Lipidomic Response to Coffee Consumption
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Coffee Trial
2.2. Lipidomics Assay, Data Acquisition and Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reyes, C.M.; Cornelis, M.C. Caffeine in the diet: Country-level consumption and guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M. Gene-coffee interactions and health. Curr. Nutr. Rep. 2014, 3, 178–195. [Google Scholar] [CrossRef]
- Higdon, J.V.; Frei, B. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr. 2006, 46, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Cowan, T.E.; Palmnas, M.S.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 2014, 25, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [PubMed]
- Gilbert, R.M. Caffeine consumption. In The Methylxanthine Beverages and Foods: Chemistry, Consumption, and Health Effects; Spiller, G.A., Ed.; Alan R. Liss Inc.: New York, NY, USA, 1984; pp. 185–213. [Google Scholar]
- Cornelis, M.C.; Hu, F.B. Systems epidemiology: A new direction in nutrition and metabolic disease research. Curr. Nutr. Rep. 2013, 2. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Erlund, I.; Michelotti, G.A.; Herder, C.; Westerhuis, J.A.; Tuomilehto, J. Metabolomic response to coffee consumption: Application to a three-stage clinical trial. J. Intern. Med. 2018, 283, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Kempf, K.; Herder, C.; Erlund, I.; Kolb, H.; Martin, S.; Carstensen, M.; Koenig, W.; Sundvall, J.; Bidel, S.; Kuha, S.; et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: A clinical trial. Am. J. Clin. Nutr. 2010, 91, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, D.J.; Hoeferlin, L.A.; Chalfant, C.E. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl. Res. 2017, 189, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Farnell, D.J.; Popat, H.; Richmond, S. Multilevel principal component analysis (MPCA) in shape analysis: A feasibility study in medical and dental imaging. Comput. Methods Programs Biomed. 2016, 129, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false ciscovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.A.; Cao, J.; Hsu, Y.-H.; Magrioti, V.; Kokotos, G. Phospholipase a2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 2011, 111, 6130–6185. [Google Scholar] [CrossRef] [PubMed]
- Richmond, G.S.; Smith, T.K. Phospholipases a(1). Int. J. Mol. Sci. 2011, 12, 588–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, A.; Hayashi, Y.; Nemoto-Sasaki, Y.; Ito, M.; Oka, S.; Tanikawa, T.; Waku, K.; Sugiura, T. Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog. Lipid Res. 2014, 53, 18–81. [Google Scholar] [CrossRef] [PubMed]
- Tomura, H.; Mogi, C.; Sato, K.; Okajima, F. Proton-sensing and lysolipid-sensitive g-protein-coupled receptors: A novel type of multi-functional receptors. Cell Signal. 2005, 17, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Ruebsaamen, K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 2010, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kobayashi, T.; Kamata, K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr. Med. Chem. 2007, 14, 3209–3220. [Google Scholar] [CrossRef] [PubMed]
