Dietary Flavonoid Intakes Are Associated with Race but Not Income in an Urban Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. HANDLS Study Sample
2.2. Food Intake
2.3. Flavonoid Intake
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Flavonoid Intakes and Dietary Sources
3.3. Flavonoid Intakes by Race and Income
3.4. Comparison of Flavonoid Intakes in HANDLS and WWEIA, NHANES
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Healthy People 2020. Available online: https://www.healthypeople.gov/ (accessed on 10 September 2018).
- Wirth, M.D.; Hébert, J.R.; Shivappa, N.; Hand, G.A.; Hurley, T.G.; Drenowatz, C.; McMahon, D.; Shook, R.P.; Blair, S.N. Anti-inflammatory dietary inflammatory index scores are associated with healthier scores on other dietary indices. Nutr. Res. 2016, 36, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, N.; Andreeva, V.A.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2012, 39, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [PubMed]
- Alkhalidy, H.; Wang, Y.; Liu, D. Dietary flavonoids in the prevention of T2D: An overview. Nutrients 2018, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Aspects Med. 2018, 61, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [PubMed]
- Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003, 133, 3248S–3254S. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Maier, C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharmacogn. Res. 2016, 8, 258–264. [Google Scholar] [CrossRef]
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Caruso, E.; Tsoukalas, D.; Margina, D.; Dardiotis, E.; Kouretas, D.; et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. Clin. Nutr. ESPEN 2017, 20, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Vance, T.M.; Chun, O.K. Greater flavonoid intake is associated with improved CVD risk factors in US adults. Br. J. Nutr. 2016, 115, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Zock, P.L.; Kromhout, D.; Hollman, P.C.H. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: A randomized double-blind, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2015, 101, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Tagami, M.; Yamori, Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 2015, 31, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Huang, T.; Rice, M.S.; Rimm, E.B.; Tworoger, S.S. Intake of dietary flavonoids and risk of epithelial ovarian cancer. Am. J. Clin. Nutr. 2014, 100, 1344–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.D.; Lee, J.; Choi, I.J.; Kim, C.G.; Lee, J.L.; Kwon, O.; Kim, J. Dietary flavonoids and gastric cancer risk in a korean population. Nutrients 2014, 6, 4961–4973. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, J.; Du, L.; Li, F. Effect and mechanism of total flavonoids extracted from cotinus coggygria against glioblastoma cancer in vitro and in vivo. BioMed Res. Int. 2015, 2015, 856349. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother. 2015, 76, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; González, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.; Amiano, P.; Boeing, H.; Bredsdorff, L.; et al. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in european populations. J. Nutr. 2014, 144, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Gharib, A.; Faezizadeh, Z.; Godarzee, M. Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med. 2013, 79, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Wang, Y.; Li, Y.; Gowd, V.; Niu, X.; Yang, H.; Chen, L.; Chen, W.; Sun, C. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J. Zhejiang Univ. Sci. B 2016, 17, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Bonfigli, A.R.; Genovese, S.; De Nigris, V.; Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 2016, 8, 310. [Google Scholar] [CrossRef] [PubMed]
- Gil-Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Blay, M.; Terra, X. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr. Res. Rev. 2016, 29, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, Y.; Xie, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur. J. Clin. Nutr. 2014, 68, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ling, W. The update of anthocyanins on obesity and type 2 diabetes: Experimental evidence and clinical perspectives. Rev. Endocr. Metab. Disord. 2015, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Rimm, E.B.; O’Reilly, E.J.; Logroscino, G.; Kay, C.; Chiuve, S.E.; Rexrode, K.M. Dietary flavonoids and risk of stroke in women. Stroke 2012, 43, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Bertoia, M.L.; Lenart, E.B.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Chavarro, J.E. Origin, methods, and evolution of the three nurses’ health studies. Am. J. Public Health 2016, 106, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Harvard, T.H. Chan School of Public Health. Health Professionals Follow-Up Study. Available online: https://sites.sph.harvard.edu/hpfs/about-the-study/ (accessed on 10 September 2018).
