Isoflavones and PCa Risk
3.5. Subgroup Analysis
3.6. Soy and Advanced PCa Risk
4. Discussion
Author Contributions
Conflicts of Interest
Appendix A
Source | Selection | Comparability 5 | Exposure | Total 9 | |||||
---|---|---|---|---|---|---|---|---|---|
Author, Year | Definition 1 | Representative 2 | Selection 3 | Definition 4 | Ascertainment 6 | Method 7 | Rate 8 | ||
Allen, 2004 [27] | 0 | ★ | 0 | ★ | ★ | ★ | ★ | ★ | 6 |
Bosetti, 2006 [28] | ★ | ★ | 0 | ★ | ★★ | 0 | ★ | ★ | 7 |
Heald, 2007 [29] | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | 0 | 8 |
Hedelin, 2006 [30] | ★ | ★ | ★ | ★ | ★ | 0 | ★ | 0 | 6 |
Jacobsen, 1998 [31] | ★ | ★ | 0 | ★ | ★ | ★ | ★ | ★ | 7 |
Jian, 2004 [32] | ★ | ★ | 0 | ★ | ★★ | 0 | ★ | ★ | 7 |
Kirsh, 2007 [33] | ★ | ★ | 0 | ★ | ★★ | ★ | ★ | ★ | 8 |
Kolonel, 2000 [34] | ★ | ★ | ★ | ★ | ★ | 0 | ★ | ★ | 7 |
Kurahashi, 2007 [36] | ★ | ★ | 0 | ★ | ★ | ★ | ★ | ★ | 7 |
Kurahashi, 2008 [35] | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Lee, 2003 [37] | ★ | ★ | ★ | ★ | ★ | 0 | ★ | ★ | 7 |
Lewis, 2009 [38] | ★ | ★ | 0 | ★ | ★★ | 0 | ★ | ★ | 7 |
Li, 2008 [39] | ★ | ★ | ★ | ★ | ★ | 0 | ★ | ★ | 7 |
Low, 2006 [40] | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Nagata, 2007 [41] | ★ | ★ | 0 | ★ | ★ | 0 | ★ | ★ | 6 |
Nagata, 2016 [42] | ★ | ★ | 0 | ★ | ★ | ★ | ★ | ★ | 7 |
Nomura, 2004 [43] | ★ | ★ | 0 | ★ | ★ | ★ | ★ | ★ | 7 |
Ozasa, 2004 [44] | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Park, 2008 [45] | ★ | ★ | 0 | ★ | ★★ | ★ | ★ | ★ | 8 |
Severson, 1989 [46] | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Sonoda, 2004 [47] | ★ | ★ | 0 | ★ | ★ | 0 | ★ | ★ | 6 |
Strom, 1999 [48] | ★ | ★ | 0 | ★ | ★★ | 0 | ★ | ★ | 7 |
Sung, 1999 [49] | ★ | ★ | 0 | ★ | ★ | 0 | ★ | ★ | 6 |
Travis, 2009 [51] | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Travis, 2012 [50] | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Villenueve, 1999 [52] | ★ | ★ | ★ | ★ | ★★ | 0 | ★ | ★ | 8 |
Wang, 2014 [53] | ★ | ★ | 0 | ★ | ★★ | ★ | ★ | ★ | 8 |
Ward, 2008 [54] | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Ward, 2010 [55] | ★ | ★ | 0 | ★ | ★★ | ★ | ★ | ★ | 8 |
Wu, 2015 [56] | ★ | ★ | 0 | ★ | ★★ | ★ | ★ | ★ | 8 |
References
- GLOBOCAN. Cancer Fact Sheets: Prostate Cancer. Available online: http://globocan.iarc.fr/old/FactSheets/cancers/prostate-new.asp (accessed on 1 September 2017).
- Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med. 1997, 29, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Andres, S.; Abraham, K.; Appel, K.E.; Lampen, A. Risks and benefits of dietary isoflavones for cancer. Crit. Rev. Toxicol. 2011, 41, 463–506. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70 (Suppl. 3), 439S–450S. [Google Scholar] [PubMed]
- Valachovicova, T.; Slivova, V.; Sliva, D. Cellular and physiological effects of soy flavonoids. Mini-Rev. Med. Chem. 2004, 4, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Oelrich, B.; Liu, J.P.; Feldman, D.; Franke, A.A.; Brooks, J.D. Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation. Prostate 2009, 69, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.; Bray, T.M.; Helferich, W.G.; Doerge, D.R.; Ho, E. Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells. Exp. Biol. Med. 2010, 235, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Chiyomaru, T.; Fukuhara, S.; Hidaka, H.; Majid, S.; Saini, S.; Arora, S.; Guoren, D.; Shahryari, V.; Inik, C.; Tanaka, Y.; et al. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS ONE 2013, 8, e58929. [Google Scholar] [CrossRef] [PubMed]
- Slusarz, A.; Jackson, G.A.; Day, J.K.; Shenouda, N.S.; Bogener, J.L.; Browning, J.D.; Fritsche, K.L.; MacDonald, R.S.; Besch-Williford, C.L.; Lubahn, D.B.; et al. Aggressive prostate cancer is prevented in ERalphaKO mice and stimulated in ERbetaKO TRAMP mice. Endocrinology 2012, 153, 4160–4170. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Spitznagel, E.L. Meta-analysis of soy food and risk of prostate cancer in men. Int. J. Cancer 2005, 117, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Kim, S.; Jee, S.; Kim, Y.; Nam, C. Soy food consumption and risk of prostate cancer: A meta-analysis of observational studies. Nutr. Cancer 2009, 61, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, K.; Chen, L.; Yin, B.; Song, Y. Is phytoestrogen intake associated with decreased risk of prostate cancer? A systematic review of epidemiological studies based on 17,546 cases. Andrology 2016, 4, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Feng, H.; Qluwakemi, B.; Wang, J.; Yao, S.; Cheng, G.; Xu, H.; Qiu, H.; Zhu, L.; Yuan, M. Phytoestrogens and risk of prostate cancer: An updated meta-analysis of epidemiologic studies. Int. J. Food Sci. Nutr. 2017, 68, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Pavese, J.M.; Krishna, S.N.; Bergan, R.C. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 431S–436S. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, G.B.; Reville, P.K.; Mace, T.A.; Young, G.S.; Ahn-Jarvis, J.; Thomas-Ahner, J.; Vodovotz, Y.; Ameen, Z.; Grainger, E.; Riedl, K.; et al. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev. Res. 2015, 8, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B.; et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Phillips, A.N. Meta-analysis: Principles and procedures. BMJ 1997, 315, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.; White, I.R.; Thompson, S.G. Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. Stat. Med. 2010, 29, 1282–1297. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Manning, A.K.; Dupuis, J. A method of moments estimator for random effect multivariate meta-analysis. Biometrics 2012, 68, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 2008, 61, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.E.; Sauvaget, C.; Roddam, A.W.; Appleby, P.; Nagano, J.; Suzuki, G.; Key, T.J.; Koyama, K. A prospective study of diet and prostate cancer in Japanese men. Cancer Causes Control 2004, 15, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Bravi, F.; Talamini, R.; Parpinel, M.; Gnagnarella, P.; Negri, E.; Montella, M.; Lagiou, P.; Franceschi, S.; La Vecchia, C.; et al. Flavonoids and prostate cancer risk: A study in Italy. Nutr. Cancer 2006, 56, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Heald, C.L.; Ritchie, M.R.; Bolton-Smith, C.; Morton, M.S.; Alexander, F.E. Phyto-oestrogens and risk of prostate cancer in Scottish men. Br. J. Nutr. 2007, 98, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Hedelin, M.; Klint, A.; Chang, E.T.; Bellocco, R.; Johansson, J.-E.; Andersson, S.-W.; Heinonen, S.-M.; Adlercreutz, H.; Adami, H.-O.; Gronberg, H.; et al. Dietary phytoestrogen, serum enterolactone and risk of prostate cancer: The cancer prostate Sweden study (Sweden). Cancer Causes Control 2006, 17, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, B.K.; Knutsen, S.F.; Fraser, G.E. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control 1998, 9, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.; Zhang, D.H.; Lee, A.H.; Binns, C.W. Do preserved foods increase prostate cancer risk? Br. J. Cancer 2004, 90, 1792–1795. [Google Scholar] [CrossRef] [PubMed]
- Kirsh, V.A.; Peters, U.; Mayne, S.T.; Subar, A.F.; Chatterjee, N.; Johnson, C.C.; Hayes, R.B.; Prostate, L.C. Prospective study of fruit and vegetable intake and risk of prostate cancer. J. Natl. Cancer Inst. 2007, 99. [Google Scholar] [CrossRef] [PubMed]
- Kolonel, L.N.; Hankin, J.H.; Whittemore, A.S.; Wu, A.H.; Gallagher, R.P.; Wilkens, L.R.; John, E.M.; Howe, G.R.; Dreon, D.M.; West, D.W.; et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. Cancer Epidemiol. Biomark. Prev. 2000, 9, 795–804. [Google Scholar]
- Kurahashi, N.; Iwasaki, M.; Inoue, M.; Sasazuki, S.; Tsugane, S. Plasma isoflavones and subsequent risk of prostate cancer in a nested case-control study: The Japan Public Health Center. J. Clin. Oncol. 2008, 26, 5923–5929. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, N.; Iwasaki, M.; Sasazuki, S.; Otani, T.; Inoue, M.; Tsugane, S. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol. Biomark. Prev. 2007, 16, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Gomez, S.L.; Chang, J.S.; Wey, M.; Wang, R.T.; Hsing, A.W. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol. Biomark. Prev. 2003, 12, 665–668. [Google Scholar]
- Lewis, J.E.; Soler-Vila, H.; Clark, P.E.; Kresty, L.A.; Allen, G.O.; Hu, J.J. Intake of plant foods and associated nutrients in prostate cancer risk. Nutr. Cancer 2009, 61, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Li, J.; Tsuji, I.; Nakaya, N.; Nishino, Y.; Zhao, X.J. Mass screening-based case-control study of diet and prostate cancer in Changchun, China. Asian J. Androl. 2008, 10, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Low, Y.L.; Taylor, J.I.; Grace, P.B.; Mulligan, A.A.; Welch, A.A.; Scollen, S.; Dunning, A.M.; Luben, R.N.; Khaw, K.T.; Day, N.E.; et al. Phytoestrogen exposure, polymorphisms in COMT, CYP19, ESR1, and SHBG genes, and their associations with prostate cancer risk. Nutr. Cancer 2006, 56, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Sonoda, T.; Mori, M.; Miyanaga, N.; Okumura, K.; Goto, K.; Naito, S.; Fujimoto, K.; Hirao, Y.; Takahashi, A.; et al. Dietary isoflavones may protect against prostate cancer in Japanese men. J. Nutr. 2007, 137, 1974–1979. [Google Scholar] [PubMed]