- Hung, N.D.; Sok, D.-E.; Kim, M.R. Prevention of 1-palmitoyl lysophosphatidylcholine-induced inflammation by polyunsaturated acyl lysophosphatidylcholine. Inflamm. Res. 2012, 61, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Akerele, O.; Cheema, S. Fatty acyl composition of lysophosphatidylcholine is important in atherosclerosis. Med. Hypotheses 2015, 85, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Ojala, P.; Hirvonen, T.; Hermansson, M.; Somerharju, P.; Parkkinen, J. Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils. J. Leukoc. Boil. 2007, 82, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Aiyar, N.; Disa, J.; Ao, Z.; Ju, H.; Nerurkar, S.; Willette, R.N.; Macphee, C.H.; Johns, D.G.; Douglas, S.A. Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells. Mol. Cell. Biochem. 2007, 295, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Pete, M.J.; Exton, J.H. Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J. Boil. Chem. 1996, 271, 18114–18121. [Google Scholar] [CrossRef]
- Di Marzo, V. ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: Biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1998, 1392, 153–175. [Google Scholar] [CrossRef]
- Aoki, J.; Inoue, A.; Okudaira, S. Two pathways for lysophosphatidic acid production. Biochim. Biophys. Acta (BBA)-Mol. Cell Boil. Lipids 2008, 1781, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Maccarrone, M. Metabolism of the endocannabinoid anandamide: Open questions after 25 years. Front. Mol. Neurosci. 2017, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.-S.; Robinson, L.E.; Graham, T.E. An oral lipid challenge and acute intake of caffeinated coffee additively decrease glucose tolerance in healthy men. J. Nutr. 2011, 141, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Mougios, V.; Ring, S.; Petridou, A.; Nikolaidis, M.G. Duration of coffee-and exercise-induced changes in the fatty acid profile of human serum. J. Appl. Physiol. 2003, 94, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Bellet, S.; Kershbaum, A.; Finck, E.M. Response of free fatty acids to coffee and caffeine. Metabolism 1968, 17, 702–707. [Google Scholar] [CrossRef]
- Hodgson, A.B.; Randell, R.K.; Jeukendrup, A.E. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE 2013, 8, e59561. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Nardini, M.; Belelli, F.; Scaccini, C. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am. J. Clin. Nutr. 2007, 86, 604–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartron, E.; Carbonneau, M.