- Goetz, M.E.; Judd, S.E.; Safford, M.M.; Hartman, T.J.; McClellan, W.M.; Vaccarino, V. Dietary flavonoid intake and incident coronary heart disease: The REasons for geographic and racial differences in stroke (REGARDS) study. Am. J. Clin. Nutr. 2016, 104, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.E.; Judd, S.E.; Hartman, T.J.; McClellan, W.; Anderson, A.; Vaccarino, V. Flavanone intake is inversely associated with risk of incident ischemic stroke in the REasons for geographic and racial differences in stroke (REGARDS) study. J. Nutr. 2016, 146, 2233–2243. [Google Scholar] [CrossRef] [PubMed]
- NHLBI Stroke Belt Initiative. 1996. Available online: https://www.nhlbi.nih.gov/files/docs/resources/heart/sb_spec.pdf (accessed on 10 September 2018).
- Evans, M.K.; Lepkowski, J.M.; Powe, N.R.; LaVeist, T.; Fanelli Kuczmarski, M.; Zonderman, A.B. Healthy aging in neighborhoods of diversity across the life span (HANDLS): Overcoming barriers to implementing a longitudinal, epidemiologic, urban study of health, race, and socioeconomic status. Ethn. Dis. 2010, 20, 267–275. [Google Scholar] [PubMed]
- Fanelli Kuczmarski, M.; Bodt, B.A.; Stave Shupe, E.; Zonderman, A.B.; Evans, M.K. Dietary patterns associated with lower 10-year atherosclerotic cardiovascular disease risk among urban African-American and white adults consuming western diets. Nutrients 2018, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 2017, 8, 838. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, R.S.; Wilkinson, E.C.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Murayi, T.; Moshfegh, A.J. A new database facilitates characterization of flavonoid intake, sources, and positive associations with diet quality among US adults. J. Nutr. 2015, 145, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Office of the Assistant Secretary for Planning and Evaluation. 2004 HHS Poverty Guidelines. Available online: https://aspe.hhs.gov/2004-hhs-poverty-guidelines (accessed on 7 November 2018).
- Healthy Aging in Neighborhoods of Diversity across the Life Span. Study Protocols. Available online: https://handls.nih.gov/02Protocol.htm (accessed on 10 September 2018).
- Ware, J.E.; Kosinski, M.; Keller, S.D. SF-12: How to Score the SF-12 Physical and Mental Health Summary Scales; Quality Metric Incorporated: Lincoln, RI, USA, 1998. [Google Scholar]
- Wilkinson, G. The Wide Range Achievement Test—3rd Edition (WRAT-3). 1993. Available online: https://www.unc.edu/depts/sph/longscan/pages/measures/Ages12to14/writeups/Age%2012%20WRAT-3.pdf (accessed on 10 September 2018).
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The U.S. Department of Agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s Dietary Intake Data System. J. Food Compost. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Food Surveys Research Group: Beltsville, MD. United States Department of Agriculture. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/ (accessed on 10 September 2018).
- What We Eat in America Food Categories. United States Department of Agriculture Web Site. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1314/food_category_list.pdf (accessed on 10 September 2018).
- Flavonoid Database Documentation. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fndds/FlavonoidDB_documentation_0710.pdf (accessed on 10 September 2018).
