Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exposure
2.3. Outcomes
2.4. Confounders
2.5. Statistics
3. Results
3.1. Participant Characteristics
3.2. Baseline Plasma PUFA Concentrations before n-3 Supplementation by BMI
3.2.1. N-3 PUFA
3.2.2. N-6 PUFA
3.2.3. N-6/N-3 PUFA Ratio
3.3. Change in Plasma PUFA Concentrations Following n-3 PUFA Supplementation by BMI
3.3.1. N-3 PUFA
3.3.2. N-6 PUFA
3.3.3. N-6/N-3 PUFA Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity among Adults in the United States, 2005 to 2014. JAMA 2016, 315, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Schieve, L.A.; Sharma, A.J.; Hinkle, S.N.; Li, R.; Lind, J.N. Maternal prepregnancy body mass index and child psychosocial development at 6 years of age. Pediatrics 2015, 135, e1198–e1209. [Google Scholar] [CrossRef] [PubMed]
- Segovia, S.A.; Vickers, M.H.; Gray, C.; Reynolds, C.M. Maternal obesity, inflammation, and developmental programming. BioMed Res. Int. 2014, 418975. [Google Scholar] [CrossRef] [PubMed]
- van der Burg, J.W.; Sen, S.; Chomitz, V.R.; Seidell, J.C.; Leviton, A.; Dammann, O. The role of systemic inflammation linking maternal BMI to neurodevelopment in children. Pediatr. Res. 2015, 79, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCloskey, K.; Ponsonby, A.-L.; Collier, F.; Allen, K.; Tang, M.L.; Carlin, J.B.; Saffery, R.; Skilton, M.R.; Cheung, M.; Ranganathan, S.; et al. The association between higher maternal pre-pregnancy body mass index and increased birth weight, adiposity and inflammation in the newborn. Pediatr. Obes. 2016, 13, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Bilbo, S.D.; Tsang, V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J. 2010, 24, 2104–2115. [Google Scholar] [CrossRef]
- Gaillard, R.; Rifas-Shiman, S.L.; Perng, W.; Oken, E.; Gillman, M.W. Maternal inflammation during pregnancy and childhood adiposity. Obesity 2016, 24, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Dietary quality during pregnancy varies by maternal characteristics in project Viva: A US cohort. J. Am. Diet. Assoc. 2009, 109, 1004–1011. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 Polyunsaturated Fatty Acids, Inflammation, and Inflammatory Diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Can Early Omega-3 Fatty Acid Exposure Reduce Risk of Childhood Allergic Disease? Nutrients 2017, 9, 784. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Yacoubian, S.; Yang, R. Anti-inflammatory and pro-resolving lipid mediators. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 279–312. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Q.; Qiu, Y.; Mu, Y.; Zhang, X.-J.; Liu, L.; Hou, X.-H.; Zhang, L.; Xu, X.-N.; Ji, A.-L.; Cao, R.; et al. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr. Res. 2013, 33, 849–858. [Google Scholar] [CrossRef]
- Heerwagen, M.J.R.; Stewart, M.S.; De La Houssaye, B.A.; Janssen, R.C.; Friedman, J.E. Transgenic increase in n-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PLoS ONE 2013, 8, e67791. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.G.; Song, Z.X.; Yin, H.; Wang, Y.Y.; Shu, G.F.; Lu, H.X.; Wang, S.K.; Sun, G.J. Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 2015, 51, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Lager, S.; Ramirez, V.I.; Acosta, O.; Meireles, C.; Miller, E.; Gaccioli, F.; Rosario, F.J.; Gelfond, J.A.L.; Hakala, K.; Weintraub, S.T.; et al. Docosahexaenoic Acid Supplementation in Pregnancy Modulates Placental Cellular Signaling and Nutrient Transport Capacity in Obese Women. J. Clin. Endocrinol. Metab. 2017, 102, 4557–4567. [Google Scholar] [CrossRef] [PubMed]