- Nagata, Y.; Sugiyama, Y.; Fukuta, F.; Takayanagi, A.; Masumori, N.; Tsukamoto, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Miura, T.; et al. Relationship of serum levels and dietary intake of isoflavone, and the novel bacterium Slackia sp. strain NATTS with the risk of prostate cancer: A case-control study among Japanese men. Int. Urol. Nephrol. 2016, 48, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.M.Y.; Hankin, J.H.; Lee, J.; Stemmermann, G.N. Cohort study of tofu intake and prostate cancer: No apparent association. Cancer Epidemiol. Biomark. Prev. 2004, 13, 2277–2279. [Google Scholar]
- Ozasa, K.; Nakao, M.; Watanabe, Y.; Hayashi, K.; Miki, T.; Mikami, K.; Mori, M.; Sakauchi, F.; Washio, M.; Ito, Y.; et al. Serum phytoestrogens and prostate cancer risk in a nested case-control study among Japanese men. Cancer Sci. 2004, 95, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Murphy, S.P.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. Legume and isoflavone intake and prostate cancer risk: The multiethnic cohort study. Int. J. Cancer 2008, 123, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Severson, R.K.; Nomura, A.M.; Grove, J.S.; Stemmermann, G.N. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 1989, 49, 1857–1860. [Google Scholar] [PubMed]
- Sonoda, T.; Nagata, Y.; Mori, M.; Miyanaga, N.; Takashima, N.; Okumura, K.; Goto, K.; Naito, S.; Fujimoto, K.; Hirao, Y.; et al. A case-control study of diet and prostate cancer in Japan: Possible protective effect of traditional Japanese diet. Cancer Sci. 2004, 95, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Strom, S.S.; Yamamura, Y.; Duphorne, C.M.; Spitz, M.R.; Babaian, R.J.; Pillow, P.C.; Hursting, S.D. Phytoestrogen intake and prostate cancer: A case-control study using a new database. Nutr. Cancer 1999, 33, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.F.C.; Lin, R.S.; Pu, Y.; Chen, Y.; Chang, H.C.; Lai, M. Risk factors for prostate carcinoma in Taiwan: A case-control study in a Chinese population. Cancer 1999, 86, 484–491. [Google Scholar] [CrossRef]
- Travis, R.C.; Allen, N.E.; Appleby, P.N.; Price, A.; Kaaks, R.; Chang-Claude, J.; Boeing, H.; Aleksandrova, K.; Tjonneland, A.; Johnsen, N.F.; et al. Prediagnostic concentrations of plasma genistein and prostate cancer risk in 1,605 men with prostate cancer and 1,697 matched control participants in EPIC. Cancer Causes Control 2012, 23, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Travis, R.C.; Spencer, E.A.; Allen, N.E.; Appleby, P.N.; Roddam, A.W.; Overvad, K.; Johnsen, N.F.; Olsen, A.; Kaaks, R.; Linseisen, J.; et al. Plasma phyto-oestrogens and prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Br. J. Cancer 2009, 100, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Villenueve, P.J.; Johnson, K.C.; Krieger, N.; Mao, Y. Risk Factors for Prostate Cancer: Results from the Canadian National Enhanced CancerSurveillance System. Cancer Causes Control 1999, 10, 355–367. [Google Scholar] [CrossRef]
- Wang, Y.; Stevens, V.L.; Shah, R.; Peterson, J.J.; Dwyer, J.T.; Gapstur, S.M.; McCullough, M.L. Dietary Flavonoid and Proanthocyanidin Intakes and Prostate Cancer Risk in a Prospective Cohort of US Men. Am. J. Epidemiol. 2014, 179, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.; Chapelais, G.; Kuhnle, G.G.C.; Luben, R.; Khaw, K.-T.; Bingham, S. Lack of prospective associations between plasma and urinary phytoestrogens and risk of prostate or colorectal cancer in the European prospective into Cancer-Norfolk study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2891–2894. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.A.; Kuhnle, G.G.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am. J. Clin. Nutr. 2010, 91, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, L.; Na, R.; Xu, J.; Xiong, Z.; Zhang, N.; Dai, W.; Jiang, H.; Ding, Q. Plasma genistein and risk of prostate cancer in Chinese population. Int. Urol. Nephrol. 2015, 47, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.; Handayani, R.; Cui, Y.; Medrano, T.; Samedi, V.; Baker, H. Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J. Nutr. 2007, 137, 964–972. [Google Scholar] [PubMed]
- Kang, N.H.; Shin, H.C.; Oh, S.; Lee, K.H.; Lee, Y.B.; Choi, K.C. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancerspecific antigen and cell cycle-regulatory genes in human LNCaP cancer cells. Mol. Med. Rep. 2016, 14, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, K.; Clinton, S.; Thomas-Ahner, J.M.; Erdman, J.W. The effect of tomato powder, soy germ, or a combination on prostate carcinogenesis in TRAMP mice. FASEB J. 2012, 26, 376. [Google Scholar]