- Albert, J. Bayesian Computation with R, 2nd ed.; Springer Science + Business Media, LLC: New York, NY, USA, 2009; pp. 168–176. [Google Scholar]
- Bai, W.; Wang, C.; Ren, C. Intakes of total and individual flavonoids by US adults. Int. J. Food Sci. Nutr. 2013, 65, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Sees, A.C.; Hotchkiss, L.; Cotugna, N.; Evans, M.K.; Zonderman, A.B. Higher healthy eating index-2005 scores associated with reduced symptoms of depression in an urban population: Findings from the healthy aging in neighborhoods of diversity across the life span (HANDLS) study. J. Am. Diet. Assoc. 2010, 110, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Beydoun, M.A.; Cotugna, N.; Daniels, L.; Mason, M.A.; Zonderman, A.B.; Evans, M.K. Literacy contributes to greater higher diet quality in a socioeconomically diverse urban prospective cohort. Top. Clin. Nutr. 2016, 31, 47–58. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 2015, 73, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.K.; Lee, S.G.; Wang, Y.; Vance, T.; Song, W.O. Estimated flavonoid intake of the elderly in the united states and around the world. J. Nutr. Gerontol. Geriatr. 2012, 31, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Kawachi, I. Diets and health: How food decisions are shaped by biology, economics, geography, and social interactions. Big Data 2015, 3, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Sak, K. Current epidemiological knowledge about the role of flavonoids in prostate carcinogenesis. Exp. Oncol. 2017, 39, 98–105. [Google Scholar] [PubMed]
- Beydoun, M.A.; Fanelli-Kuczmarski, M.; Allen, A.; Beydoun, H.A.; Popkin, B.M.; Evans, M.K.; Zonderman, A.B. Monetary value of diet is associated with dietary quality and nutrient adequacy among urban adults, differentially by sex, race and poverty status. PLoS ONE 2015, 10, e0140905. [Google Scholar] [CrossRef] [PubMed]
- Allcott, H.; Diamond, R.; Dube, J.-P. The Geography of Poverty and Nutrition: Food Deserts and Food Choices across the United States; Working Paper Series; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2017. [Google Scholar]
- Casagrande, S.S.; Franco, M.; Gittelsohn, J.; Zonderman, A.B.; Evans, M.K.; Kuczmarski, M.F.; Gary-Webb, T. Neighborhood characteristics and availability of healthy foods in Baltimore. Public Health Nutr. 2011, 14, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, C.A.; Collins, R.; Ghosh-Dastidar, M.; Beckman, R.; Dubowitz, T. Does where you shop or who you are predict what you eat? The role of stores and individual characteristics in dietary intake. Prev. Med. 2017, 100, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Current Population Survey Data for Social, Economic, and Health Research. IPUMS-CPS Web Site. Available online: https://www.census.gov/programs-surveys/cps.html (accessed on 7 September 2018).
