Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Measurement
2.3. Outcome Measurement
2.4. Covariate Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and trends in diabetes among adults in the united states, 1988–2012. J. Am. Med. Assoc. 2015, 314, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Evangelou, E.; Ntritsos, G.; Chondrogiorgi, M.; Kavvoura, F.K.; Hernandez, A.F.; Ntzani, E.E.; Tzoulaki, I. Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ. Int. 2016, 91, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alonso, P.; Camacho-Barcia, L.; Bullo, M.; Salas-Salvado, J. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes. Nutrients 2017, 9, 673. [Google Scholar] [CrossRef] [PubMed]
- Brantsaeter, A.L.; Ydersbond, T.A.; Hoppin, J.A.; Haugen, M.; Meltzer, H.M. Organic food in the diet: Exposure and health implications. Annu. Rev. Public Health 2017, 38, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.P.; Benbrook, C.M.; Groth, E., 3rd; Lutz Benbrook, K. Pesticide residues in conventional, integrated pest management (ipm)-grown and organic foods: Insights from three us data sets. Food Addit. Contam. 2002, 19, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Srednicka-Tober, D.; Baranski, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembialkowska, E.; Skwarlo-Sonta, K.; Eyre, M.; et al. Composition differences between organic and conventional meat: A systematic literature review and meta-analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef] [PubMed]
- Smith-Spangler, C.; Brandeau, M.L.; Hunter, G.E.; Bavinger, J.C.; Pearson, M.; Eschbach, P.J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; et al. Are organic foods safer or healthier than conventional alternatives?: A systematic review. Ann. Intern. Med. 2012, 157, 348–366. [Google Scholar] [CrossRef] [PubMed]
- Baudry, J.; Mejean, C.; Peneau, S.; Galan, P.; Hercberg, S.; Lairon, D.; Kesse-Guyot, E. Health and dietary traits of organic food consumers: Results from the nutrinet-sante study. Br. J. Nutr. 2015, 114, 2064–2073. [Google Scholar] [CrossRef] [PubMed]
- Eisinger-Watzl, M.; Wittig, F.; Heuer, T.; Hoffmann, I. Customers purchasing organic food—Do they live healthier? Results of the german national nutrition survey ii. Eur. J. Nutr. Food Saf. 2015, 5, 59–71. [Google Scholar] [CrossRef]
- Forman, J.; Silverstein, J.; Committee on Nutrition; Council on Environmental Health; American Academy of Pediatrics. Organic foods: Health and environmental advantages and disadvantages. Pediatrics 2012, 130, e1406–e1415. [Google Scholar] [CrossRef] [PubMed]
- Greene, C. Organic Market Overview; United States Department of Agriculture Economic Research Service: Washington, DC, USA, 2017.
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on nhanes dietary data: Focus on collection, release, analytical considerations, and uses to inform public policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Ford-Jones, E.L. Food insecurity and hunger: A review of the effects on children’s health and behaviour. Paediatr. Child Health 2015, 20, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Nathan, D.M.; Balkau, B.; Bonora, E.; Borch-Johnsen, K.; Buse, J.B.; Colagiuri, S.; Davidson, M.B.; DeFronzo, R.; Genuth, S.; et al. International expert committee report on the role of the a1c assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [Google Scholar] [CrossRef]
- Cowie, C.C.; Rust, K.F.; Byrd-Holt, D.D.; Gregg, E.W.; Ford, E.S.; Geiss, L.S.; Bainbridge, K.E.; Fradkin, J.E. Prevalence of diabetes and high risk for diabetes using a1c criteria in the US population in 1988–2006. Diabetes Care 2010, 33, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Fang, M. Trends in the prevalence of diabetes among U.S. Adults: 1999–2016. Am. J. Prev. Med. 2018, 55, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National health and nutrition examination survey: Plan and operations, 1999–2010. Vital Health Stat. 2013, 56, 1–37. [Google Scholar]
- Centers for Disease Control and Prevention. Nhanes III Reference Manuals and Reports; Centers for Disease Control and Prevention: Hyatsville, MD, USA, 1996.
