Targeted Energy Intake Is the Important Determinant of Clinical Outcomes in Medical Critically Ill Patients with High Nutrition Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Size Calculation
2.2. Patients
2.3. Data Collection and Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APACHE II | acute physiology and chronic health evaluation II |
BMI | body mass index |
ICU | intensive care unit |
IL-6 | interleukin-6 |
NUTRIC | Nutrition Risk in the Critically Ill |
TCVGH | Taichung Veterans General Hospital |
References
- Tavladaki, T.; Spanaki, A.M.; Dimitriou, H.; Kondili, E.; Choulaki, C.; Georgopoulos, D.; Briassoulis, G. Similar metabolic, innate immunity and adipokine profiles in adult and pediatric sepsis versus systemic inflammatory responses syndrome-A pilot study. Pediatr. Crit. Med. 2017, 18, e494–e505. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, A.M.; Tavladaki, T.; Dimitriou, H.; Kozlov, A.V.; Catharina Duvigneau, J.; Meleti, E.; Weidinger, A.; Papakonstantinou, E.; Briassoulis, G. Longitudinal profiles of metabolism and bioenergetics associated with innate immune hormonal inflammatory responses and amino-acid kinetics in severe sepsis and systemic inflammatory response syndrome in children. J. Parenter. Enter. Nutr. 2018, 42, 1061–1074. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.W.; Mogan, S.; Hays, M.A.; Bernard, G.R.; Jensen, G.L.; Wheeler, A.P. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit. Care Med. 2011, 39, 967–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, T.W. The National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Initial trophic vs full enteral feeding in patients with acute lung injury: The EDEN randomized trial. JAMA 2012, 307, 795–803. [Google Scholar] [PubMed]
- Arabi, Y.M.; Aldawood, A.S.; Haddad, S.H.; Al-Dorzi, H.M.; Tamim, H.M.; Jones, G.; Mehta, S.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N. Engl. J. Med. 2015, 372, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Martindale, R.G.; Vanek, V.M.; McCarthy, M.; Roberts, P.; Taylor, B.; Ochoa, J.B.; Napolitano, L.; Cresci, G.; A.S.P.E.N. Board of Directors; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Jiang, X.; Day, A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care 2011, 15, R268. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Hasan, R.M.; Agarwala, R.; Martin, C.; Day, A.G.; Heyland, D.K. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin. Nutr. 2016, 35, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Dhaliwal, R.; Wang, M.; Day, A.G. The prevalence of iatrogenic underfeeding in the nutritionally ‘at-risk’ critically ill patient: Results of an international, multicenter, prospective study. Clin. Nutr. 2015, 34, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Henry, J.; Ong, V.; Leong, C.S.; Teh, A.L.; van Dam, R.M.; Kowitlawakul, Y. Association of modified NUTRIC score with 28-day mortality in critically ill patients. Clin. Nutr. 2017, 36, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.C.; Koekkoek, W.K.; Opdam, M.H.; van Blokland, D.; van Zanten, A.R. Nutritional assessment of critically ill patients: Validation of the modified NUTRIC score. Eur. J. Clin. Nutr. 2018, 72, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Chittams, J.; Sammarco, T.; Nicolo, M.; Heyland, D.K. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: A multicenter, multinational observational study. Crit. Care Med. 2017, 45, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Aldawood, A.S.; Al-Dorzi, H.M.; Tamim, H.M.; Haddad, S.H.; Jones, G.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; Sadat, M.; et al. Permissive underfeeding or standard enteral feeding in high- and low-nutritional-risk critically ill adults. Post Hoc analysis of the PermiT trial. Am. J. Respir. Crit. Care Med. 2017, 195, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Rubinson, L.; Diette, G.B.; Song, X.; Brower, R.G.; Krishnan, J.A. Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit. Care Med. 2004, 32, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Villet, S.; Chiolero, R.L.; Bollmann, M.D.; Revelly, J.P.; Cayeux, M.-C.; Delarue, J.; Berger, M.M. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin. Nutr. 2005, 24, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Petros, S.; Engelmann, L. Enteral nutrition delivery and energy expenditure in medical intensive care patients. Clin. Nutr. 2006, 25, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Faisy, C.; Lerolle, N.; Dachraoui, F.; Savard, J.F.; Abboud, I.; Tadie, J.M.; Fagon, J.Y. Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Brit. J. Nutr. 2009, 101, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Huang, C.T.; Chen, C.H.; Chen, M.F.; Ching, S.L.; Huang, Y.C. Optimal energy delivery, rather than the implementation of a feeding protocol, may benefit clinical outcomes in critically ill patients. Nutrients 2017, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Briassouli, E.; Tavladaki, T.; Ilia, S.; Fitrolaki, D.M.; Spanaki, A.M. Unpredictable combination of metabolic and feeding patterns in malnourished critically ill children: The malnutrition-energy assessment question. Intensive Care Med. 2014, 40, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Policarpo, S.; Fortuna, P.; Alves, M.; Virella, D.; Heyland, D.K. Nutritional risk assessment and cultural validation of the modified NUTRIC score in critically ill patients−A multicenter prospective cohort study. J. Crit. Care 2017, 37, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Drover, J.W.; Cahill, N.E.; Kutsogiannis, J.; Pagliarello, G.; Wischmeyer, P.; Wang, M.; Day, A.G.; Heyland, D.K. Nutrition therapy for the critically ill surgical patient: We need to do better! JPEN. J. Parenter. Enter. Nutr. 2010, 34, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Pichard, C.; Heidegger, C.P.; Wernerman, J. Considering energy deficit in the intensive care unit. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Elke, G.; Kuhnt, E.; Ragaller, M.; Schädler, D.; Frerichs, I.; Brunkhorst, F.M.; Löffler, M.; Reinhart, K.; Weiler, N.; for the German Competence Network Sepsis (SepNet). Enteral nutrition is associated with improved outcome in patients with severe sepsis. A secondary analysis of the VISEP trial. Med. Klin. Intensivmed. Notfmed. 2013, 108, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, C.A.; Sheean, P.M.; Peterson, S.J.; Gomez Perez, S.; Freels, S.; Lateef, O.; Gurka, D.; Fantuzzi, G. Intensive nutrition in acute lung injury: A clinical trial (INTACT). J. Parenter. Enter. Nutr. 2015, 39, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Day, A.G.; Ouellette-Kuntz, H.; Heyland, D.K. The association between nutritional adequacy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: A multicenter cohort study. Crit. Care Med. 2015, 43, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef] [PubMed]
- Tavladaki, T.; Spanaki, A.M.; Dimitriou, H.; Briassoulis, G. Alterations in metabolic patterns in critically ill patients – is there need of action? Eur. J. Clin. Nutr. 2017, 71, 431–433. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 742) | Low Nutrition Risk (n = 183) | High Nutrition Risk (n = 559) |
---|---|---|---|
Age (year) | 67.81 ± 16.22 | 55.59 ± 14.25 * | 71.80 ± 14.77 |
Gender (women/men) | 248/494 | 60/123 | 188/371 |
Body mass index (kg/m2) | 23.62 ± 4.83 | 23.72 ± 5.38 | 23.60 ± 4.64 |
Clinical outcomes | |||
Length of ventilatory dependency (day) | 15.83 ± 14.88 | 13.17 ± 13.74 * | 16.70 ± 15.14 |
Length of ICU stay (day) | 13.30 ± 8.15 | 11.37 ± 7.31 * | 13.93 ± 8.31 |
Length of hospital stay (day) | 27.04 ± 19.35 | 25.80 ± 21.75 * | 27.44 ± 18.50 |
APACHE II score | 26.99 ± 6.79 | 19.45 ± 4.98 * | 29.45 ± 5.32 |
mNUTRIC score | 5.58 ± 1.80 | 3.07 ± 1.02 * | 6.40 ± 1.10 |
Mortality (n, %) | |||
Hospital mortality | 237, 31.94% | 35, 19.13% | 202, 36.14% |
14-day mortality | 88, 11.86% | 17, 9.28% | 71, 12.70% |
28-day mortality | 163, 21.97% | 26, 14.21% | 137, 24.51% |
Energy intakes | |||
Mean 7 day of energy intake (kcal/day) | 692.68 ± 313.58 | 726.28 ± 342.39 | 681.69 ± 303.08 |
Comorbidities (n, %) | |||
Diabetes mellitus | 289, 38.95% | 40, 21.86% | 249, 44.54% |
Congestive heart failure | 165, 22.24% | 10, 5.46% | 155, 27.73% |
Liver cirrhosis | 69, 9.30% | 14, 7.65% | 55, 9.84% |
COPD | 161, 21.70% | 26, 14.21% | 135, 24.15% |
Immunocompromised disorders | 126, 16.98% | 22, 12.02% | 104, 18.60% |
Acute respiratory distress syndrome | 89, 11.99% | 15, 8.20% | 74, 13.24% |
Sepsis | 373, 50.27% | 57, 31.15% | 316, 56.53% |