-A.; Fouret, G.; Descomps, B.; Léger, C.L. Specific antioxidant activity of caffeoyl derivatives and other natural phenolic compounds: LDL protection against oxidation and decrease in the proinflammatory lysophosphatidylcholine production. J. Nat. Prod. 2001, 64, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.M.; Carioca, A.A.F.; Steluti, J.; da Silva, I.; Fisberg, R.M.; Marchioni, D.M. The effect of coffee intake on lysophosphatidylcholines: A targeted metabolomic approach. Clin. Nutr. (Edinburgh Scotland) 2017, 36, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Lim, H.R.; Kim, J.W.; Shin, K.-H. Metabolite changes in risk of type 2 diabetes mellitus in cohort studies: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2018, 140, 216–227. [Google Scholar] [CrossRef] [PubMed]
Lipid Class † | Lipid Species | Group Effect | Fold of Change § | |||
---|---|---|---|---|---|---|
p-Value | q-Value | 4 Cups/0 Cup | 8 Cups/0 Cup | 8 Cups/4 Cups | ||
CE | CE(20:4) | 0.0296 | 0.4529 | 0.9 | 0.92 | 1.02 |
FFA | FFA(20:3) | 0.0021 | 0.297 | 0.9 | 0.87 | 0.96 |
FFA(20:4) | 0.0012 | 0.2492 | 0.95 | 0.87 | 0.91 | |
FFA(22:2) | 0.0481 | 0.4529 | 0.95 | 0.89 | 0.94 | |
FFA(22:6) | 0.0415 | 0.4529 | 0.98 | 0.89 | 0.91 | |
TAG | TAG47:1-FA17:0 | 0.0483 | 0.4529 | 1.26 | 1.4 | 1.11 |
TAG51:3-FA15:0 | 0.0401 | 0.4529 | 0.82 | 0.91 | 1.11 | |
TAG52:4-FA16:1 | 0.0317 | 0.4529 | 0.8 | 0.92 | 1.15 | |
TAG52:5-FA16:1 | 0.0329 | 0.4529 | 0.77 | 0.89 | 1.16 | |
TAG52:5-FA20:5 | 0.05 | 0.4529 | 1.07 | 1.25 | 1.18 | |
TAG52:6-FA16:1 | 0.041 | 0.4529 | 0.78 | 0.9 | 1.14 | |
TAG53:3-FA16:0 | 0.0211 | 0.4529 | 0.88 | 0.87 | 1 | |
TAG53:3-FA18:1 | 0.0242 | 0.4529 | 0.9 | 0.93 | 1.03 | |
TAG53:4-FA16:0 | 0.0229 | 0.4529 | 0.84 | 0.89 | 1.07 | |
TAG53:4-FA18:2 | 0.0289 | 0.4529 | 0.82 | 0.88 | 1.08 | |
TAG53:5-FA18:3 | 0.048 | 0.4529 | 0.87 | 0.92 | 1.06 | |
TAG54:3-FA18:1 | 0.0354 | 0.4529 | 0.82 | 0.9 | 1.09 | |
TAG54:3-FA20:1 | 0.0368 | 0.4529 | 0.84 | 0.94 | 1.13 | |
TAG54:4-FA20:1 | 0.0306 | 0.4529 | 0.82 | 0.94 | 1.14 | |
TAG55:3-FA18:1 | 0.0353 | 0.4529 | 0.82 | 0.86 | 1.05 | |
TAG55:4-FA18:1 | 0.0198 | 0.4529 | 0.82 | 0.85 | 1.04 | |
TAG55:5-FA18:1 | 0.0208 | 0.4529 | 0.77 | 0.83 | 1.08 | |
TAG56:3-FA18:1 | 0.0103 | 0.4529 | 0.81 | 0.87 | 1.07 | |
TAG56:3-FA20:1 | 0.0155 | 0.4529 | 0.79 | 0.86 | 1.09 | |
TAG56:4-FA18:1 | 0.0124 | 0.4529 | 0.8 | 0.87 | 1.08 | |
TAG56:4-FA20:1 | 0.0314 | 0.4529 | 0.71 | 0.81 | 1.14 | |
TAG56:4-FA20:2 | 0.0141 | 0.4529 | 0.84 | 0.88 | 1.05 | |
TAG56:5-FA18:1 | 0.0221 | 0.4529 | 0.83 | 0.9 | 1.09 | |
TAG56:5-FA20:2 | 0.0051 | 0.4529 | 0.77 | 0.84 | 1.08 | |
TAG56:5-FA20:3 | 0.0215 | 0.4529 | 0.83 | 0.89 | 1.08 | |
TAG56:5-FA20:4 | 0.0447 | 0.4529 | 0.84 | 0.91 | 1.07 | |
TAG56:6-FA18:2 | 0.0132 | 0.4529 | 0.77 | 0.88 | 1.13 | |
TAG56:6-FA20:2 | 0.0206 | 0.4529 | 0.76 | 0.84 | 1.11 | |
TAG56:6-FA20:3 | 0.0077 | 0.4529 | 0.77 | 0.85 | 1.1 | |
TAG56:6-FA20:4 | 0.0306 | 0.4529 | 0.81 | 0.88 | 1.08 | |
TAG56:7-FA18:2 | 0.0457 | 0.4529 | 0.8 | 0.91 | 1.14 | |
TAG56:7-FA20:3 | 0.042 | 0.4529 | 0.79 | 0.85 | 1.07 | |
TAG56:7-FA22:4 | 0.0484 | 0.4529 | 0.87 | 0.92 | 1.06 | |