- U.S. Department of Labor, Bureau of Labor Statistics from the Current Population Survey, 2005 Annual Averages. Available online: https://www.bls.gov/cps/aa2005/cpsaat3.pdf (accessed on 7 September 2018).
- Milicic, S.; DeCicca, P. The impact of economic conditions on healthy dietary intake: Evidence from fluctuations in Canadian unemployment rates. J. Nutr. Educ. Behav. 2017, 49, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Mason, M.A.; Beydoun, M.A.; Allegro, D.; Zonderman, A.B.; Evans, M.K. Dietary patterns and sarcopenia in an urban African American and White population in the United States. J. Nutr. Gerontol. Geriatr. 2013, 32, 291–316. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Mason, M.; Allegro, D.; Beydoun, M.; Zonderman, A.B.; Evans, M.K. Dietary quality and nutritional biomarkers associated with dietary patterns of socioeconomically diverse urban African American and White population. Procedia Food Sci. 2015, 4, 104–113. [Google Scholar] [CrossRef]
- Rhodes, D.G.; Murayi, T.; Clemens, J.C.; Baer, D.J.; Sebastian, R.S.; Moshfegh, A.J. The USDA Automated Multiple-Pass Method accurately assesses population sodium intakes. Am. J. Clin. Nutr. 2013, 97, 958–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [PubMed]
- Agudo, A. Measuring Intake of Fruit and Vegetable Intake; World Health Organization: Kobe, Japan, 2004. [Google Scholar]
Characteristic | Percent |
---|---|
Demographic: | |
Male 1 | 45.3 |
Age 30–49 years 1 | 55.2 |
African American 1 | 59.4 |
Income <125% Poverty 1,2 | 41.6 |
Education level 3 | |
<High school diploma/GED | 33.4 |
High school diploma/GED | 33.5 |
Post-secondary education | 31.1 |
Not reported | 2.0 |
WRAT score 4 | |
≤8th | 28.3 |
9th–12th | 19.4 |
>12th | 26.1 |
Not available 5 | 26.2 |
Lifestyle: | |
Body Mass Index (BMI) | |
≤25 kg/m2 | 22.4 |
25.1–29.9 kg/m2 | 21.7 |
≥30 kg/m2 | 33.2 |
Not available 5 | 22.7 |
Cigarette smoking status | |
Currently smoking | 33.9 |
Not currently smoking | 35.9 |
Not available 5 | 30.2 |
Employed last month 1,3 | |
Yes | 55.9 |
No | 42.2 |
Not reported | 1.8 |
Health status 3,6 | |
Excellent/very good | 33.0 |
Good | 40.3 |
Fair/poor | 26.7 |
Not reported | <0.1 |
Flavonoid Class | Mean (SE) | Percentage with Zero Intake (SE) | Percentile | ||||
---|---|---|---|---|---|---|---|
10 | 25 | 50 | 75 | 90 | |||
Anthocyanidins | 7.03 (0.36) | 54.4 (1.2) | 0.00 | 0.00 | 0.00 | 2.30 | 14.95 |
Flavan-3-ols | 184.62 (32.04) | 15.1 (0.8) | 0.00 | 0.55 | 7.27 | 69.41 | 602.99 |
Flavanones | 14.47 (2.06) | 46.0 (1.4) | 0.00 | 0.00 | 0.11 | 5.39 | 55.78 |
Flavones | 0.63 (0.04) | 19.5 (1.3) | 0.00 | 0.02 | 0.22 | 0.66 | 1.61 |
Flavonols | 17.65 (1.39) | 2.3 (0.3) | 1.33 | 4.03 | 9.98 | 21.85 | 41.39 |
Isoflavones 2 | 0.96 (0.15) | 69.7 (1.7) | 0.00 | 0.00 | 0.00 | 0.01 | 0.66 |
Total flavonoids 3 | 225.36 (32.57) | 2.0 (0.4) | 3.55 | 11.42 | 36.89 | 196.07 | 677.41 |