No Factors Adjusted for | Additional Factors Adjusted for Age, Gender, BMI | Additional Factors Adjusted for Age, Gender, BMI and APACHE II | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Mean energy intake (kcal/day) | |||||||||
All nutrition risk | 0.999 | 0.998–0.999 | <0.001 | 0.999 | 0.998–0.999 | <0.001 | 0.999 | 0.999–1.000 | 0.003 |
High nutrition risk | 0.999 | 0.998–0.999 | <0.001 | 0.999 | 0.998–0.999 | <0.001 | 0.999 | 0.998–1.000 | 0.002 |
Low nutrition risk | 1.000 | 0.999–1.001 | 0.986 | 1.000 | 0.999–1.001 | 0.716 | 1.000 | 0.999–1.001 | 0.667 |
Mean energy intake (kcal/day) | |||||||||
All nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 1.982 | 1.414–2.780 | <0.001 | 2.005 | 1.429–2.815 | <0.001 | 1.569 | 1.100–2.240 | 0.013 |
High nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 2.230 | 1.511–3.289 | <0.001 | 2.134 | 1.441–3.159 | <0.001 | 1.711 | 1.136–2.577 | 0.010 |
Low nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 0.982 | 0.469–2.058 | 0.962 | 1.091 | 0.506–2.354 | 0.824 | 1.074 | 0.496–2.327 | 0.857 |
No Factors Adjusted for | Additional Factors Adjusted for Age, Gender, BMI | Additional Factors Adjusted for Age, Gender, BMI and APACHE II | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Mean energy intake (kcal/day) | |||||||||
All nutrition risk | 0.997 | 0.996–0.997 | <0.001 | 0.997 | 0.996–0.997 | <0.001 | 0.997 | 0.996–0.998 | <0.001 |
High nutrition risk | 0.996 | 0.995–0.997 | <0.001 | 0.996 | 0.995–0.997 | <0.001 | 0.996 | 0.995–0.997 | <0.001 |
Low nutrition risk | 0.998 | 0.997–1.000 | 0.028 | 0.998 | 0.996–1.000 | 0.013 | 0.998 | 0.996–0.999 | 0.011 |
Mean energy intake (kcal/day) | |||||||||
All nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 4.233 | 2.258–7.937 | <0.001 | 4.210 | <0.001 | 3.459 | 1.826–6.553 | <0.001 | |
High nutrition risk | 2.244–7.901 | ||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 5.534 | 2.483–12.333 | <0.001 | 5.346 | 2.390–11.958 | <0.001 | 4.341 | 1.918–9.823 | <0.001 |
Low nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 2.127 | 0.717–6.307 | 0.174 | 2.398 | 0.784–7.336 | 0.125 | 2.368 | 0.773–7.257 | 0.131 |
No Factors Adjusted for | Additional Factors Adjusted for Age, Gender, BMI | Additional Factors Adjusted for Age, Gender, BMI and APACHE II | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Mean energy intake (kcal/day) | |||||||||
All nutrition risk | 0.998 | 0.998–0.999 | <0.001 | 0.998 | 0.998–0.999 | <0.001 | 0.998 | 0.998–0.999 | <0.001 |
High nutrition risk | 0.998 | 0.997–0.999 | <0.001 | 0.998 | 0.997–0.999 | <0.001 | 0.998 | 0.998–0.999 | <0.001 |
Low nutrition risk | 0.999 | 0.998 –1.000 | 0.171 | 0.999 | 0.997–1.000 | 0.077 | 0.999 | 0.997–1.000 | 0.064 |
Mean energy intake (kcal/day) | |||||||||
All nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 2.263 | 1.518–3.373 | <0.001 | 2.268 | 1.520–3.383 | <0.001 | 1.803 | 1.192–2.728 | 0.005 |
High nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 2.450 | 1.548–3.878 | <0.001 | 2.297 | 1.445–3.652 | <0.001 | 1.850 | 1.146–2.988 | 0.012 |
Low nutrition risk | |||||||||
>800 kcal/day | 1 | 1 | 1 | ||||||
≤800 kcal/day | 1.390 | 0.594–3.253 | 0.447 | 1.572 | 0.647–3.821 | 0.318 | 1.549 | 0.635–3.775 | 0.336 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-Y.; Fu, P.-K.; Huang, C.-T.; Chen, C.-H.; Lee, B.-J.; Huang, Y.-C. Targeted Energy Intake Is the Important Determinant of Clinical Outcomes in Medical Critically Ill Patients with High Nutrition Risk. Nutrients 2018, 10, 1731. https://doi.org/10.3390/nu10111731
Wang C-Y, Fu P-K, Huang C-T, Chen C-H, Lee B-J, Huang Y-C. Targeted Energy Intake Is the Important Determinant of Clinical Outcomes in Medical Critically Ill Patients with High Nutrition Risk. Nutrients. 2018; 10(11):1731. https://doi.org/10.3390/nu10111731
Chicago/Turabian StyleWang, Chen-Yu, Pin-Kuei Fu, Chun-Te Huang, Chao-Hsiu Chen, Bor-Jen Lee, and Yi-Chia Huang. 2018. "Targeted Energy Intake Is the Important Determinant of Clinical Outcomes in Medical Critically Ill Patients with High Nutrition Risk" Nutrients 10, no. 11: 1731. https://doi.org/10.3390/nu10111731
APA StyleWang, C. -Y., Fu, P. -K., Huang, C. -T., Chen, C. -H., Lee, B. -J., & Huang, Y. -C. (2018). Targeted Energy Intake Is the Important Determinant of Clinical Outcomes in Medical Critically Ill Patients with High Nutrition Risk. Nutrients, 10(11), 1731. https://doi.org/10.3390/nu10111731