TAG56:7-FA22:5 | 0.0384 | 0.4529 | 0.85 | 0.95 | 1.12 | |
TAG56:9-FA20:4 | 0.0458 | 0.4529 | 0.83 | 0.92 | 1.11 | |
TAG56:9-FA22:6 | 0.0229 | 0.4529 | 0.85 | 0.92 | 1.08 | |
TAG57:8-FA22:6 | 0.0093 | 0.4529 | 0.87 | 0.91 | 1.04 | |
TAG58:10-FA20:5 | 0.0161 | 0.4529 | 0.86 | 0.94 | 1.09 | |
TAG58:10-FA22:5 | 0.0391 | 0.4529 | 0.74 | 0.84 | 1.14 | |
TAG58:10-FA22:6 | 0.0388 | 0.4529 | 0.72 | 0.8 | 1.11 | |
TAG58:7-FA22:4 | 0.0294 | 0.4529 | 0.81 | 0.89 | 1.11 | |
TAG58:7-FA22:5 | 0.0109 | 0.4529 | 0.79 | 0.85 | 1.07 | |
TAG58:8-FA20:4 | 0.0324 | 0.4529 | 0.85 | 0.9 | 1.06 | |
TAG58:8-FA22:5 | 0.0386 | 0.4529 | 0.79 | 0.85 | 1.08 | |
TAG58:9-FA22:5 | 0.0478 | 0.4529 | 0.78 | 0.86 | 1.1 | |
TAG60:10-FA22:5 | 0.0349 | 0.4529 | 0.85 | 0.9 | 1.06 | |
TAG60:10-FA22:6 | 0.0357 | 0.4529 | 0.82 | 0.92 | 1.13 | |
TAG60:11-FA22:5 | 0.0038 | 0.4529 | 0.8 | 0.92 | 1.16 | |
LPC | LPC(15:0) | 0.0142 | 0.4529 | 0.95 | 0.92 | 0.97 |
LPC(17:0) | 0.0017 | 0.2886 | 0.96 | 0.9 | 0.93 | |
LPC(18:1) | 0.0423 | 0.4529 | 0.98 | 0.93 | 0.95 | |
LPC(20:2) | 0.0094 | 0.4529 | 0.95 | 0.89 | 0.93 | |
LPC(20:3) | 0.0362 | 0.4529 | 0.94 | 0.91 | 0.96 | |
LPC(20:4) | <0.0001 | 0.0088 | 0.94 | 0.87 | 0.93 | |
LPC(22:1) | <0.0001 | 0.0313 | 0.91 | 0.78 | 0.86 | |
LPC(22:2) | <0.0001 | 0.0051 | 0.94 | 0.79 | 0.84 | |
PC | PC(17:0/20:4) | 0.0183 | 0.4529 | 0.91 | 0.91 | 1 |
PC(18:0/16:1) | 0.0274 | 0.4529 | 1.09 | 1.3 | 1.19 | |
PC(18:0/18:3) | 0.0375 | 0.4529 | 1.13 | 1.24 | 1.1 | |
PC(18:0/20:2) | 0.0143 | 0.4529 | 1 | 1.11 | 1.11 | |
PC(18:0/20:3) | 0.0361 | 0.4529 | 0.96 | 1.08 | 1.12 | |
PC(18:1/20:4) | 0.0152 | 0.4529 | 0.92 | 0.91 | 0.99 | |
PE | PE(18:0/20:1) | 0.0203 | 0.4529 | 0.97 | 1.12 | 1.16 |
PE(O-16:0/18:2) | 0.0301 | 0.4529 | 1.08 | 1.19 | 1.11 | |
PE(O-18:0/20:3) | 0.0458 | 0.4529 | 0.98 | 1.12 | 1.15 | |
PE(P-16:0/18:2) | 0.0246 | 0.4529 | 1.07 | 1.18 | 1.1 | |
PE(P-16:0/22:4) | 0.025 | 0.4529 | 0.89 | 1.01 | 1.14 | |
PE(P-18:0/18:2) | 0.0406 | 0.4529 | 1.04 | 1.15 | 1.1 | |
DCER | DCER(24:0) | 0.0475 | 0.4529 | 1 | 1.1 | 1.1 |
LCER | LCER(26:1) | 0.0097 | 0.4529 | 0.95 | 1.08 | 1.13 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, A.; Erlund, I.; Herder, C.; Westerhuis, J.A.; Tuomilehto, J.; Cornelis, M.C. Lipidomic Response to Coffee Consumption. Nutrients 2018, 10, 1851. https://doi.org/10.3390/nu10121851
Kuang A, Erlund I, Herder C, Westerhuis JA, Tuomilehto J, Cornelis MC. Lipidomic Response to Coffee Consumption. Nutrients. 2018; 10(12):1851. https://doi.org/10.3390/nu10121851
Chicago/Turabian StyleKuang, Alan, Iris Erlund, Christian Herder, Johan A. Westerhuis, Jaakko Tuomilehto, and Marilyn C. Cornelis. 2018. "Lipidomic Response to Coffee Consumption" Nutrients 10, no. 12: 1851. https://doi.org/10.3390/nu10121851
APA StyleKuang, A., Erlund, I., Herder, C., Westerhuis, J. A., Tuomilehto, J., & Cornelis, M. C. (2018). Lipidomic Response to Coffee Consumption. Nutrients, 10(12), 1851. https://doi.org/10.3390/nu10121851