Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
Abstract
:1. Introduction
2. Physiological Adjustments to Increased Blood Flow and Glucose Provision during Physical Exercise
2.1. Initiation of Physical Exercise
2.2. Continuation of Physical Exercise
2.3. Blood Flow Distribution to Skeletal Muscle during Exercise
3. The Interstitial Compartment and Factors Influencing Movement of Interstitial Fluid during Exercise
- Lp is the hydraulic conductivity (which provides a measure of water permeability; m2·s·kg−1 or m·s−1·mmHg−1);
- S is the surface area available for fluid exchange in m2;
- σ is the osmotic reflection coefficient (dimensionless unit) where σ close to 1.0 indicates the capillary is fully effective in allowing fluid and smaller solutes to filter to the interstitial space while larger protein molecules such as albumin are retained. Where σ is <1.0, capillary filter function is reduced.
4. Interstitial Glucose Metabolism during Exercise
4.1. Glucose Transport to Exercising Muscle
4.2. Exercising Skeletal Muscle Tissue Is a Glucose Consumer; Inactive Tissue Acts as a Glucose Store
4.3. Hepatocytes Take Up and Release Glucose
4.4. Exogenous ‘On-Board’ Insulin Concentrations Differ When Compared with Endogenous Insulin
4.5. Ingested Carbohydrate from the Gastrointestinal Tract
5. Interstitial Glucose Responses to Different Forms of Exercise
6. Continuous and Flash Glucose Monitor Performance
7. Continuous and Flash Glucose Monitoring Systems’ (Dis) Advantages and Exercise
8. Continuous and Flash Glucose Monitor Algorithms
- denoising the random noise component
- enhancing the accuracy
- predicting the future glucose concentration
9. Future Directions
9.1. Artificial Pancreas
9.2. Implantable Sensors
10. Conclusions
Author Contributions
Conflicts of Interest
References
- Chiang, J.L.; Kirkman, M.S.; Laffel, L.M.B.; Peters, A.L. Type 1 diabetes through the life span: A position statement of the American Diabetes Association. Diabetes Care 2014, 37, 2034–2054. [Google Scholar] [CrossRef] [PubMed]
- The Health and Social Care Information Centre National Diabetes Audit 2012–2013, Report 2. Available online: http://content.digital.nhs.uk/catalogue/PUB16496/nati-diab-audi-12-13-rep2.pdf (accessed on 27 November 2017).
- Plotnikoff, R.C.; Taylor, L.M.; Wilson, P.M.; Courneya, K.S.; Sigal, R.J.; Birkett, N.; Raine, K.; Svenson, L.W. Factors associated with physical activity in Canadian adults with diabetes. Med. Sci. Sports Exerc. 2006, 38, 1526–1534. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.P.; Swerdlow, A.J.; Slater, S.D.; Burden, A.C.; Morris, A.; Waugh, N.R.; Gatling, W.; Bingley, P.J.; Patterson, C.C. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 2003, 46, 760–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorman, J.S.; Laporte, R.E.; Kuller, L.H.; Cruickshanks, K.J.; Orchard, T.J.; Wagener, D.K.; Becker, D.J.; Cavender, D.E.; Drash, A.L. The Pittsburgh insulin-dependent diabetes mellitus (IDDM) morbidity and mortality study: Mortality results. Diabetes 1984, 33, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017, 8587, 1–14. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Chimen, M.; Kennedy, A.; Nirantharakumar, K.; Pang, T.T.; Andrews, R.; Narendran, P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 2012, 55, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, A.-S.; Rabasa-Lhoret, R.; Strychar, I.; Mircescu, H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care 2008, 31, 2108–2109. [Google Scholar] [CrossRef] [PubMed]
- Galassetti, P.; Riddell, M.C. Exercise and type 1 diabetes (T1DM). Compr. Physiol. 2013, 3, 1309–1336. [Google Scholar] [PubMed]
- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes control and complications trial. J. Pediatr. 1994, 125, 177–188. [Google Scholar]
- The Epidemiology of Diabetes Interventions and Complications Research Group. Intensive diabetes therapy and carotid intima–media thickness in type 1 diabetes mellitus. N. Engl. J. Med. 2003, 348, 2294–2303. [Google Scholar]
- Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2005, 353, 2643–2653. [Google Scholar]
- The DCCT Research Group. Epidemiology of severe hypoglycemia in the diabetes control and complications trial. Am. J. Med. 1991, 90, 450–459. [Google Scholar]
- Rodbard, D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016, 18, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Parkin, C.G.; Graham, C.; Smolskis, J. Continuous glucose monitoring use in type 1 diabetes: Longitudinal analysis demonstrates meaningful improvements in HbA1c and reductions in health care utilization. J. Diabetes Sci. Technol. 2017, 11, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.; Bode, B.W.; Christiansen, M.P.; Klaff, L.J.; Alva, S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Derave, W.; Wojtaszewski, J.F.P. Glucose, exercise and insulin: Emerging concepts. J. Physiol. 2001, 535, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Fahey, T.D.; Baldwin, K.M. Exercise Physiology: Human Bioenergetics and Its Applications, 4th ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Nevill, M.E.; Boobis, L.H.; Brooks, S.; Williams, C. Effect of training on muscle metabolism during treadmill sprinting. J. Appl. Physiol. 1989, 67, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Emhoff, C.-A.W.; Messonnier, L.A.; Horning, M.A.; Fattor, J.A.; Carlson, T.J.; Brooks, G.A. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J. Appl. Physiol. 2013, 114, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Bergman, B.C.; Horning, M.A.; Casazza, G.A.; Wolfel, E.E.; Butterfield, G.E.; Brooks, G.A. Endurance training increases gluconeogenesis during rest and exercise in men. Am. J. Physiol. Endocrinol. Metab. 2000, 278, 244E–251E. [Google Scholar] [CrossRef] [PubMed]
- Korthuis, R.J. Skeletal Muscle Circulation; Morgan & Claypool Life Sciences: Williston, ND, USA, 2011. [Google Scholar]
- Spriet, L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014, 44, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Jenni, S.; Oetliker, C.; Allemann, S.; Ith, M.; Tappy, L.; Wuerth, S.; Egger, A.; Boesch, C.; Schneiter, P.; Diem, P.; et al. Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus—A prospective single-blinded randomised crossover trial. Diabetologia 2008, 51, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, A.P.E.; Tikkanen, H.O.; Koponen, A.S.; Aho, J.M.; Peltonen, J.E. Central and peripheral cardiovascular impairments limit V O2peak in Type 1 diabetes. Med. Sci. Sports Exerc. 2015, 47, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Astrand, P.-O.; Rodahl, K.; Dahl, H.A.; Stromme, S.B. Textbook of Work Physiology: Physiological Bases of Exercise, 3rd ed.; McGraw Hill: New York, NY, USA, 1986. [Google Scholar]
- Secher, N.H.; Amann, M. Human investigations into the exercise pressor reflex. Exp. Physiol. 2012, 97, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Saltin, B.; Boushel, R.; Niels, S.; Jere, M. Exercise and Circulation in Health and Disease; Human Kinetics: Champaign, IL, USA, 1999. [Google Scholar]
- Saltin, B.; Radegran, G.; Koskolou, M.D.; Roach, R.C. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol. Scand. 1998, 1, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Middlekauff, H.R.; Nitzsche, E.U.; Nguyen, A.H.; Hoh, C.K.; Gibbs, G.G. Modulation of renal cortical blood flow during static exercise in humans. Circ. Res. 1997, 80, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Levick, J.R. An Introduction to Cardiovascular Physiology, 5th ed.; Taylor & Francis Ltd.: London, UK, 2010. [Google Scholar]
- Kvietys, P.R. The Gastrointestinal Circulation; Morgan & Claypool Life Sciences: Williston, ND, USA, 2010. [Google Scholar]
- Metheny, N.M.; Metheny, N.M. Fluid and Electrolyte Balance: Nursing Considerations, 5th ed.; Jones & Bartlett Learning: Burlington, ON, Canada, 2012. [Google Scholar]