- Calabuig-Navarro, V.; Puchowicz, M.; Glazebrook, P.; Haghiac, M.; Minium, J.; Catalano, P.; Demouzon, S.H.; O’Tierney-Ginn, P. Effect of ω-3 supplementation on placental lipid metabolism in overweight and obese women. Am. J. Clin. Nutr. 2016, 103, 1064–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinman, K.P.; Olsen, S.F.; Oken, E.; Rich-Edwards, J.W.; Gillman, M.W. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: Results from a US pregnancy cohort. Am. J. Epidemiol. 2004, 160, 774–783. [Google Scholar] [CrossRef]
- Drouillet, P.; Forhan, A.; De Lauzon-Guillain, B.; Thiebaugeorges, O.; Goua, V.; Magnin, G.; Schweitzer, M.; Kaminski, M.; Ducimetiere, P.; Charles, M.-A.; et al. Maternal fatty acid intake and fetal growth: Evidence for an association in overweight women. The ‘EDEN mother–child’ cohort (study of pre- and early postnatal determinants of the child’s development and health). Br. J. Nutr. 2008, 101, 575. [Google Scholar] [CrossRef] [PubMed]
- Donahue, S.M.; Rifas-Shiman, S.L.; Gold, D.R.; Jouni, Z.E.; Gillman, M.W.; Oken, E. Prenatal fatty acid status and child adiposity at age 3 y: Results from a US pregnancy cohort. Am. J. Clin. Nutr. 2011, 93, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, A.J.; Gishti, O.; Voortman, T.; Felix, J.F.; Williams, M.A.; Hofman, A.; Demmelmair, H.; Koletzko, B.; Tiemeier, H.; Jaddoe, V.W.; et al. Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: The Generation R Study. Am. J. Clin. Nutr. 2016, 103, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H.; Stokholm, J.; Chawes, B.L.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.-M.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Følsgaard, N.V.; et al. Fish oil–derived fatty acids in pregnancy and wheeze and asthma in offspring. N. Engl. J. Med. 2016, 375, 2530–2539. [Google Scholar] [CrossRef] [PubMed]
- Bernard, J.Y.; De Agostini, M.; Forhan, A.; De Lauzon-Guillain, B.; Heude, B.; Charles, M.-A. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort. J. Nutr. 2013, 143, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 2007, 369, 578–585. [Google Scholar] [CrossRef]
- Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011, 94, 1908–1913. [Google Scholar] [CrossRef] [Green Version]
- ACOG Practice Advisory: Update on Seafood Consumption During Pregnancy [Internet]: ACOG. 2017. Available online: https://www.acog.org/Clinical-Guidance-and-Publications/Practice-Advisories/ACOG-Practice-Advisory-Seafood-Consumption-During-Pregnancy (accessed on 12 May 2018).
- Harper, M.; Thom, E.; Klebanoff, M.A.; Thorp, J.; Sorokin, Y.; Varner, M.W.; Wapner, R.J.; Caritis, S.N.; Iams, J.D.; Carpenter, M.W.; et al. Omega-3 fatty acid supplementation to prevent recurrent preterm birth. Obstet. Gynecol. 2010, 115, 234–242. [Google Scholar] [CrossRef]
- Reece, M.S.; McGregor, J.A.; Allen, K.G.; Harris, M.A. Maternal and perinatal long-chain fatty acids: Possible roles in preterm birth. Am. J. Obstet. Gynecol. 1997, 176, 907–914. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Wijendran, V.; Bendel, R.B.; Couch, S.C.; Philipson, E.H.; Thomsen, K.; Zhang, X.; Lammi-Keefe, C.J. Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: Relations with maternal factors. Am. J. Clin. Nutr. 1999, 70, 53–61. [Google Scholar] [CrossRef]