- Murphy, P.A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G.; Trainer, D.; Holden, J. Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 1999, 47, 2697–2704. [Google Scholar] [CrossRef] [PubMed]
- Larkin, T.; Price, W.E.; Astheimer, L. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr. 2008, 48, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Morito, K.; Hirose, T.; Kinjo, J.; Hirakawa, T.; Okawa, M.; Nohara, T.; Ogawa, S.; Inoue, S.; Muramatsu, M.; Masamune, Y. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bull. 2001, 24, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; et al. Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiol. Rev. 2007, 87, 905–931. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.; Huang, B.; Gustafsson, J.-A. Estrogen Receptor β as a Pharmaceutical Target. Trends Pharmacol. Sci. 2017, 38, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Yang, W.; Bosland, M.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms. J. Steroid Biochem. Mol. Biol. 2014, 140, 116–132. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Yang, D.; Pike, M.C. A meta-analysis of soyfoods and risk of stomach cancer: The problem of potential confounders. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1051–1058. [Google Scholar]
- Islam, M.A.; Punt, A.; Spenkelink, B.; Murk, A.J.; Rolaf van Leeuwen, F.X.; Rietjens, I.M. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. Mol. Nutr. Food Res. 2014, 58, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed]
- Busby, M.G.; Jeffcoat, A.R.; Bloedon, L.T.; Koch, M.A.; Black, T.; Dix, K.J.; Heizer, W.D.; Thomas, B.F.; Hill, J.M.; Crowell, J.A.; et al. Clinical characteristics and pharmacokinetics of purified soy isoflavones: Single-dose administration to healthy men. Am. J. Clin. Nutr. 2002, 75, 126–136. [Google Scholar] [PubMed]
- Jarred, R.A.; Keikha, M.; Dowling, C.; McPherson, S.J.; Clare, A.M.; Husband, A.J.; Pedersen, J.S.; Frydenberg, M.; Risbridger, G.P. Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1689–1696. [Google Scholar]
- Hamilton-Reeves, J.M.; Banerjee, S.; Banerjee, S.K.; Holzbeierlein, J.M.; Thrasher, J.B.; Kambhampati, S.; Keighley, J.; Van Veldhuizen, P. Short-term soy isoflavone intervention in patients with localized prostate cancer: A randomized, double-blind, placebo-controlled trial. PLoS ONE 2013, 8, e68331. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | Exposure | Exposure Type | Cases/Sample | Study Type | Study Period (Years) | Adjustments | Participant Age Range, Mean (SD) | Exposure Measurement (Intake or Circulating) |
---|---|---|---|---|---|---|---|---|---|
Allen, 2004 [27] | Japan | Total soy, miso, tofu | Diet | 196/18,115 | Cohort | 1950–1996 | Age, education, geographic area, city of residence, radiation dose | 51–89 Cases: 75 | Tofu, miso: T1 < 2x/week, T3 = almost daily Total soy: T1 = low, T3 = high |
Bosetti, 2006 [28] | Italy | Total isoflavones | Diet | 1294/2745 | Case-Control | 1991–2002 | Age, BMI, FHPC, education, energy, study center | 46–74 Cases: 66 Controls: 63 | Q1 ≤ 14.7 μg/day, Q5 > 32.2 μg/day |
Heald, 2007 [29] | Scotland | Total isoflavones, total soy | Diet | 437/920 | Case-Control | 1998–2001 | Age, smoking, FHPC, energy, family history of breast cancer, Carstairs Deprivation Index, smoking and energy intake:BMR ratio | 50–74 Cases: 67.2 (5.5) Controls: 66.0 (5.4) | Isoflavones (μg/day): Q1 < 581.1, Q4 > 1982.2 Soy food: no, yes |
Genistein, daidzein, total isoflavones | Serum | Age, smoking, FHPC, family history of breast cancer, Carstairs Deprivation Index | Genistein (nmol/L): Q1 < 14.23, Q4 > 64.53 Daidzein (nmol/L): Q1 < 8.26, Q4 > 29.11 Isoflavones (nmol/L): Q1 < 25.57, Q4 > 98.86 | ||||||
Hedelin, 2006 [30] | Sweden | Total isoflavones, genistein, daidzein | Diet | 1499/2629 | Case-Control | 2001–2002 | Age, energy | 35–79 Cases: 66.8 Controls: 67.8 | Total isoflavones (μg/day): Q1 ≤ 1.0, Q4 ≥ 2.6 Genistein (μg/day): Q1 ≤ 0.27, Q4 ≥ 1.08 Daidzein (μg/day): Q1 ≤ 0.49, Q4 ≥ 1.11 |
Jacobsen, 1998 [31] | USA | Soy milk | Diet | 225/12,395 | Cohort | 1976–1992 | Age | ≥25 | Never, <daily, 1x/day, >1x/day |
Jian, 2004 [32] | China | Total soy | Diet | 130/404 | Case-Control | 2001–2002 | Age, BMI, FHPC, education, PA, energy, geographic area, marital status, income, fresh vegetables and fruit consumption, tea drinking | Cases: 74.7 (7.1) Controls: 71.4 (7.2) | T1 = 0 g/day, T3 > 4.00 g/day |
Kirsh, 2007 [33] | USA | Total soy | Diet | 1338/29,361 | Cohort | 1993–2001 | Age, BMI, smoking, FHPC, PA, energy, ethnicity, geographic area, supplemental vitamin E, total fat intake, red meat intake, diabetes, aspirin use, previous number of PCa screening examinations | 63.3 | Q1 = 0 servings/month, Q4 > 0.5 servings/month |
