Physical Exercise Improves Glycemic and Inflammatory Profile and Attenuates Progression of Periodontitis in Diabetic Rats (HFD/STZ)
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals
2.2. Induction of Diabetes Mellitus
2.3. Physical Training
2.4. Periodontal Disease Induction
2.5. Euthanasia and Collection of Biological Material
2.6. TNF-α e IL-10 Measurement
2.7. Evaluation of Alveolar Bone Loss (ABL)
2.8. Statistical Analyzes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seino:, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; Kasuga, M.; et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef]
- Fazeli Farsani, S.; van der Aa, M.P.; van der Vorst, M.M.J.; Knibbe, C.A.J.; Boer, A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: A systematic review and evaluation of methodological approaches. Diabetologia 2013, 56, 1471–1488. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000 2014, 64, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Al-Maskari, A.Y.; Al-Maskari, M.Y.; Al-Sudairy, S. Oral Manifestations and Complications of Diabetes Mellitus: A review. Sultan Qaboos Univ. Med. J. 2011, 11, 179–186. [Google Scholar] [PubMed]
- Koromantzos, P.A.; Makrilakis, K.; Dereka, X.; Katsilambros, N.; Vrotsos, I.A.; Madianos, P.N. A randomized, controlled trial on the effect of non-surgical periodontal therapy in patients with type 2 diabetes. Part I: Effect on periodontal status and glycaemic control. J. Clin. Periodontol. 2011, 38, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, S.; Nitta, H.; Nagasawa, T.; Izumi, Y.; Kanazawa, M.; Matsuo, A.; Chiba, H.; Fukui, M.; Nakamura, N.; Oseko, F.; et al. Effect of glycemic control on periodontitis in type 2 diabetic patients with periodontal disease. J. Diabetes Investig. 2013, 4, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajita, M.; Karan, P.; Vivek, G.; Meenawat, A.S.; Anuj, M. Periodontal disease and type 1 diabetes mellitus: Associations with glycemic control and complications: An Indian perspective. Diabetes Metab. Syndr. 2013, 7, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.F.; Silva, V.O.; Orlando, D.R.; Pereira, L.J. Mechanisms involved in glycemic control promoted by exercise in diabetics. Curr. Diabetes Rev. 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Bawadi, H.A.; Khader, Y.S.; Haroun, T.F.; Al-Omari, M.; Tayyem, R.F. The association between periodontal disease, physical activity and healthy diet among adults in Jordan. J. Period. Res. 2011, 46, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, A.E.; Slade, G.D.; Fitzsimmons, T.R.; Bartold, P.M. Physical activity, inflammatory biomarkers in gingival crevicular fluid and periodontitis. J. Clin. Periodontol. 2009, 36, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.-W.; van Loon, L.J.C. Exercise strategies to optimize glycemic control in type 2 diabetes: A continuing glucose monitoring perspective. Diabetes Spectr. 2015, 28, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Duan, G.; Lu, Y.; Pang, S.; Huang, X.; Jiang, Q.; Dang, N. The effect of simvastatin on glucose homeostasis in streptozotocin induced type 2 diabetic rats. J. Diabetes Res. 2013, 2013, 274986. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C.; Huang, C.-N.; Yeh, D.-M.; Wang, S.-J.; Peng, C.-H.; Wang, C.-J. Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum. Nutr. 2013, 68, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Skovsø, S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J. Diabetes Investig. 