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National health and nutrition examination survey: Analytic guidelines, 1999–2010. Vital Health Stat. 2. 2013, 161, 1–24. [Google Scholar]
- Centers for Disease Control and Prevention; National Center for Health Statistics. Adult Tobacco Use Information_Glossary. Available online: https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm (accessed on 27 November 2018).
- Cespedes, E.M.; Hu, F.B.; Tinker, L.; Rosner, B.; Redline, S.; Garcia, L.; Hingle, M.; Van Horn, L.; Howard, B.V.; Levitan, E.B.; et al. Multiple healthful dietary patterns and type 2 diabetes in the women’s health initiative. Am. J. Epidemiol. 2016, 183, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Buckman, D.W.; Dodd, K.W.; Casavale, K.O.; Carroll, R.J. The healthy eating index-2010 is a valid and reliable measure of diet quality according to the 2010 dietary guidelines for americans. J. Nutr. 2014, 144, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Menke, A.; Orchard, T.J.; Imperatore, G.; Bullard, K.M.; Mayer-Davis, E.; Cowie, C.C. The prevalence of type 1 diabetes in the united states. Epidemiology 2013, 24, 773–774. [Google Scholar] [CrossRef] [PubMed]
- Kesse-Guyot, E.; Baudry, J.; Assmann, K.E.; Galan, P.; Hercberg, S.; Lairon, D. Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: Results from the nutrinet-sante study. Br. J. Nutr. 2017, 117, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, K.E.; Balkwill, A.; Spencer, E.A.; Roddam, A.W.; Reeves, G.K.; Green, J.; Key, T.J.; Beral, V.; Pirie, K.; Collaborators, M.W.S. Organic food consumption and the incidence of cancer in a large prospective study of women in the united kingdom. Br. J. Cancer 2014, 110, 2321–2326. [Google Scholar] [CrossRef] [PubMed]
- Van de Vijver, L.P.; van Vliet, M.E. Health effects of an organic diet--consumer experiences in the netherlands. J. Sci. Food Agric. 2012, 92, 2923–2927. [Google Scholar] [CrossRef] [PubMed]
- Curl, C.L.; Beresford, S.A.; Hajat, A.; Kaufman, J.D.; Moore, K.; Nettleton, J.A.; Diez-Roux, A.V. Associations of organic produce consumption with socioeconomic status and the local food environment: Multi-ethnic study of atherosclerosis (mesa). PLoS ONE 2013, 8, e69778. [Google Scholar] [CrossRef] [PubMed]
- Starling, A.P.; Umbach, D.M.; Kamel, F.; Long, S.; Sandler, D.P.; Hoppin, J.A. Pesticide use and incident diabetes among wives of farmers in the agricultural health study. Occup. Environ. Med. 2014, 71, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Baudry, J.; Lelong, H.; Adriouch, S.; Julia, C.; Alles, B.; Hercberg, S.; Touvier, M.; Lairon, D.; Galan, P.; Kesse-Guyot, E. Association between organic food consumption and metabolic syndrome: Cross-sectional results from the nutrinet-sante study. Eur. J. Nutr. 2017, 57, 2477–2488. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Dangour, A.; Aikenhead, A.; Hayter, A.; Allen, E.; Lock, K.; Uauy, R. Comparison of Putative Health Effects of Organically and Conventionally Produced Foodstuffs: A Systematic Review; Nutrition and Public Health Intervention Research Unit London School of Hygiene & Tropical Medicine: London, UK, 2009. [Google Scholar]