Kolonel, 2000 [34] | USA, Canada | Total soy | Diet | 1619/3237 | Case-Control | 1987–1991 | Age, education, energy, ethnicity, geographic area | ≥65 | Q1 < 0.1 g/day, Q5 > 39.4 g/day |
Kurahashi, 2007 [36] | Japan | Total soy, miso, genistein, daidzein | Diet | 307/43,509 | Cohort | 1995–2004 | Age, geographic area | 45–74 | Total soy (g/day): Q1 < 46.6, Q4 ≥ 107.4 Miso (mL/day): Q1 < 110.0, Q4 ≥ 356.0 Genistein (mg/day): Q1 < 13.2, Q4 ≥ 32.8 Daidzein (mg/day): Q1 < 8.5, Q4 ≥ 20.4 |
Kurahashi, 2008 [35] | Japan | Genistein, daidzein | Plasma | 201/603 | Nested Case-Control | 1990–2005 | Smoking; alcohol; marital status; intake of green tea, protein, fiber, green or yellow vegetables | 40–69 Cases: 58.6 (6.4) Controls: 58.4 (6.6) | Genistein (ng/mL): T1 < 57, T3 ≥ 151.7 Daidzein (ng/mL): T1 < 22, T3 ≥ 61.5 |
Lee, 2003 [37] | China | Total soy, tofu, genistein, daidzein | Diet | 133/398 | Case-Control | 1989–1992 | Age, energy | 50–89 | Total soy (g/day): Q1 < 27.5, Q4 > 111.8 Tofu (g/day): T1 < 14.3, T3 > 34.5 Genistein (mg/day): Q1 < 17.9, Q4 > 62.0 Daidzein (mg/day): Q1 < 10.0, Q4 > 36.3 |
Lewis, 2009 [38] | USA | Genistein, daidzein | Diet | 478/860 | Case-Control | 1998–2004 | Age, BMI, smoking, FHPC, education, energy | Controls: 62.0 (10.7) Incident cases: 63.3 (8.2) Prevalent cases: 66.9 (8.1) | Genistein (mcg/day): L ≤ 196.0, U > 196.1 Daidzein (mcg/day): L ≤ 77.0, U > 77.1 |
Li, 2008 [39] | China | Total soy | Diet | 28/308 | Case-Control | 1998–2000 | BMI, smoking, education, alcohol, food frequency | Cases: 71.39 (6.03) Control: 71.14 (5.78) | T1 ≤ 2x/week T3 ≥ 1x/day |
Low, 2006 [40] | Europe | Genistein, daidzein | Diet | 85/241 | Nested Case-Control | 1993–1997 | BMI, FHPC, energy | 45–75 | Genistein average (95% CI) cases (μg/day): 287.7 (255.5–323.9); controls: 310.2 (283.0–339.9) Daidzein average (95% CI) cases (μg/day): 224.4 (198.1–254.2); controls: 249.2 (227.8–272.5) |
Plasma | Genistein average (95% CI) cases (ng/mL): 4.8 (3.6–6.4); controls: 4.4 (3.7–5.4) Daidzein average (95% CI) cases (ng/mL): 2.4 (1.8–3.1); controls: 2.4 (2.0–2.9) | ||||||||
Nagata, 2007 [41] | Japan | Total soy, genistein, daidzein | Diet | 200/400 | Case-Control | 1996–2003 | Smoking, energy | 59–73 | Total soy (isoflavones) (mg/day): Q1 < 30.5, Q4 ≥ 89.9 Genistein (mg/day): Q1 < 1.1, Q4 ≥ 2.5 Daidzein (mg/day): Q1 < 0.8, Q4 ≥ 1.9 |
Nagata, 2016 [42] | Japan | Genistein, daidzein | Diet | 56/112 | Case-Control | 2011–2014 | Age, BMI, smoking, alcohol, energy | Cases: 64.7 (6.6) Controls: 63.6 (9.1) | Genistein (mg/day): T1 < 17.57, T3 ≥ 36.31 Daidzein (mg/day): T1 < 11.56, T3 ≥ 21.86 |
Genistein, daidzein | Serum | Age, BMI, smoking, alcohol | Genistein (ng/mL): T1 < 57.10, T3 ≥ 144.50 Daidzein (ng/mL): T1 < 18, T3 ≥ 51.7 | ||||||
Nomura, 2004 [43] | USA | Tofu | Diet | 222/5826 | Cohort | 1971–1995 | Age, BMI, smoking, alcohol, energy, arm muscle area | Not given | Q1 = 0 g/week, Q5 > 240 g/week |
Ozasa, 2004 [44] | Japan | Genistein, daidzein | Serum | 52/203 | Nested Case-Control | 1988–1999 | Age | ≥40 Cases: 69.4 Controls: 68.7 | Genistein (nM): T1 < 239, T3 > 682 Daidzein (nM): T1 < 89, T3 > 239 |
Park, 2008 [45] | USA | Total soy, total isoflavones, genistein, daidzein | Diet | 4404/82,483 | Cohort | 1993–1996 | Time since cohort entry, ethnicity, FHPC, education, BMI, smoking, energy | 45–75 | Total soy (g/1000 kcal): T1: 0, T2: 0.1–2.8, T3: ≥2.8 Genistein (mg/1000 kcal): Q1 < 0.7, Q2: 0.7–1.2, Q3: 1.2–1.9, Q4: 1.9–3.1, Q5 ≥ 3.1 Daidzein (mg/1000 kcal): Q1 < 0.7, Q2: 0.7–1.3, Q3: 1.3–2.0, Q4: 2.0–3.2, Q5 ≥ 3.2 Total isoflavones (mg/1000 kcal): Q1 < 1.6, Q2: 1.6–2.9, Q3: 2.9–4.5, Q4: 4.5–7.2, Q5 ≥ 7.2 |
Severson, 1989 [46] | USA | Miso, tofu | Diet | 174/7999 | Cohort | 1965–1986 | Age | ≥46 | Miso: T1 ≤ 1x/week, T3 ≥ 5x/week Tofu: T1 ≤ 1x/week, T3 ≥ 5x/week |
Sonoda, 2004 [47] | Japan | Total soy, natto, tofu | Diet | 140/280 | Case-Control | 1996–2002 | Smoking, energy | 59–73 | Total soy (g/day): Q1 ≤ 77.0, Q4 ≥ 187.2 Tofu (g/day): Q1 ≤ 19.7, Q4 ≥ 96.4 Natto (g/day): Q1 ≤ 5.7, Q4 ≥ 40.0 |
Strom, 1999 [48] | USA | Genistein, daidzein | Diet | 83/190 | Case-Control | 1996–1998 | Age, FHPC, alcohol, energy | Cases: 61 (6.6) Controls: 60.6 (6.9) | Genistein mean (μg/day): cases: 19.8; controls: 29.7 Daidzein mean (μg/day): cases: 14.2; controls: 22.8 |
Sung, 1999 [49] | China | Soy milk | Diet | 90/270 | Case-Control | 1995–1996 | None | ≥50 | Yes, No |