- Martini, F.H.; Nath, J.L. Fundamentals of Anatomy and Physiology; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Klabunde, R.E. Cardiovascular Physiology Concepts, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Arturson, G.; Kjellmer, I. Capillary permeability in skeletal muscle during rest and activity. Acta Physiol. Scand. 1964, 62, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, S.; Kjellmer, I. Flow and protein content of lymph in resting and exercising skeletal muscle. Acta Physiol. Scand. 1964, 60, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, S.; Kjellmer, I. Accumulation of fluid in exercising skeletal muscle. Acta Physiol. Scand. 1964, 60, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Lundvall, J. Tissue hyperosmolality as a mediator of vasodilatation and transcapillary fluid flux in exercising skeletal muscle. Acta Physiol. Scand. Suppl. 1972, 379, 1–142. [Google Scholar] [PubMed]
- Lundvall, J.; Mellander, S.; Westling, H.; White, T. Fluid transfer between blood and tissues during exercise. Acta Physiol. Scand. 1972, 85, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Kjellmer, I. Studies on exercise hyperemia. Acta Physiol. Scand. Suppl. 1964, 244, 1–27. [Google Scholar]
- Scallan, J.; Huxley, V.H.; Korthuis, R.J. Capillary Fluid Exchange: Regulation, Functions, and Pathology; Morgan & Claypool Life Sciences: Williston, ND, USA, 2010. [Google Scholar]
- Stick, C.; Jaeger, H.; Witzleb, E. Measurements of volume changes and venous pressure in the human lower leg during walking and running. J. Appl. Physiol. 1992, 72, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Ploug, T.; Galbo, H. Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes 1985, 34, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Renkin, E.M.; Michel, C.C. Capillary Permeability to Small Solutes. In Handbook of Physiology: The Cardiovascular System, Microcirculation; Crone, C., Levitt, D.G., Eds.; American Physiological Society: Bethesda, MD, USA, 1984. [Google Scholar]
- Blomstrand, E.; Saltin, B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J. Physiol. 1999, 514, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.J.; Richter, E.A. Skeletal muscle glucose uptake during exercise: How is it regulated? Physiology (Bethesda) 2005, 20, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Hultman, E. Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand. J. Clin. Lab. Investig. Suppl. 1967, 94, 1–63. [Google Scholar]
- Gaitanos, G.; Willians, L.; Boobis, L.; Brooks, S. Human muscle metabolism maximal exercise. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Marliss, E.B.; Vranic, M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: Implications for diabetes. Diabetes 2002, 51, 271S–283S. [Google Scholar] [CrossRef]
- Nilsson, L.H.; Hultman, E. Liver glycogen in man—The effect of total starvation or a carbohydrate—Poor diet followed by carbohydrate refeeding. Scand. J. Clin. Lab. Investig. 1973, 32, 325–330. [Google Scholar] [CrossRef]
- Fahey, A.J.; Paramalingam, N.; Davey, R.J.; Davis, E.A.; Jones, T.W.; Fournier, P.A. The effect of a short sprint on postexercise whole-body glucose production and utilization rates in individuals with type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 2012, 97, 4193–4200. [Google Scholar] [CrossRef] [PubMed]
- Gyntelberg, F.; Rennie, M.J.; Hickson, R.C.; Holloszy, J.O. Effect of training on the response of plasma glucagon to exercise. J. Appl. Physiol. 1977, 43, 302–305. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Morton, R.D.; Bain, S.C.; Stephens, J.W.; Bracken, R.M. Blood glucose responses to reductions in pre-exercise rapid-acting insulin for 24 h after running in individuals with type 1 diabetes. J. Sports Sci. 2010, 28, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.G.; Wallis, M.G.; Barrett, E.J.; Vincent, M.A.; Richards, S.M.; Clerk, L.H.; Rattigan, S. Blood flow and muscle metabolism: A focus on insulin action. Am. J. Physiol. Endocrinol. Metab. 2003, 284, 241E–258E. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.T.; Fuchs, C.J.; Betts, J.A.; van Loon, L.J. Glucose plus fructose ingestion for post—Exercise recovery—Greater than the sum of its parts? Nutrients 2017, 9, E344. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Training the gut for athletes. Sports Med. 2017, 47, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C.; Ahn, D.; Drincic, A. Continuous glucose monitoring: A review of the technology and clinical use. Diabetes Res. Clin. Pract. 2017, 133, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Aberer, F.; Hajnsek, M.; Rumpler, M.; Zenz, S.; Baumann, P.M.; Elsayed, H.; Puffing, A.; Treiber, G.; Pieber, T.R.; Sourij, H.; et al. Evaluation of subcutaneous glucose monitoring systems under routine environmental conditions in patients with type 1 diabetes. Diabetes Obes. Metab. 2017, 19, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Herrington, S.J.; Gee, D.L.; Dow, S.D.; Monosky, K.A.; And, E.D.; Pritchett, K.L. Comparison of glucose monitoring methods during steady-state exercise in women. Nutrients 2012, 4, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Moser, O.; Mader, J.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.; Koehler, G.; Messerschmidt, J.; Hofmann, P. Accuracy of continuous glucose monitoring (CGM) during continuous and high-Intensity interval exercise in patients with type 1 diabetes mellitus. Nutrients 2016, 8, 489. [Google Scholar] [CrossRef] [PubMed]
- Bally, L.; Zueger, T.; Pasi, N.; Carlos, C.; Paganini, D.; Stettler, C. Accuracy of continuous glucose monitoring during differing exercise conditions. Diabetes Res. Clin. Pract. 2016, 112, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Sigal, R.J.; Kenny, G.P.; Riddell, M.C.; Lovblom, L.E.; Perkins, B. A Point accuracy of interstitial continuous glucose monitoring during exercise in type 1 diabetes. Diabetes Technol. Ther. 2013, 15, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Iscoe, K.E.; Davey, R.J.; Fournier, P.A. Increasing the low-glucose alarm of a continuous glucose monitoring system prevents exercise-induced hypoglycemia without triggering any false alarms. Diabetes Care 2011, 34, 109e. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.M.; Bode, B.W.; Einhorn, D.; Kayne, D.M.; Reed, J.H.; White, N.H.; Mastrototaro, J.J. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol. Ther. 2000, 2, 49–56. [Google Scholar] [CrossRef] [PubMed]
- FDA Advisory Panel. FDA advisory panel votes to recommend non-adjunctive use of Dexcom G5 mobile CGM. Diabetes Technol. Ther. 2016, 18, 512–516. [Google Scholar]
- Matuleviciene, V.; Joseph, J.I.; Andelin, M.; Hirsch, I.B.; Attvall, S.; Pivodic, A.; Dahlqvist, S.; Klonoff, D.; Haraldsson, B.; Lind, M. A clinical trial of the accuracy and treatment experience of the Dexcom G4 sensor (Dexcom G4 system) and Enlite sensor (Guardian REAL-time system) tested simultaneously in ambulatory patients with type 1 diabetes. Diabetes Technol. Ther. 2014, 16, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Kropff, J.; Bruttomesso, D.; Doll, W.; Farret, A.; Galasso, S.; Luijf, Y.M.; Mader, J.K.; Place, J.; Boscari, F.; Pieber, T.R.; et al. Accuracy of two continuous glucose monitoring systems: A head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes. Metab. 2014, 17, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Luijf, Y.M.; Mader, J.K.; Doll, W.; Pieber, T.; Farret, A.; Place, J.; Renard, E.; Bruttomesso, D.; Filippi, A.; Avogaro, A.; et al. Accuracy and reliability of continuous glucose monitoring systems: A head-to-head comparison. Diabetes Technol. Ther. 2013, 15, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, D. Continuous glucose monitoring: A review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 2017, 19 (Suppl. 3), 25S–37S. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.P.; Garg, S.K.; Brazg, R.; Bode, B.W.; Bailey, T.S.; Slover, R.H.; Sullivan, A.; Huang, S.; Shin, J.; Lee, S.W.; et al. Accuracy of a fourth-generation subcutaneous continuous glucose sensor. Diabetes Technol. Ther. 2017, 19, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Lawson, M.L.; Bradley, B.; McAssey, K.; Clarson, C.; Kirsch, S.E.; Mahmud, F.H.; Curtis, J.R.; Richardson, C.; Courtney, J.; Cooper, T.; et al. The JDRF CCTN CGM TIME Trial: Timing of initiation of continuous glucose monitoring in established pediatric type 1 diabetes: Study protocol, recruitment and baseline characteristics. BMC Pediatr. 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Spegazzini, N.; Barman, I.; Dingari, N.C.; Pandey, R.; Soares, J.S.; Ozaki, Y.; Dasari, R.R. Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information. Sci. Rep. 2014, 4, 7013. [Google Scholar] [CrossRef] [PubMed]