2014, 5, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambo, L.M.; Ribeiro, L.R.; Oliveira, M.S.; Furian, A.F.; Lima, F.D.; Souza, M.A.; Silva, L.F.A.; Retamoso, L.T.; Corte, C.L.D.; Puntel, G.O.; et al. Additive anticonvulsant effects of creatine supplementation and physical exercise against pentylenetetrazol-induced seizures. Neurochem. Int. 2009, 55, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Gobatto, C.A.; de Mello, M.A.; Sibuya, C.Y.; de Azevedo, J.R.; dos Santos, L.A.; Kokubun, E. Maximal lactate steady state in rats submitted to swimming exercise. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 130, 21–27. [Google Scholar] [CrossRef]
- Lima, F.D.; Oliveira, M.S.; Furian, A.F.; Souza, M.A.; Rambo, L.M.; Ribeiro, L.R.; Silva, L.F.A.; Retamoso, L.T.; Hoffmann, M.S.; Magni, D.V.; et al. Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+,K+-ATPase activity inhibition after traumatic brain injury. Brain Res. 2009, 1279, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.F.; Lobato, R.V.; Araújo, T.V.; Orlando, D.R.; Gomes, N.F.; Alvarenga, R.R.; Rogatto, G.P.; Zangeronimo, M.G.; Pereira, L.J. Metabolic effects of glycerol supplementation and aerobic physical training on Wistar rats. Can. J. Physiol. Pharmacol. 2014, 92, 744–751. [Google Scholar] [CrossRef] [PubMed]
- American Physiological Society (APS). Exercise protocols using rats and mice. In Resource Book for the Design of Animal Exercise Protocols; National Academy Press: Washington, DC, USA, 2006; p. 152. [Google Scholar]
- Messora, M.R.; Oliveira, L.F.F.; Foureaux, R.C.; Taba, M.; Zangerônimo, M.G.; Furlaneto, F.A.C.; Pereira, L.J. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis. J. Periodontol. 2013, 84, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Prestes, A.P.; Machado, W.M.; Oliveira, J.G.; Olchanheski, L.R.; Santos, F.A.; Alves, G.F.; Prudente, A.S.; Otuki, M.F.; Paludo, K.S.; Sordi, R.; et al. Experimental periodontitis in rats potentiates inflammation at a distant site: Role of B1 kinin receptor. Life Sci. 2018, 194, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.C.W.; DalBó, S.; Striechen, T.M.; Farias, J.M.; Olchanheski, L.R.; Mendes, R.T.; Vellosa, J.C.R.; Fávero, G.M.; Sordi, R.; Assreuy, J.; et al. Experimental periodontitis promotes transient vascular inflammation and endothelial dysfunction. Arch. Oral Biol. 2013, 58, 1187–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amr, A.R.; Abeer, E.E.-K. Hypolipideimic and Hypocholestermic Effect of Pine Nuts in Rats Fed High Fat, Cholesterol-Diet. World Appl. Sci. J. 2011, 15, 1667–1677. [Google Scholar]
- Fukuyama, N.; Homma, K.; Wakana, N.; Kudo, K.; Suyama, A.; Ohazama, H.; Tsuji, C.; Ishiwata, K.; Eguchi, Y.; Nakazawa, H.; et al. Validation of the Friedewald Equation for Evaluation of Plasma LDL-Cholesterol. J. Clin. Biochem. Nutr. 2008, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.O.; Lobato, R.V.; Andrade, E.F.; de Macedo, C.G.; Napimoga, J.T.C.; Napimoga, M.H.; Messora, M.R.; Murata, R.M.; Pereira, L.J. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease. PLoS ONE 2015, 10, e0134742. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotecnol. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Jia, G.; Aroor, A.R.; DeMarco, V.G.; Martinez-Lemus, L.A.; Meininger, G.A.; Sowers, J.R. Vascular stiffness in insulin resistance and obesity. Front. Physiol. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef]
- Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313–320. [Google Scholar] [CrossRef] [PubMed]