- Mikkelsen, K.H.; Knop, F.K.; Frost, M.; Hallas, J.; Pottegard, A. Use of antibiotics and risk of type 2 diabetes: A population-based case-control study. J. Clin. Endocr. Metab. 2015, 100, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- Riserus, U.; Willett, W.C.; Hu, F.B. Dietary fats and prevention of type 2 diabetes. Prog. Lipid Res. 2009, 48, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.F.; Liu, B.Y.; Sun, Y.B.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of diagnosed type 1 and type 2 diabetes among us adults in 2016 and 2017: Population based study. BMJ Br. Med. J. 2018, 362, k1497. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M.M.; Silverman, J.B.; Young, B.A.; Nelson, K.M. National patterns in diabetes screening: Data from the national health and nutrition examination survey (nhanes) 2005–2012. J. Gen. Intern. Med. 2015, 30, 612–618. [Google Scholar] [CrossRef] [PubMed]
Purchased any Organic Food in the Past 30 Days | |||
---|---|---|---|
Characteristics | No | Yes | p-Value |
No. of participants | 5300 | 2899 | |
Age, years | 47.7 (0.35) | 46.4 (0.54) | 0.02 |
Gender | |||
Male | 50.0 (0.78) | 40.9 (0.89) | <0.001 |
Female | 50.0 (0.78) | 59.1 (0.89) | |
Race/ethnicity, % | |||
Non-Hispanic white | 68.6 (2.85) | 76.3 (1.82) | <0.001 |
Non-Hispanic black | 12.6 (1.31) | 7.4 (0.82) | |
Hispanic | 14.2 (2.10) | 9.8 (1.04) | |
Other | 4.6 (0.58) | 6.5 (0.86) | |
Education, % | |||
Less than high school | 22.1 (0.84) | 10.1 (1.01) | <0.001 |
High school | 28.2 (1.07) | 16.3 (1.04) | |
College or above | 49.7 (1.38) | 73.6 (1.46) | |
Ratio of family income to poverty, % | |||
≤1.30 | 22.7 (1.17) | 12.3 (0.88) | <0.001 |
1.31–3.50 | 35.1 (1.18) | 29.6 (1.47) | |
>3.50 | 35.3 (1.50) | 51.6 (1.54) | |
Missing | 6.9 (0.65) | 6.5 (0.75) | |
Family history of diabetes, % | |||
Yes | 38.6 (1.00) | 33.7 (1.17) | <0.001 |
No | 61.4 (1.00) | 66.3 (1.17) | |
Smoking status, % | |||
Non-smoker | 52.4 (1.35) | 58.5 (1.50) | <0.001 |
Current smoker | 24.2 (1.01) | 14.5 (0.87) | |
Former smoker | 23.4 (0.78) | 27.0 (1.18) | |
Alcohol intake *, % | |||
Non-drinker | 76.0 (1.14) | 66.3 (1.32) | <0.001 |
Moderate drinker | 8.4 (0.53) | 12.5 (0.89) | |
Heavy drinker | 15.6 (0.88) | 21.3 (1.28) | |
Physical activity, MET-min/week | |||
<600 | 40.0 (0.87) | 30.1 (1.43) | <0.001 |
600–1199 | 9.4 (0.45) | 13.9 (0.87) | |
≥1200 | 50.6 (1.01) | 56.0 (1.37) | |
Total energy intake (kcal/day) | 2187 (24) | 2123 (18) | 0.03 |
Healthy Eating Index 2010 score | 47.6 (0.30) | 54.0 (0.50) | <0.001 |
BMI categories, % | |||
Normal/underweight | 26.0 (0.87) | 37.1 (1.81) | <0.001 |
Overweight | 35.5 (1.01) | 31.4 (1.16) | |
Obesity | 37.8 (0.81) | 30.8 (1.31) | |
Missing | 0.6 (0.1) | 0.6 (0.16) |
Purchased any Organic Food in the Past 30 Days | |||
---|---|---|---|