- Tomedi, L.E.; Chang, C.-C.H.; Newby, P.; Evans, R.W.; Luther, J.F.; Wisner, K.L.; Bodnar, L.M. Pre-pregnancy obesity and maternal nutritional biomarker status during pregnancy: A factor analysis. Public Health Nutr. 2013, 16, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, A.J.; Jaddoe, V.W.V.; Gishti, O.; Felix, J.F.; Williams, M.A.; Hofman, A.; Demmelmair, H.; Koletzko, B.; Tiemeier, H.; Gaillard, R.; et al. Body mass index, gestational weight gain and fatty acid concentrations during pregnancy: The Generation R Study. Eur. J. Epidemiol. 2015, 30, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibbons, C.M.; Brenna, J.T.; Lawrence, P.; Hoile, S.P.; Clarke-Harris, R.; Lillycrop, K.A.; Burdge, G.C. Effect of sex hormones on n-3 polyunsaturated fatty acid biosynthesis in HepG2 cells and in human primary hepatocytes. Prostaglandins Leukot. Essent. Fat. Acids (Plefa) 2014, 90, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez Candela, C.; Bermejo López, L.M.; Loria Kohen, V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: Nutritional recommendations. Nutr. Hosp. 2011, 26. [Google Scholar] [CrossRef]
- Kang, J.X. The importance of omega-6/omega-3 fatty acid ratio in cell function. The gene transfer of omega-3 fatty acid desaturase. World Rev. Nutr. Diet. 2003, 92, 23–36. [Google Scholar] [PubMed]
- Simopoulos, A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Khaire, A.A.; Kale, A.A.; Joshi, S.R. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot. Essent. Fat. Acids (Plefa) 2015, 98, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Aye, I.L.; Lager, S.; Ramirez, V.I.; Gaccioli, F.; Dudley, D.J.; Jansson, T.; Powell, T. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Boil. Reprod. 2014, 90, 129. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.G.; Vishwanathan, R.; Penfield-Cyr, A.; Matthan, N.R.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Sen, S. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors. J. Perinatol. 2016, 36, 284–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, H.; Cheema, S.K. Breastmilk with a high omega-6 to omega-3 fatty acid ratio induced cellular events similar to insulin resistance and obesity in 3T3-L1 adipocytes. Pediatr. Obes. 2017, 13, 285–291. [Google Scholar] [CrossRef]
- Vaidya, H.; Cheema, S.K. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids. Food Nutr. Res. 2015, 59, 25866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, L.M.; Young, A.S.; Mitchell, A.M.; Belury, M.A.; Gracious, B.L.; Arnold, L.E.; Fristad, M.A. Body weight affects ω-3 polyunsaturated fatty acid (PUFA) accumulation in youth following supplementation in post-hoc analyses of a randomized controlled trial. PLoS ONE 2017, 12, e0173087. [Google Scholar] [CrossRef]
- Yee, L.D.; Lester, J.L.; Cole, R.M.; Richardson, J.R.; Hsu, J.C.; Li, Y.; Lehman, A.; Belury, M.A.; Clinton, S.K. ω-3 Fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition. Am. J. Clin. Nutr. 2010, 91, 1185–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, A.; Wang, Y.; Xu, J.Y.; Stejskal, D.; Tam, S.; Zhang, J.; Wat, N.M.; Wong, W.K.; Lam, K.S. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 2006, 52, 405–413. [Google Scholar] [CrossRef]