Travis, 2009 [51] | Europe | Genistein, daidzein | Plasma | 950/1992 | Nested Case-Control | 1992–2003 | BMI, smoking, education, PA, alcohol, marital status | 43–76 Cases: 60.4 (5.8) Controls: 60.1 (5.8) | Genistein (ng/mL): Q1 ≤ 0.30, Q5 ≥ 7.00 Daidzein (ng/mL): Q1 ≤ 0.30, Q5 ≥ 4.10 |
Travis, 2012 [50] | Europe | Genistein | Plasma | 655/1310 | Nested Case-Control | 1992–2006 | BMI, smoking, education, PA, alcohol, marital status | 43–76 Cases: 60.4 (5.8) Controls: 60.1 (5.8) | Genistein (ng/mL): Q1 ≤ 0.30, Q5 ≥ 6.10 |
Villenueve, 1999 [52] | Canada | Total soy | Diet | 1623/3246 | Case-Control | 1994–1997 | Age, geographic area | 50–74 | None, some |
Wang, 2014 [53] | USA | Total isoflavones | Diet | 3974/43,268 | Cohort | 1999–2009 | Age | 50–74 | Q1 < 0.029 mg/day, Q5 ≥ 0.144 mg/day |
Ward, 2008 [54] | Europe | Total isoflavones, genistein, daidzein | Plasma | 194/1006 | Nested Case-Control | 1993–2006 | Age, energy | 40–79 | Total isoflavones median (ng/mL): 10.3 Genistein median (ng/mL): 6.9 Daidzein median (ng/mL): 2.5 |
Ward, 2010 [55] | Europe | Total isoflavones, genistein, daidzein | Diet | 204/1016 | Nested Case-Control | 1993–2006 | Age | 40–79 | Total isoflavones mean cases (μg/day): 948.6; controls: 1088 Genistein: mean cases (μg/day): 546.6; controls: 638.2 Daidzein: mean cases (μg/day): 314.9; controls: 355.2 |
Wu, 2015 [56] | China | Genistein | Plasma | 46/100 | Case-Control | 2012–2013 | Age | 70.1 (8.9) Cases: 72.5 (8.4) Control: 68.0 (8.8) | <640.2 nmol/L, >640.0 nmol/L |
Total Dietary Soy | Dietary Unfermented Soy | Dietary Fermented Soy | ||||||||||
No. of Studies | RR (95% CI) | p-Value | I2 (%) | No. of Studies | RR (95% CI) | p-Value | I2 (%) | No. of Studies | RR (95% CI) | p-Value | I2 (%) | |
Overall Model | 16 | 0.71 (0.58–0.85) † | <0.001 | 68.9 | 11 | 0.66 (0.52–0.83) † | <0.001 | 60.3 | 8 | 0.86 (0.66–1.13) † | 0.281 | 66.6 |
Study Type | ||||||||||||
Case-control | 9 | 0.61 (0.45–0.82) † | 0.001 | 63.2 | 6 | 0.55 (0.46–0.66) | <0.001 | 0.0 | 4 | 0.64 (0.27–1.50) † | 0.300 | 82.3 |
Cohort | 7 | 0.90 (0.82–0.99) | 0.022 | 2.7 | 5 | 0.91 (0.76–1.08) | 0.267 | 30.6 | 4 | 0.92 (0.83–1.02) | 0.123 | 0.0 |
Continent | ||||||||||||
North America | 7 | 0.72 (0.56–0.92) † | 0.009 | 74.7 | 6 | 0.65 (0.47–0.92) † | 0.014 | 73.4 | 2 | 0.91 (0.81–1.02) | 0.090 | 0.0 |
Europe | 1 | 0.52 (0.30–0.91) | 0.021 | 0.0 | - | - | - | - | - | - | - | |
Asia | 8 | 0.71 (0.50–1.02) † | 0.064 | 67.3 | 5 | 0.68 (0.52–0.89) | 0.005 | 35.4 | 6 | 0.79 (0.51–1.23) † | 0.302 | 75.5 |
Adjustments | ||||||||||||
High quality | 12 | 0.72 (0.58–0.90) † | 0.003 | 73.4 | 8 | 0.61 (0.45–0.82) † | 0.001 | 69.2 | 5 | 1.00 (0.73–1.37) † | 0.994 | 63.1 |
Mid quality | 4 | 0.66 (0.50–0.87) | 0.003 | 60.5 | 3 | 0.81 (0.58–1.13) | 0.217 | 0.0 | 3 | 0.56 (0.27–1.17) † | 0.124 | 74.0 |
Age | ||||||||||||
Adjusted | 11 | 0.73 (0.57–0.93) † | 0.010 | 69.7 | 8 | 0.68 (0.52–0.88) † | 0.003 | 65.6 | 5 | 1.03 (0.72–1.47) † | 0.892 | 59.8 |
Unadjusted | 5 | 0.61 (0.39–0.96) † | 0.032 | 32.1 | 3 | 0.56 (0.35–0.92) | 0.021 | 47.5 | 3 | 0.56 (0.28–1.15) † | 0.115 | 0.0 |
BMI | ||||||||||||
Adjusted | 5 | 0.95 (0.73–1.22) † | 0.661 | 66.2 | 3 | 0.78 (0.50–1.23) † | 0.282 | 64.6 | 2 | 1.27 (0.58–2.78) † | 0.552 | 83.8 |
Unadjusted | 11 | 0.61 (0.53–0.71) | <0.001 | 32.0 | 8 | 0.59 (0.50–0.70) | <0.001 | 18.0 | 6 | 0.73 (0.50–1.07) † | 0.103 | 63.3 |
Smoking | ||||||||||||
Adjusted | 7 | 0.71 (0.56–0.91) † | 0.007 | 66.3 | 4 | 0.71 (0.46–1.10) † | 0.122 | 62.2 | 3 | 0.56 (0.28–1.15) † | 0.115 | 78.7 |
Unadjusted | 9 | 0.72 (0.53–0.96) † | 0.027 | 66.9 | 7 | 0.60 (0.51–0.71) | <0.001 | 27.1 | 5 | 1.03 (0.72–1.47) † | 0.892 | 59.8 |
FHPC | ||||||||||||
Adjusted | 4 | 0.95 (0.72–1.24) † | 0.690 | 71.6 | 1 | 0.98 (0.79–1.22) | 0.855 | 0.0 | 2 | 1.27 (0.58–2.78) † | 0.552 | 83.8 |
Unadjusted | 12 | 0.63 (0.55–0.72) | <0.001 | 41.5 | 10 | 0.61 (0.52–0.72) | <0.001 | 32.0 | 5 | 0.73 (0.50–1.07) † | 0.103 | 63.3 |
Energy | ||||||||||||
Adjusted | 9 | 0.76 (0.61–0.95) † | 0.016 | 69.7 | 5 | 0.74 (0.57–0.97) † | 0.029 | 53.2 | 5 | 0.72 (0.43–1.22) † | 0.221 | 79.2 |
Unadjusted | 7 | 0.62 (0.45–0.86) † | 0.004 | 57.1 | 6 | 0.57 (0.39–0.83) † | 0.004 | 50.6 | 3 | 1.01 (0.80–1.28) | 0.919 | 0.0 |
Education | ||||||||||||
Adjusted | 5 | 0.82 (0.58–1.16) † | 0.263 | 74.7 | 3 | 0.64 (0.41–0.99) † | 0.045 | 56.1 | 3 | 1.06 (0.76–1.47) † | 0.741 | 67.7 |
Unadjusted | 11 | 0.64 (0.50–0.82) † | <0.001 | 63.4 | 8 | 0.66 (0.48–0.89) † | 0.007 | 65.5 | 5 | 0.66 (0.39–1.11) † | 0.116 | 68.2 |
PA | ||||||||||||
Adjusted | 2 | 1.32 (0.66–2.66) † | 0.433 | 78.1 | 1 | 0.98 (0.79–1.22) | 0.855 | 0.0 | 1 | 2.02 (1.08–3.78) | 0.028 | 0.0 |
Unadjusted | 14 | 0.64 (0.52–0.78) † | <0.001 | 63.6 | 10 | 0.61 (0.52–0.72) | <0.001 | 32.0 | 7 | 0.79 (0.62–1.02) † | 0.071 | 58.1 |