Flavonoid Class | Rank | All | Race | Income Category 2 | ||
---|---|---|---|---|---|---|
AA | White | <125% | >125% | |||
Total flavonoids | 1 | Tea (82) | Tea (77) | Tea (86) | Tea (85) | Tea (81) |
Anthocyanidins | 1 | Berries (23) | Wine (25) | Berries (33) | Non-citrus juice, 100% (24) | Berries (24) |
2 | Wine (22) | Grapes (15) | Wine (20) | Wine (14) | Wine (23) | |
3 | Grapes (13) | Non-citrus juice, 100% (15) | Grapes (11) | Grapes (13) | ||
4 | Non-citrus juice, 100% (10) | |||||
Flavan-3-ols | 1 | Tea (96) | Tea (95) | Tea (96) | Tea (97) | Tea (96) |
Flavanones | 1 | Orange juice (66) | Orange juice (69) | Orange juice (59) | Orange juice (64) | Orange juice (67) |
2 | Oranges (14) | Oranges (13) | Oranges (16) | Oranges (13) | Oranges (14) | |
Flavones | 1 | Mixed dishes 3 (21) | Mixed dishes 3 (25) | Mixed dishes 3 (17) | Mixed dishes 3 (25) | Mixed dishes 3 (20) |
2 | Sweet peppers (15) | Sweet peppers (16) | Tea (15) | Tea (18) | Sweet peppers (15) | |
3 | Tea (14) | Tea (12) | Sweet peppers (13) | Sweet peppers (11) | Tea (13) | |
Flavonols | 1 | Tea (39) | Tea (32) | Tea (49) | Tea (38) | Tea (40) |
2 | Onions (10) | Onions (13) | Dark green vegetables 4 (10) | Onions (11) | ||
3 | Mixed dishes 3 (10) | |||||
Isoflavones | 1 | Soy products 5 (28) | Soy products 5 (44) | Milk substitutes (30) | Soups (25) | Soy products 5 (29) |
2 | Protein powders (23) | Soups (16) | Protein powders (29) | Soy products 5 (24) | Protein powders (25) | |
3 | Milk substitutes (21) | Protein powders (15) | Soy products 5 (17) | Doughnuts 6 (18) | Milk substitutes (22) | |
4 | Soups (10) | Doughnuts 6 (10) | Milk substitutes (14) | |||
5 | Protein powders (10) |
Race by Selected Characteristics | n | Flavonoid Class | Total Flavonoids | |||||
---|---|---|---|---|---|---|---|---|
Anthocyanidins | Flavan-3-ols | Flavanones | Flavones | Flavonols | Isoflavones | |||
-----------------------------------------------------------milligrams (SE)----------------------------------------------------------- | ||||||||
All adults | ||||||||
African American | 2.029 | 4.48 * (0.28) | 133.53 * (11.89) | 16.99 * (2.37) | 0.51 * (0.04) | 15.58 * (0.80) | 0.62 * (0.11) | 171.72 * (11.03) |
White | 1389 | 11.77 (1.62) | 279.39 (72.34) | 9.78 (1.17) | 0.86 (0.11) | 21.48 (2.13) | 1.58 (0.58) | 324.85 (71.43) |
Sex | ||||||||
Males | ||||||||
African American | 922 | 4.10 * (0.82) | 128.76 * (22.95) | 20.24 * (3.36) | 0.57 * (0.10) | 17.49 * (0.99) | 0.88 * (0.19) | 172.03 * (19.71) |
White | 628 | 10.24 (2.72) | 240.93 (56.73) | 12.34 (1.18) | 0.83 (0.11) | 21.26 (1.79) | 1.15(0.45) | 286.74 (55.61) |
Females | ||||||||
African American | 1107 | 4.84 * (0.48) | 138.34 * (6.81) | 14.10 * (1.87) | 0.46 * (0.03) | 13.91 * (0.61) | 0.40 * (0.08) | 172.05 * (7.61) |
White | 761 | 13.17 (0.92) | 315.19 (87.04) | 7.55 (2.00) | 0.90 (0.12) | 21.80 (2.46) | 1.99 (0.76) | 360.59 (86.25) |
Income 3 | ||||||||