- King, A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanova, L.; Hughes, F.J.; Preshaw, P.M. Diabetes and periodontal disease: A two-way relationship. Br. Dent. J. 2014, 217, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.J.; Preshaw, P.M.; Lalla, E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J. Periodontol. 2013, 84, S113–S134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schein, A.; Correa, A.; Casali, K.R.; Schaan, B.D. Are glucose levels, glucose variability and autonomic control influenced by inspiratory muscle exercise in patients with type 2 diabetes? Study protocol for a randomized controlled trial. Trials 2016, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- Tunkamnerdthai, O.; Auvichayapat, P.; Donsom, M.; Leelayuwat, N. Improvement of pulmonary function with arm swing exercise in patients with type 2 diabetes. J. Phys. Ther. Sci. 2015, 27, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blonde, L. Current antihyperglycemic treatment guidelines and algorithms for patients with type 2 diabetes mellitus. Am. J. Med. 2010, 123, S12–S18. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, P.R.; Kahn, B.B. Glucose transporters and insulin action—Implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 1999, 341, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Karpe, F.; Lafontan, M.; Frayn, K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol. Rev. 2012, 92, 157–191. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Ma, X.; Maahs, D.M.; Trilk, J.L. Physical activity, sedentary behaviors, physical fitness, and their relation to health outcomes in youth with type 1 and type 2 diabetes: A review of the epidemiologic literature. J. Sport Heal. Sci. 2013, 2, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Delgado, G.; Martinez-Tellez, B.; Olza, J.; Aguilera, C.M.; Gil, Á.; Ruiz, J.R. Role of Exercise in the Activation of Brown Adipose Tissue. Ann. Nutr. Metab. 2015, 67, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Grover, H.S.; Luthra, S. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease. J. Indian Soc. Periodontol. 2013, 17, 292–301. [Google Scholar] [PubMed]
- Silva, V.O.; Lobato, R.; Andrade, E.; Orlando, D.; Borges, B.; Zangeronimo, M.; de Sousa, R.; Pereira, L. Effects of β-Glucans Ingestion on Alveolar Bone Loss, Intestinal Morphology, Systemic Inflammatory Profile, and Pancreatic β-Cell Function in Rats with Periodontitis and Diabetes. Nutrients 2017, 9, 1016. [Google Scholar] [CrossRef] [PubMed]
- Toker, H.; Balci Yuce, H.; Lektemur Alpan, A.; Gevrek, F.; Elmastas, M. Morphometric and histopathological evaluation of the effect of grape seed proanthocyanidin on alveolar bone loss in experimental diabetes and periodontitis. J. Period. Res. 2018, 53, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Grauballe, M.B.; Østergaard, J.A.; Schou, S.; Flyvbjerg, A.; Holmstrup, P. Effects of TNF-α blocking on experimental periodontitis and type 2 diabetes in obese diabetic Zucker rats. J. Clin. Periodontol. 2015, 42, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Ekuni, D.; Tomofuji, T.; Irie, K.; Kasuyama, K.; Umakoshi, M.; Azuma, T.; Tamaki, N.; Sanbe, T.; Endo, Y.; Yamamoto, T.; et al. Effects of periodontitis on aortic insulin resistance in an obese rat model. Lab. Investig. 2010, 90, 348–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, Y.; Kato, T.; Takahashi, N.; Nakajima, M.; Arimatsu, K.; Minagawa, T.; Sato, K.; Ohno, H.; Yamazaki, K. Ligature-induced periodontitis in mice induces elevated levels of circulating interleukin-6 but shows only weak effects on adipose and liver tissues. J. Period. Res. 2016, 51, 639–646. [Google Scholar] [CrossRef] [PubMed]