- Taleb, N.; Emami, A.; Suppere, C.; Messier, V.; Legault, L.; Chiasson, J.-L.; Rabasa-Lhoret, R.; Haidar, A. Comparison of two continuous glucose monitoring systems, Dexcom G4 Platinum and Medtronic Paradigm Veo Enlite system, at rest and during exercise. Diabetes Technol. Ther. 2016, 18, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, A.; Sparacino, G.; Guerra, S.; Luijf, Y.M.; DeVries, J.H.; Mader, J.K.; Ellmerer, M.; Benesch, C.; Heinemann, L.; Bruttomesso, D.; et al. Real-time improvement of continuous glucose monitoring accuracy: The smart sensor concept. Diabetes Care 2013, 36, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, A. Continuous glucose monitoring sensors: Past, present and future algorithmic challenges. Sensors 2016, 16, 2093. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, A.; Sparacino, G.; Cobelli, C. An online self-tunable method to denoise CGM sensor data. IEEE Trans. Biomed. Eng. 2010, 57, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.; Facchinetti, A.; Sparacino, G.; De Nicolao, G.; Cobelli, C. Enhancing the accuracy of subcutaneous glucose sensors: A real-time deconvolution-based approach. IEEE Trans. Biomed. Eng. 2012, 59, 1658–1669. [Google Scholar] [CrossRef] [PubMed]
- Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose Concentration can be Predicted Ahead in Time From Continuous Glucose Monitoring Sensor Time-Series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Gingras, V.; Rabasa-Lhoret, R.; Messier, V.; Ladouceur, M.; Legault, L.; Haidar, A. Efficacy of dual-hormone artificial pancreas to alleviate the carbohydrate-counting burden of type 1 diabetes: A randomized crossover trial. Diabetes Metab. 2016, 42, 47–54. [Google Scholar] [CrossRef] [PubMed]
- El-Khatib, F.H.; Balliro, C.; Hillard, M.A.; Magyar, K.L.; Ekhlaspour, L.; Sinha, M.; Mondesir, D.; Esmaeili, A.; Hartigan, C.; Thompson, M.J.; et al. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: A multicentre randomised crossover trial. Lancet 2017, 389, 369–380. [Google Scholar] [CrossRef]
- Taleb, N.; Emami, A.; Suppere, C.; Messier, V.; Legault, L.; Ladouceur, M.; Chiasson, J.-L.; Haidar, A.; Rabasa-Lhoret, R. Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: Randomised controlled crossover trial. Diabetologia 2016, 59, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Haymond, M.W.; DuBose, S.N.; Rickels, M.R.; Wolpert, H.; Shah, V.N.; Sherr, J.L.; Weinstock, R.S.; Agarwal, S.; Verdejo, A.S.; Cummins, M.J.; et al. Efficacy and safety of mini-dose glucagon for treatment of non-severe hypoglycemia in adults with type 1 diabetes. J. Clin. Endocrinol. Metab. 2017, 102, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.T.Y.; Riddell, M.C.; Burdett, E.; Coy, D.H.; Efendic, S.; Vranic, M. Amelioration of hypoglycemia via somatostatin receptor type 2 antagonism in recurrently hypoglycemic diabetic rats. Diabetes 2013, 62, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Taleb, N.; Rabasa-Lhoret, R. Can somatostatin antagonism prevent hypoglycaemia during exercise in type 1 diabetes? Diabetologia 2016, 59, 1632–1635. [Google Scholar] [CrossRef] [PubMed]
- Kropff, J.; Choudhary, P.; Neupane, S.; Barnard, K.; Bain, S.C.; Kapitza, C.; Forst, T.; Link, M.; Dehennis, A.; De Vries, J.H. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: A 180-day, prospective, multicenter, pivotal trial. Diabetes Care 2017, 40, 63–68. [Google Scholar] [CrossRef] [PubMed]
Rest | Heavy Exercise | Fractional Δ (Exercise/Rest) | |
---|---|---|---|