<125% | ||||||||
African American | 982 | 3.56 * (0.65) | 117.32 * (12.94) | 11.93 * (2.41) | 0.38 * (0.02) | 14.94 * (0.75) | 0.39 * (0.11) | 148.52 * (11.09) |
White | 439 | 4.33 (1.54) | 378.23 (103.41) | 8.20 (2.05) | 0.67 (0.10) | 24.36 (2.25) | 0.84 (0.40) | 416.62 (103.63) |
>125% | ||||||||
African American | 1047 | 4.61 * (0.30) | 138.89 * (12.38) | 18.23 * (2.48) | 0.54 * (0.04) | 15.78 * (1.01) | 0.67 * (0.13) | 178.72 * (11.94) |
White | 950 | 13.02 (1.60) | 264.83 (65.96) | 10.44 (1.22) | 0.90 (0.11) | 21.08 (2.13) | 1.71 (0.62) | 311.99 (64.89) |
Age, years | ||||||||
30–49 | ||||||||
African American | 1131 | 4.73 * (0.72) | 138.61 * (14.39) | 17.15 * (2.54) | 0.52 * (0.05) | 16.09 * (0.86) | 0.78 * (0.18) | 177.88 * (13.71) |
White | 756 | 10.33 (3.16) | 298.60 (76.18) | 7.56 (0.54) | 0.93 (0.14) | 22.10 (2.34) | 1.12 (0.23) | 340.63 (75.12) |
50–64 | ||||||||
African American | 898 | 4.11 * (0.89) | 122.60 * (11.95) | 16.94 * (3.73) | 0.51 * (0.03) | 14.69 * (1.01) | 0.37 * (0.04) | 159.21 * (11.50) |
White | 633 | 13.96 (1.43) | 255.78 (62.98) | 12.84 (2.71) | 0.75 (0.08) | 20.76 (1.72) | 2.31 (1.12) | 306.40 (62.47) |
Income by Selected Characteristics | n | Flavonoid Class | Total Flavonoids | |||||
---|---|---|---|---|---|---|---|---|
Anthocyanidins | Flavan-3-ols | Flavanones | Flavones | Flavonols | Isoflavones | |||
-----------------------------------------------------------milligrams (SE)----------------------------------------------------------- | ||||||||
All adults | ||||||||
<125% | 1421 | 4.52 (1.37) | 192.88 (39.86) | 10.64 (1.90) | 0.50 (0.05) | 18.13 (0.78) | 0.62 (0.19) | 227.29 (38.88) |
>125% | 1997 | 7.63 (0.45) | 182.66 (14.36) | 15.37 (1.71) | 0.67 (0.05) | 17.54 (0.73) | 1.04 (0.25) | 224.90 (14.07) |
Sex | ||||||||
Males | ||||||||
<125% | 601 | 5.42 (1.99) | 199.79 (55.55) | 12.44 (1.33) | 0.54 (0.03) | 18.98 (1.59) | 0.82 (0.27) | 237.99 (54.51) |
>125% | 949 | 6.52 (0.71) | 164.04 (11.73) | 18.29 (2.66) | 0.68 (0.10) | 18.85 (0.84) | 1.01 (0.22) | 209.39 (8.84) |
Females | ||||||||
<125% | 820 | 4.22 (0.76) | 192.32 (34.73) | 8.91 (2.23) | 0.47 (0.06) | 17.45 (0.55) | 0.56 (0.18) | 223.92 (34.07) |
>125% | 1048 | 8.61 (0.50) | 199.46 (23.94) | 12.74 (1.44) | 0.65 (0.06) | 16.31 (0.87) | 1.04 (0.25) | 238.81 (23.99) |
Race | ||||||||
African American | ||||||||
<125% | 982 | 3.48 (0.81) | 116.23 (13.57) | 12.41 (2.55) | 0.39 (0.03) | 15.24 (0.78) | 0.44 (0.12) | 148.18 (11.30) |
>125% | 1047 | 4.63 (0.31) | 138.61 (10.73) | 17.96 (2.45) | 0.53 (0.04) | 15.52 (1.06) | 0.65 (0.13) | 177.89 (11.12) |
White | ||||||||
<125% | 439 | 4.11 (1.83) | 377.28 (104.05) | 8.47 (2.06) | 0.68 (0.10) | 24.73 (2.19) | 0.81 (0.37) | 416.09 (104.05) |
>125% | 950 | 13.06 (1.63) | 265.96 (64.53) | 10.62 (1.24) | 0.91 (0.11) | 21.31 (2.10) | 1.73 (0.63) | 313.59 (63.41) |
Age, years | ||||||||
30–49 | ||||||||