Alcohol | ||||||||||||
Adjusted | 2 | 0.55 (0.19–1.59) † | 0.270 | 74.4 | 2 | 0.55 (0.19–1.59) † | 0.270 | 74.7 | ||||
Unadjusted | 14 | 0.71 (0.58–0.87) † | 0.001 | 70.4 | 9 | 0.66 (0.51–0.85) † | 0.002 | 62.3 | 8 | 0.86 (0.66–1.13) † | 0.281 | 66.6 |
Geographic area | ||||||||||||
Adjusted | 6 | 0.83 (0.61–1.13) † | 0.237 | 80.1 | 4 | 0.72 (0.51–1.02) † | 0.064 | 80.7 | 3 | 1.16 (0.81–1.67) † | 0.416 | 55.2 |
Unadjusted | 10 | 0.59 (0.45–0.79) † | <0.001 | 60.9 | 7 | 0.63 (0.48–0.82) | 0.001 | 28.1 | 5 | 0.64 (0.41–1.02) † | 0.061 | 68.9 |
Marital status | ||||||||||||
Adjusted | 1 | 2.02 (1.08–3.78) | 0.028 | 0.0 | - | - | - | - | 1 | 2.02 (1.08–3.78) | 0.028 | 0.0 |
Unadjusted | 15 | 0.67 (0.56–0.81) † | <0.001 | 58.5 | 11 | 0.66 (0.52–0.83) † | <0.001 | 60.3 | 7 | 0.79 (0.62–1.02) † | 0.071 | 58.1 |
Ethnicity | ||||||||||||
Adjusted | 3 | 0.86 (0.71–1.04) † | 0.124 | 58.6 | 2 | 0.80 (0.51–1.25) † | 0.319 | 78.7 | - | - | - | - |
Unadjusted | 13 | 0.65 (0.50–0.84) † | 0.001 | 62.6 | 9 | 0.61 (0.51–0.73) | <0.001 | 39.5 | 8 | 0.86 (0.66–1.13) † | 0.281 | 66.6 |
Dietary Isoflavones | Dietary Genistein | Dietary Daidzein | ||||||||||
No. of studies | RR (95% CI) | p-Value | I2 (%) | No. of studies | RR (95% CI) | p-Value | I2 (%) | No. of studies | RR (95% CI) | p-Value | I2 (%) | |
Overall Model | 6 | 1.03 (0.97–1.09) | 0.313 | 44.9 | 10 | 0.90 (0.84–0.97) | 0.008 | 31.0 | 10 | 0.84 (0.73–0.97) † | 0.018 | 50.5 |
Study Type | ||||||||||||
Case-control | 3 | 1.04 (0.89–1.22) | 0.604 | 0.0 | 6 | 0.81 (0.68–0.96) | 0.016 | 49.5 | 6 | 0.68 (0.47–1.00) † | 0.052 | 70.1 |
Cohort/NCC | 3 | 1.01 (0.87–1.17) † | 0.928 | 76.3 | 4 | 0.93 (0.85–1.01) | 0.077 | 0.0 | 4 | 0.91 (0.84–1.00) | 0.042 | 0.0 |
Continent | ||||||||||||
North America | 2 | 1.03 (0.85–1.26) | 0.757 | 86.2 | 3 | 0.76 (0.53–1.10) † | 0.145 | 62.0 | 3 | 0.71 (0.47–1.06) † | 0.094 | 68.2 |
Europe | 4 | 1.00 (0.89–1.12) | 0.961 | 0.0 | 3 | 0.95 (0.84–1.08) | 0.419 | 0.0 | 3 | 0.98 (0.80–1.18) † | 0.799 | 51.7 |
Asia | - | - | - | - | 4 | 0.69 (0.53–0.89) | 0.004 | 0.0 | 4 | 0.72 (0.55–0.93) | 0.012 | 0.0 |
Adjustments | ||||||||||||
High quality | 5 | 1.02 (0.91–1.14) † | 0.780 | 55.8 | 8 | 0.90 (0.83–0.98) | 0.011 | 25.1 | 8 | 0.88 (0.81–0.96) | 0.004 | 28.1 |
Mid quality | 1 | 1.05 (0.84–1.31) | 0.667 | 0.0 | 2 | 0.81 (0.47–1.38) † | 0.430 | 72.5 | 2 | 0.83 (0.40–1.72) † | 0.620 | 84.4 |
Age | ||||||||||||
Adjusted | 5 | 1.08 (1.00–1.16) | 0.042 | 8.1 | 7 | 0.89 (0.79–1.00) | 0.046 | 36.6 | 7 | 0.83 (0.66–1.03) † | 0.092 | 56.7 |
Unadjusted | 1 | 0.93 (0.83–1.04) | 0.207 | 0.0 | 3 | 0.91 (0.83–1.01) | 0.077 | 42.4 | 3 | 0.81 (0.64–1.03) † | 0.088 | 51.0 |
BMI | ||||||||||||
Adjusted | 2 | 0.94 (0.85–1.04) | 0.224 | 0.0 | 4 | 0.91 (0.82–1.00) | 0.058 | 39.0 | 4 | 0.89 (0.80–0.98) | 0.018 | 38.7 |
Unadjusted | 4 | 1.09 (1.01–1.18) | 0.029 | 19.6 | 6 | 0.90 (0.80–1.01) | 0.063 | 38.2 | 6 | 0.83 (0.66–1.05) † | 0.116 | 61.2 |
Smoking | ||||||||||||
Adjusted | 2 | 0.95 (0.85–1.06) | 0.322 | 21.5 | 4 | 0.73 (0.51–1.04) † | 0.080 | 59.6 | 4 | 0.71 (0.50–1.01) † | 0.059 | 59.4 |
Unadjusted | 4 | 1.08 (1.00–1.16) | 0.055 | 27.8 | 6 | 0.91 (0.81–1.01) | 0.086 | 10.8 | 6 | 0.88 (0.73–1.06) † | 0.178 | 51.1 |
FHPC | ||||||||||||
Adjusted | 3 | 0.95 (0.86–1.05) | 0.331 | 0.0 | 4 | 0.90 (0.82–1.00) | 0.043 | 45.7 | 4 | 0.76 (0.59–0.98) † | 0.032 | 55.9 |
Unadjusted | 3 | 1.09 (1.00–1.18) | 0.040 | 44.0 | 6 | 0.90 (0.80–1.02) | 0.089 | 33.5 | 6 | 0.88 (0.71–1.09) † | 0.228 | 52.0 |
Energy | ||||||||||||
Adjusted | 4 | 0.97 (0.88–1.06) | 0.477 | 0.0 | 8 | 0.90 (0.82–0.98) | 0.015 | 42.7 | 8 | 0.78 (0.63–0.96) † | 0.017 | 60.6 |
Unadjusted | 2 | 1.05 (0.87–1.27) † | 0.600 | 71.2 | 2 | 0.92 (0.79–1.07) | 0.283 | 0.0 | 2 | 0.93 (0.80–1.09) | 0.393 | 0.0 |
Education | ||||||||||||
Adjusted | 2 | 0.94 (0.85–1.04) | 0.224 | 0.0 | 2 | 0.75 (0.44–1.28) † | 0.296 | 78.2 | 2 | 0.75 (0.45–1.24) † | 0.261 | 76.3 |
Unadjusted | 4 | 1.09 (1.01–1.18) | 0.029 | 19.6 | 8 | 0.89 (0.80–0.99) | 0.033 | 15.5 | 8 | 0.91 (0.82–1.02) | 0.104 | 49.8 |
PA | ||||||||||||
Adjusted | - | - | - | - | - | - | - | - | - | - | - | - |
Unadjusted | 6 | 1.03 (0.97–1.10) | 0.313 | 44.9 | 10 | 0.90 (0.84–0.97) | 0.008 | 31.0 | 10 | 0.84 (0.73–0.97) † | 0.018 | 50.5 |
Alcohol | ||||||||||||
Adjusted | - | - | - | - | 2 | 0.74 (0.44–1.25) | 0.255 | 0.0 | 2 | 0.62 (0.36–1.05) | 0.075 | 0.0 |
Unadjusted | 6 | 1.03 (0.97–1.10) | 0.313 | 44.9 | 8 | 0.91 (0.84–0.98) | 0.012 | 43.5 | 8 | 0.86 (0.74–0.99) † | 0.042 | 56.0 |
Geographic area | ||||||||||||
Adjusted | - | - | - | - | 1 | 0.80 (0.56–1.14) | 0.219 | 0.0 | 1 | 0.87 (0.61–1.25) | 0.447 | 0.0 |