Skeletal muscle glucose consumption (Js), µmol/min | 1.4 | 60 | ×43 |
Arterial glucose concentration (Ca), mM | 5.0 | 5.0 | - |
Venous concentration (Cv), mM | 4.4 | 4.0 | ×0.9 |
Extraction E, % | 11.2 | 20 | ×1.8 |
Blood flow, mL/min | 2.5 | 60 | ×24 |
Perfused capillary density, per mm2 | 250 | 1000 | ×4 |
Diffusion capacity (PS), cm3/min | 5 | 20 | ×4 |
Mean concentration difference across capillary wall (ΔC = Js/PS), mM | 0.3 | 3.0 | ×10 |
Mean pericapillary concentration (Ci), mM | 4.7 | 2.0 | ×0.4 |
Krogh Cylinder radius, µm | 36 | 18 | ×0.5 |
Advantage | Disadvantage | Exercise Performance | |
---|---|---|---|
Dexcom G5TM | Hypo- and hyperglycemia alerts; rise and fall (rate of change) alerts; compatible with mobile devices; online live monitoring with different mobile devices (e.g., for parents), CE 1 mark (European Union). Approved for non-adjuvant use; compatible with Apple iPhone 4S and subsequent iOS models | Requires calibration to blood glucose; no integrated bolus wizard | N/A for Dexcom G5TM |
Dexcom G4TM | Hypo- and hyperglycemia alerts; rise and fall (rate of change) alerts; available integrated with the Animas Vibe pump | Requires calibration to blood glucose; no integrated bolus wizard | Continuous exercise: MARD 2 13.6–18.6%; interval exercise: MARD 13.3–17.7% [61,64,76] (interstitial glucose compared to venous plasma glucose) |
Medtronic 670 G with SmartGuard® | Hybrid closed-loop system when combined with insulin pump (automatic insulin delivery when glucose is high); predictive low glucose-suspend when combined with insulin pump; predictive low glucose alert; hypo- and hyperglycemia alerts; rise and fall (rate of change) alerts; Bluetooth connected to glucometer (CONTOUR, NEXT LINK 2.4); bolus wizard | Requires calibration to blood glucose | N/A 3 for this specific system |
Medtronic 640 G with SmartGuard® | Predictive low glucose-suspend when combined with insulin pump; predictive low glucose alert; hypo- and hyperglycemia alerts; rise and fall (rate of change) alerts; Bluetooth connected to glucometer (CONTOUR, NEXT LINK 2.4); bolus wizard | Requires calibration to blood glucose | Continuous exercise: MARD 19.4% [61] (interstitial glucose compared to venous plasma glucose) |
Medtronic Paradigm Minimed® Veo (530 G) | Low-glucose-suspend when combined with insulin pump; hypo- and hyperglycemia alerts; rise and fall (rate of change) alerts; Bluetooth connected to glucometer (CONTOUR, NEXT LINK 2.4); bolus wizard; | Requires calibration to blood glucose | Continuous exercise: MARD 12.8–23.7%; interval exercise: MARD 15.5–26.5% [63] (interstitial glucose compared to capillary blood glucose) |
FreeStyle® Libre Flash glucose monitoring | Factory-calibrated; long sensor lifetime (14 days); integrated glucometer; integrated blood ketone measurement; cheap sensor costs; integrated bolus wizard | No automatic hypo- or hyperglycemia alerts; not combinable with pump | Continuous exercise: MARD 8.7% [61] (interstitial glucose compared to venous plasma glucose) |
FreeStyle® Navigator II CGM system | 30 m transmission range; new result every minute; hypo- and hyperglycemia alerts; early warning alarms; integrated glucometer | Fixed time points for calibration: 1, 2, 10, 24, and 72 h after sensor insertion | N/A for the second generation |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, O.; Yardley, J.E.; Bracken, R.M. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between. Nutrients 2018, 10, 93. https://doi.org/10.3390/nu10010093
Moser O, Yardley JE, Bracken RM. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between. Nutrients. 2018; 10(1):93. https://doi.org/10.3390/nu10010093
Chicago/Turabian StyleMoser, Othmar, Jane E. Yardley, and Richard M. Bracken. 2018. "Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between" Nutrients 10, no. 1: 93. https://doi.org/10.3390/nu10010093
APA StyleMoser, O., Yardley, J. E., & Bracken, R. M. (2018). Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between. Nutrients, 10(1), 93. https://doi.org/10.3390/nu10010093