- De Molon, R.S.; de Avila, E.D.; Boas Nogueira, A.V.; Chaves de Souza, J.A.; Avila-Campos, M.J.; de Andrade, C.R.; Cirelli, J.A. Evaluation of the Host Response in Various Models of Induced Periodontal Disease in Mice. J. Periodontol. 2014, 85, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.F.; Orlando, D.R.; Gomes, J.A.S.; Foureaux, R.C.; Costa, R.C.; Varaschin, M.S.; Rogatto, G.P.; de Moura, R.F.; Pereira, L.J. Exercise attenuates alveolar bone loss and anxiety-like behaviour in rats with periodontitis. J. Clin. Periodontol. 2017, 44, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, F.; Iwamoto, Y.; Mineshiba, J.; Shimizu, A.; Soga, Y.; Murayama, Y. Periodontal disease and diabetes mellitus: The role of tumor necrosis factor-alpha in a 2-way relationship. J. Periodontol. 2003, 74, 97–102. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mealey, B.L. Periodontal disease and diabetes. A two-way street. J. Am. Dent. Assoc. 2006, 137, S26–S31. [Google Scholar] [CrossRef]
- Bascones-Martinez, A.; Matesanz-Perez, P.; Escribano-Bermejo, M.; González-Moles, M.-Á.; Bascones-Ilundain, J.; Meurman, J.-H. Periodontal disease and diabetes-Review of the Literature. Med. Oral Patol. Oral Cirugía Bucal 2011, 16, e722–e729. [Google Scholar] [CrossRef]
- Pedersen, B.K. Exercise-induced myokines and their role in chronic diseases. Brain. Behav. Immun. 2011, 25, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, M.A.; Leggate, M.; Viana, J.L.; King, J.A. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 2013, 15, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017, 47, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Archana, A.; Sasireka, S.; Prabhu, M.; Bobby, B.; Srikanth, V. Correlation between Circulatory and Salivary IL 10 Levels in Periodontal Health and Disease—A Report. Int. J. Dent. Sci. Res. 2014, 2, 7–10. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Kirakodu, S.; Novak, M.J.; Stromberg, A.J.; Shen, S.; Orraca, L.; Gonzalez-Martinez, J.; Burgos, A.; Gonzalez, O.A. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J. Clin. Periodontol. 2014, 41, 853–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llambés, F.; Arias-Herrera, S.; Caffesse, R. Relationship between diabetes and periodontal infection. World J. Diabetes 2015, 6, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Vinetti, G.; Mozzini, C.; Desenzani, P.; Boni, E.; Bulla, L.; Lorenzetti, I.; Romano, C.; Pasini, A.; Cominacini, L.; Assanelli, D. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: A randomized controlled trial. Sci. Rep. 2015, 5, 9238. [Google Scholar] [CrossRef] [PubMed]
- Ambarish, V.; Chandrashekara, S.; Suresh, K.P. Moderate regular exercises reduce inflammatory response for physical stress. Indian J. Physiol. Pharmacol. 2012, 56, 7–14. [Google Scholar] [PubMed]
Experimental Groups | n |
---|---|
Group 1—non-trained animals without DM or PD | 5 |
Group 2—non-trained animals with PD | 5 |
Group 3—trained animals without DM or PD | 5 |
Group 4—trained animals with PD | 5 |
Group 5—type 2 diabetic (HFD/STZ) animals | 5 |
Group 6—type 2 diabetic (HFD/STZ) animals with PD | 5 |
Group 7—type 2 diabetes (HFD/STZ) trained animals | 5 |
Group 8—trained animals with type 2 diabetes (HFD/STZ) and PD | 5 |
Diabetes | Periodontal Disease | Physical Training | |
---|---|---|---|
- | + | ||
HbA1c (mg/dL) | |||
- * | - | 2.66 (0.20) a | 2.70 (0.16) |
+ | 3.18 (0.29) b | 2.74 (0.23) | |
+ | - | 9.34 (0.35) x | 8.86 (0.15) y |
+ | 9.70 (0.28) x | 9.06 (0.26) y | |