No | Yes | p-Value | |
No. of diabetes cases/participants | 875/5300 | 343/2899 | |
Model 1 † | 1.00 (reference) | 0.65 (0.56, 0.75) * | <0.001 |
Model 2 ‡ | 1.00 (reference) | 0.80 (0.68, 0.93) | 0.004 |
Model 3 § | 1.00 (reference) | 0.80 (0.69, 0.94) | 0.01 |
Frequency of Purchase of Organic Foods | |||||
---|---|---|---|---|---|
Never | Rarely | Sometimes | Most of the Time/Always | p for Trend | |
No. of diabetes cases/participants | 455/2612 | 46/300 | 84/693 | 35/335 | |
Model 1 † | 1.00 (reference) | 0.81 (0.58, 1.15) * | 0.74 (0.51, 1.07) | 0.60 (0.29, 1.27) | 0.02 |
Model 2 ‡ | 1.00 (reference) | 0.96 (0.71, 1.30) | 0.84 (0.59, 1.21) | 0.72 (0.35, 1.45) | 0.11 |
Model 3 § | 1.00 (reference) | 0.90 (0.64, 1.28) | 0.82 (0.57, 1.19) | 0.76 (0.38, 1.54) | 0.12 |
Frequency of Purchase of Organic Foods | |||||
---|---|---|---|---|---|
Never | Rarely | Sometimes | Most of the Time/Always | p for Trend | |
Organic fruits | |||||
No. of diabetes cases/participants | 437/2848 | 37/385 | 85/703 | 37/314 | |
OR (95% CI) * | 1.00 (reference) | 0.80 (0.49, 1.30) | 0.72 (0.49, 1.05) | 0.91 (0.52, 1.61) | 0.16 |
Organic vegetables | |||||
No. of diabetes cases/participants | 443/2872 | 36/353 | 82/701 | 37/325 | |
OR (95% CI) * | 1.00 (reference) | 0.74 (0.46, 1.19) | 0.87 (0.63, 1.19) | 0.85 (0.49, 1.50) | 0.31 |
Organic milk and dairy products | |||||
No. of diabetes cases/participants | 498/3301 | 38/351 | 37/305 | 23/292 | |
OR (95% CI) * | 1.00 (reference) | 0.74 (0.46, 1.22) | 0.67 (0.41, 1.08) | 0.66 (0.34, 1.28) | 0.04 |
Organic eggs | |||||
No. of diabetes cases/participants | 505/3,346 | 37/293 | 32/277 | 22/329 | |
OR (95% CI) * | 1.00 (reference) | 0.95 (0.63, 1.43) | 0.84 (0.48, 1.48) | 0.47 (0.27, 0.83) | 0.01 |
Organic poultry | |||||
No. of diabetes cases/participants | 504/3328 | 33/310 | 38/393 | 23/219 | |
OR (95% CI) * | 1.00 (reference) | 0.87 (0.55, 1.35) | 0.71 (0.41, 1.22) | 0.80 (0.44, 1.48) | 0.20 |
Organic meats | |||||
No. of diabetes cases/participants | 510/3395 | 28/322 | 42/354 | 14/172 | |
OR (95% CI) * | 1.00 (reference) | 0.67 (0.39, 1.16) | 0.78 (0.46, 1.32) | 0.67 (0.31, 1.45) | 0.09 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Liu, B.; Du, Y.; Snetselaar, L.G.; Sun, Q.; Hu, F.B.; Bao, W. Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults. Nutrients 2018, 10, 1877. https://doi.org/10.3390/nu10121877
Sun Y, Liu B, Du Y, Snetselaar LG, Sun Q, Hu FB, Bao W. Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults. Nutrients. 2018; 10(12):1877. https://doi.org/10.3390/nu10121877
Chicago/Turabian StyleSun, Yangbo, Buyun Liu, Yang Du, Linda G. Snetselaar, Qi Sun, Frank B. Hu, and Wei Bao. 2018. "Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults" Nutrients 10, no. 12: 1877. https://doi.org/10.3390/nu10121877
APA StyleSun, Y., Liu, B., Du, Y., Snetselaar, L. G., Sun, Q., Hu, F. B., & Bao, W. (2018). Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults. Nutrients, 10(12), 1877. https://doi.org/10.3390/nu10121877