Unadjusted | 6 | 1.03 (0.97–1.10) | 0.313 | 44.9 | 9 | 0.91 (0.84–0.98) | 0.015 | 36.4 | 9 | 0.83 (0.71–0.97) † | 0.022 | 55.9 |
Marital status | ||||||||||||
Adjusted | - | - | - | - | - | - | - | - | - | - | - | - |
Unadjusted | 6 | 1.03 (0.97–1.10) | 0.313 | 44.9 | 10 | 0.90 (0.84–0.97) | 0.008 | 31.0 | 10 | 0.84 (0.73–0.97) † | 0.018 | 50.5 |
Ethnicity | ||||||||||||
Adjusted | 1 | 0.93 (0.83–1.04) | 0.207 | 0.0 | 1 | 0.94 (0.85–1.05) | 0.256 | 0.0 | 1 | 0.92 (0.83–1.03) | 0.134 | 0.0 |
Unadjusted | 5 | 1.08 (1.00–1.16) | 0.042 | 8.1 | 9 | 0.87 (0.78–0.97) | 0.009 | 33.2 | 9 | 0.79 (0.65–0.96) † | 0.019 | 55.6 |
Circulating Genistein | Circulating Daidzein | |||||||||||
No. of studies | RR (95% CI) | p-Value | I2 (%) | No. of studies | RR (95% CI) | p-Value | I2 (%) | |||||
Overall Model | 9 | 0.87 (0.69–1.10) † | 0.236 | 76.8 | 7 | 0.92 (0.78–1.08) † | 0.310 | 58.1 | ||||
Study Type | ||||||||||||
Case-control | 3 | 0.31 (0.06–1.65) † | 0.170 | 90.4 | 2 | 0.49 (0.06–3.92) † | 0.502 | 90.9 | ||||
Cohort | - | - | - | - | - | - | - | - | ||||
Nested Case-control | 6 | 0.97 (0.83–1.13) † | 0.668 | 52.0 | 5 | 0.98 (0.93–1.04) | 0.490 | 0.0 | ||||
Continent | ||||||||||||
North America | - | - | - | - | - | - | - | - | ||||
Europe | 5 | 1.02 (0.87–1.21) † | 0.784 | 58.7 | 4 | 0.99 (0.93–1.04) | 0.657 | 6.8 | ||||
Asia | 4 | 0.37 (0.15–0.92) † | 0.031 | 79.1 | 3 | 0.52 (0.22–1.23) † | 0.137 | 72.5 | ||||
Adjustments | ||||||||||||
High quality | 9 | 0.87 (0.69–1.10) † | 0.236 | 76.8 | 7 | 0.92 (0.78–1.08) † | 0.310 | 58.1 | ||||
Mid quality | - | - | - | - | - | - | - | - | ||||
Age | ||||||||||||
Adjusted | 5 | 0.41 (0.13–1.29) † | 0.128 | 85.6 | 4 | 0.77 (0.44–1.35) † | 0.362 | 74.3 | ||||
Unadjusted | 4 | 0.97 (0.72–1.29) † | 0.814 | 69.9 | 3 | 0.95 (0.83–1.08) | 0.397 | 13.1 | ||||
BMI | ||||||||||||
Adjusted | 4 | 0.78 (0.45–1.34) † | 0.368 | 87.6 | 3 | 0.72 (0.44–1.16) † | 0.177 | 82.7 | ||||
Unadjusted | 5 | 0.84 (0.60–1.17) † | 0.309 | 60.5 | 4 | 0.99 (0.93–1.05) | 0.706 | 0.0 | ||||
Smoking | ||||||||||||
Adjusted | 4 | 0.73 (0.34–1.57) † | 0.424 | 88.2 | 3 | 0.66 (0.30–1.47) † | 0.307 | 81.9 | ||||
Unadjusted | 5 | 0.90 (0.74–1.10) † | 0.272 | 55.6 | 4 | 0.99 (0.93–1.05) | 0.682 | 0.0 | ||||
FHPC | ||||||||||||
Adjusted | 2 | 1.04 (0.86–1.26) | 0.670 | 0.00 | 2 | 1.03 (0.89–1.2) | 0.699 | 0.0 | ||||
Unadjusted | 7 | 0.73 (0.51–1.05) † | 0.087 | 81.9 | 5 | 0.77 (0.58–1.06) † | 0.115 | 69.1 | ||||
Energy | ||||||||||||
Adjusted | 2 | 0.99 (0.94–1.05) | 0.779 | 0.0 | 2 | 0.99 (0.94–1.05) | 0.796 | 0.0 | ||||
Unadjusted | 7 | 0.69 (0.42–1.13) † | 0.140 | 81.4 | 5 | 0.76 (0.50–1.15) † | 0.195 | 64.0 | ||||
Education | ||||||||||||
Adjusted | 2 | 1.07 (0.51–2.23) † | 0.866 | 88.2 | 1 | 0.80 (0.60–1.07) | 0.131 | 0.0 | ||||
Unadjusted | 7 | 0.80 (0.60–1.07) † | 0.126 | 76.8 | 6 | 0.94 (0.78–1.14) † | 0.528 | 59.6 | ||||
PA | ||||||||||||
Adjusted | 2 | 1.07 (0.51–2.23) † | 0.866 | 88.2 | 1 | 0.80 (0.60–1.07) | 0.131 | 0.0 | ||||
Unadjusted | 7 | 0.80 (0.60–1.07) † | 0.126 | 76.8 | 6 | 0.94 (0.78–1.14) † | 0.528 | 59.6 | ||||
Alcohol | ||||||||||||
Adjusted | 3 | 0.55 (0.20–1.51) † | 0.244 | 91.6 | 2 | 0.39 (0.08–1.88) † | 0.243 | 86.5 | ||||
Unadjusted | 6 | 0.93 (0.77–1.12) † | 0.437 | 51.0 | 5 | 0.99 (0.94–1.05) | 0.757 | 0.0 | ||||
Geographic area | ||||||||||||
Adjusted | - | - | - | - | - | - | - | - | ||||
Unadjusted | 9 | 0.87 (0.69–1.10) † | 0.236 | 76.8 | 7 | 0.92 (0.78–1.08) † | 0.310 | 58.1 | ||||
Marital status | ||||||||||||
Adjusted | 2 | 1.07 (0.51–2.23) † | 0.866 | 88.2 | 1 | 0.80 (0.60–1.07) | 0.131 | 0.0 | ||||
Unadjusted | 7 | 0.80 (0.60–1.07) † | 0.126 | 76.8 | 6 | 0.94 (0.78–1.14) † | 0.528 | 59.6 | ||||
Ethnicity | ||||||||||||
Adjusted | - | - | - | - | - | - | - | - | ||||
Unadjusted | 9 | 0.87 (0.69–1.10) † | 0.236 | 76.8 | 7 | 0.92 (0.78–1.08) † | 0.310 | 58.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Applegate, C.C.; Rowles, J.L., III; Ranard, K.M.; Jeon, S.; Erdman, J.W. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018, 10, 40. https://doi.org/10.3390/nu10010040
Applegate CC, Rowles JL III, Ranard KM, Jeon S, Erdman JW. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients. 2018; 10(1):40. https://doi.org/10.3390/nu10010040
Chicago/Turabian StyleApplegate, Catherine C., Joe L. Rowles, III, Katherine M. Ranard, Sookyoung Jeon, and John W. Erdman. 2018. "Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis" Nutrients 10, no. 1: 40. https://doi.org/10.3390/nu10010040
APA StyleApplegate, C. C., Rowles, J. L., III, Ranard, K. M., Jeon, S., & Erdman, J. W. (2018). Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients, 10(1), 40. https://doi.org/10.3390/nu10010040