≤125% | 812 | 4.79 (1.69) | 215.90 (56.04) | 9.90 (2.09) | 0.51 (0.05) | 18.95 (1.69) | 0.58 (0.14) | 250.62 (56.00) |
>125% | 1075 | 7.12 (1.15) | 190.00 (13.27) | 14.66 (1.91) | 0.70 (0.07) | 18.03 (0.61) | 0.97 (0.18) | 231.48 (13.07) |
50–64 | ||||||||
≤125% | 609 | 4.28 (0.98) | 158.40 (20.76) | 11.83 (2.21) | 0.48 (0.07) | 16.85 (0.62) | 0.73 (0.34) | 192.58 (19.27) |
>125% | 922 | 8.38 (1.29) | 171.84 (15.60) | 16.45 (3.30) | 0.62 (0.04) | 16.80 (0.96) | 1.12 (0.43) | 215.21 (15.25) |
Flavonoid Class | All | African American/Black 3 | White | |||
---|---|---|---|---|---|---|
HANDLS | WWEIA, NHANES 4 | HANDLS | WWEIA, NHANES 4 | HANDLS | WWEIA, NHANES 4 | |
n | 3418 | 2598 | 2029 | 895 | 1389 | 1703 |
------------------------------------------------------------milligrams (SE)------------------------------------------------------------------ | ||||||
Anthocyanidins | 10.19 * (1.24) | 12.08 (1.77) | 4.34 * (0.34) | 6.44 (0.85) | 12.59 * (1.82) | 13.41 (2.16) |
Flavan-3-ols | 243.81(24.81) | 241.47 (19.29) | 127.46(9.86) | 144.09 (12.72) | 288.18* 69.69) | 264.39 (23.23) |
Flavanones | 12.36 (1.96) | 10.95 (1.04) | 16.67 (2.31) | 14.54 (1.58) | 10.41 (1.11) | 10.11 (1.15) |
Flavones | 0.79 * (0.05) | 0.84 (0.06) | 0.48 * (0.05) | 0.54 (0.02) | 0.88 (0.11) | 0.91 (0.07) |
Flavonols | 21.17 (0.80) | 22.06 (0.92) | 15.38 (0.81) | 16.05 (0.52) | 22.20 (2.09) | 23.47 (1.13) |
Isoflavones | 1.03 (0.19) | 1.09 (0.16) | 0.53 * (0.11) | 0.83 (0.16) | 1.55 * (0.59) | 1.15 (0.18) |
Total | 289.34 (24.56) | 288.49 (20.33) | 164.86 (9.13) | 182.50 (13.47) | 335.81* (68.78) | 313.44 (24.56) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli Kuczmarski, M.; Sebastian, R.S.; Goldman, J.D.; Murayi, T.; Steinfeldt, L.C.; Eosso, J.R.; Moshfegh, A.J.; Zonderman, A.B.; Evans, M.K. Dietary Flavonoid Intakes Are Associated with Race but Not Income in an Urban Population. Nutrients 2018, 10, 1749. https://doi.org/10.3390/nu10111749
Fanelli Kuczmarski M, Sebastian RS, Goldman JD, Murayi T, Steinfeldt LC, Eosso JR, Moshfegh AJ, Zonderman AB, Evans MK. Dietary Flavonoid Intakes Are Associated with Race but Not Income in an Urban Population. Nutrients. 2018; 10(11):1749. https://doi.org/10.3390/nu10111749
Chicago/Turabian StyleFanelli Kuczmarski, Marie, Rhonda S. Sebastian, Joseph D. Goldman, Theophile Murayi, Lois C. Steinfeldt, Jessica R. Eosso, Alanna J. Moshfegh, Alan B. Zonderman, and Michele K. Evans. 2018. "Dietary Flavonoid Intakes Are Associated with Race but Not Income in an Urban Population" Nutrients 10, no. 11: 1749. https://doi.org/10.3390/nu10111749
APA StyleFanelli Kuczmarski, M., Sebastian, R. S., Goldman, J. D., Murayi, T., Steinfeldt, L. C., Eosso, J. R., Moshfegh, A. J., Zonderman, A. B., & Evans, M. K. (2018). Dietary Flavonoid Intakes Are Associated with Race but Not Income in an Urban Population. Nutrients, 10(11), 1749. https://doi.org/10.3390/nu10111749