Glucose (mg/dL) | |||
- * | - | 98.95 (2.08) a | 115.02 (5.03) |
+ | 121.91 (5.68) bx | 102.91 (7.70) y | |
+ | - | 225.30 (11.21) x | 202.24 (7.08) y |
+ | 240.38 (13.97) x | 209.83 (15.03) y |
Diabetes | Periodontal Disease | Physical Training | |
---|---|---|---|
- | + | ||
Triacylglycerols (mg/dL) | |||
- | - | 100.35 (17.84) | 94.79 (16.58) |
+ | 110.16 (5.51) | 100.53 (9.83) | |
+ | - | 108.63 (10.97) x | 90.54 (7.33) y |
+ | 116.78 (11.59) x | 96.24 (5.10) y | |
Total Cholesterol (mg/dL) | |||
- | - | 87.94 (11.27) | 79.95 (12.08) |
+ | 95.15 (8.56) | 80.50 (8.61) | |
+ | - | 85.55 (14.04) | 81.42 (8.56) |
- | 88.33 (6.54) | 82.28 (10.82) | |
HDL-c (mg/dL) | |||
- | - | 34.52 (4.00) | 37.70 (2.43) |
+ | 39.06 (1.49) | 36.29 (3.39) | |
+ | - | 36.84 (4.89) | 31.73 (5.58) |
- | 33.09 (2.63) | 37.93 (4.52) | |
LDL-c (mg/dL) | |||
- | - | 33.30 (8.36) | 22.25 (5.57) |
+ | 36.45 (4.19) | 26.50 (5.83) | |
+ | - | 28.95 (11.39) | 28.73 (8.47) |
- | 32.38 (10.45) | 23.09 (10.23) | |
VDL-C (mg/dL) | |||
- | - | 20.11 (3.60) | 19.99 (4.08) |
+ | 21.43 (2.46) | 17.70 (3.53) | |
+ | - | 19.75 (2.65) | 20.95 (3.04) |
- | 22.64 (2.80) | 21.24 (5.00) |
Diabetes | Periodontal Disease | Physical Training | |
---|---|---|---|
- | + | ||
Alveolar bone loss (mm) | |||
- | - | 0.90 (0.04) *a | 0.94 (0.10) |
+ | 1.13 (0.09) bx | 1.02 (0.10) y | |
+ | - | 1.03 (0.04) *ax | 0.88 (0.05) ay |
- | 1.29 (0.06) bx | 1.06 (0.08) by |
Diabetes | Periodontal Disease | Physical Training | |
---|---|---|---|
- | + | ||
TNF-α (pg/mL) | |||
- | - | 5.93 (0.86) *a | 6.11 (1.41) |
+ | 8.66 (0.36) b | 6.86 (0.24) | |
+ | - | 8.42 (1.04) a | 7.20 (0.46) |
- | 10.77 (3.02) bx | 7.10 (0.54) y | |
IL-10 (pg/mL) | |||
- * | - | 14.27 (0.46) *a | 16.32 (0.42) |
+ | 10.18 (0.33) b | 13.69 (1.48) | |
+ | - | 9.61 (1.92) | 11.24 (1.21) |
- | 9.62 (2.26) | 12.86 (3.42) | |
TNF-α/IL10 ratio | |||
- * | - | 0.41 (0.06) *a | 0.37 (0.08) |
+ | 0.85 (0.03) b | 0.51 (0.06) | |
+ | - | 0.98 (0.32) | 0.64 (0.03) |
- | 1.48 (1.00) x | 0.60 (0.12) y | |
IL10/TNF-α ratio | |||
- * | - | 2.41 (0.42) *a | 2.67 (0.70) *a |
+ | 1.17 (0.05) b | 1.99 (0.26) b | |
+ | - | 1.14 (0.30) | 1.56 (0.09) |
- | 0.89 (0.35) x | 1.81 (0.69) y |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, E.F.; Silva, V.d.O.; Moura, N.O.d.; Foureaux, R.d.C.; Orlando, D.R.; Moura, R.F.d.; Pereira, L.J. Physical Exercise Improves Glycemic and Inflammatory Profile and Attenuates Progression of Periodontitis in Diabetic Rats (HFD/STZ). Nutrients 2018, 10, 1702. https://doi.org/10.3390/nu10111702
Andrade EF, Silva VdO, Moura NOd, Foureaux RdC, Orlando DR, Moura RFd, Pereira LJ. Physical Exercise Improves Glycemic and Inflammatory Profile and Attenuates Progression of Periodontitis in Diabetic Rats (HFD/STZ). Nutrients. 2018; 10(11):1702. https://doi.org/10.3390/nu10111702
Chicago/Turabian StyleAndrade, Eric Francelino, Viviam de Oliveira Silva, Natália Oliveira de Moura, Renata de Carvalho Foureaux, Débora Ribeiro Orlando, Rodrigo Ferreira de Moura, and Luciano José Pereira. 2018. "Physical Exercise Improves Glycemic and Inflammatory Profile and Attenuates Progression of Periodontitis in Diabetic Rats (HFD/STZ)" Nutrients 10, no. 11: 1702. https://doi.org/10.3390/nu10111702
APA StyleAndrade, E. F., Silva, V. d. O., Moura, N. O. d., Foureaux, R. d. C., Orlando, D. R., Moura, R. F. d., & Pereira, L. J. (2018). Physical Exercise Improves Glycemic and Inflammatory Profile and Attenuates Progression of Periodontitis in Diabetic Rats (HFD/STZ). Nutrients, 10(11), 1702. https://doi.org/10.3390/nu10111702