- Krauss-Etschmann, S.; Shadid, R.; Campoy, C.; Hoster, E.; Demmelmair, H.; Jiménez, M.; Gil, A.; Rivero, M.; Veszprémi, B.; Decsi, T.; et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: A European randomized multicenter trial. Am. J. Clin. Nutr. 2007, 85, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Pottala, J.V.; Lacey, S.M.; Vasan, R.S.; Larson, M.G.; Robins, S.J. Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the framingham heart study. Atherosclerosis 2012, 225, 425–431. [Google Scholar] [CrossRef]
- Block, R.C.; Harris, W.S.; Pottala, J.V. Determinants of blood cell omega-3 fatty acid content. Open Biomark J. 2008, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, R.; Rondanelli, M.; Russo-Volpe, S.; Ferrari, E.; Cestaro, B. Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes. J. Lipid Res. 2004, 45, 1846–1851. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N., Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
Characteristics | Total n = 556 | Pre-Pregnancy BMI (kg/m2) Category | p-Value a | ||
---|---|---|---|---|---|
Lean n = 253 (46%) | Overweight n = 146 (26%) | Obese n = 157 (28%) | |||
Age at enrollment (years) | 27 (23, 32) | 27 (24, 32) | 28 (23, 33) | 27 (23, 32) | 0.79 |
BMI (kg/m2) | 26.5 (22, 30) | 22 (21, 23) | 27 (25, 28) | 34 (32, 38) | <0.001 b,c,d |
Gestational age at randomization (days) | 136 (125, 146) | 135 (124, 146) | 138 (126, 147) | 135 (125, 145) | 0.43 |
Education (years) | 13 (12, 16) | 14 (12, 16) | 12 (11, 15) | 12 (12, 14) | <0.001 c,d |
Race/Ethnicity e | |||||
White | 254 (46) | 142 (56) | 57 (39) | 55 (35) | <0.001 |
Black, non-Hispanic | 204 (37) | 63 (25) | 58 (40) | 83 (53) | |
Hispanic | 81 (14) | 36 (14) | 28 (19) | 17 (11) | |
Other | 16 (3) | 11 (4) | 3 (2) | 2 (1) | |
Smoking in pregnancy (Yes, %) | 89 (16) | 32 (13) | 24 (16) | 33 (21) | 0.08 |
Marital Status | |||||
Married/Living with Partner | 371 (67) | 183 (72) | 95 (65) | 93 (59) | 0.08 |
Divorced/Widowed/Separated | 29 (5) | 9 (4) | 9 (6) | 11 (7) | |
Never Married | 156 (28) | 61 (24) | 42 (29) | 53 (34) | |
Length of supplementation (days) | 56 (42, 63) | 55 (41, 64) | 56 (40, 63) | 55 (42, 63) | 0.84 |
Fish intake (servings/week) | |||||
<1 | 269 (48) | 136 (54) | 71 (49) | 62 (40) | 0.006 f |
1 | 183 (33) | 76 (30) | 50 (34) | 57 (36) | |
2 | 41 (8) | 13 (5) | 10 (7) | 18 (11) | |
≥3 | 63 (11) | 28 (11) | 15 (10) | 20 (13) | |
Treatment Arm | |||||
Treatment | 278 (50) | 120 (47) | 77 (53) | 81 (52) | 0.53 |
Placebo | 278 (50) | 133 (53) | 69 (47) | 76 (48) | |
Study Compliance (%) | 92 (81, 99) | 93 (83, 99) | 93 (82, 99) | 89 (78, 99) | 0.15 |
n | Total | Pre-Pregnancy BMI (kg/m2) Category | p-Value a | |||
---|---|---|---|---|---|---|
Lean | Overweight | Obese | ||||
n-3 PUFA | ||||||
Total n-3 PUFA | 532 | 4.1 (3.3, 5.1) | 4.1 (3.4, 5.2) | 3.9 (3.1, 5.0) | 4.1 (3.4, 5.0) | 0.16 |
DHA + EPA | 532 | 3.9 (3.1, 4.7) | 3.9 (3.1, 4.7) | 3.8 (2.7, 4.6) | 4.0 (3.2, 4.6) | 0.33 |
n-6 PUFA | ||||||
Total n-6 PUFA | 532 | 38.0 (33.6, 40.1) | 37.9 (33.2, 40.0) | 38.3 (34.1, 40.2) | 37.9 (33.7, 40.1) | 0.73 |
AA | 532 | 11.7 (9.7, 13.4) | 11.5 (9.3, 13.0) | 11.5 (9.4, 13.0) | 12.6 (10.6, 14.6) | 0.001 b,c |
n-6/n-3 PUFA ratio | ||||||
Total n-6/n-3 PUFA | 477 | 8.9 (6.9, 10.7) | 9.0 (6.7, 10.6) | 8.8 (6.7, 10.9) | 8.8 (7.1, 10.5) | 0.83 |
AA/DHA + EPA | 461 | 3.0 (2.4, 3.4) | 2.9 (2.3, 3.3) | 3.0 (2.3, 3.5) | 3.1 (2.7, 3.6) | 0.006 c |
n | Model 0 | Model 1 | Model 2 | |
---|---|---|---|---|
Total n-3 PUFA | 531 | |||
Lean | Ref | Ref | Ref | |
Overweight | −1.97 (−3.51, −0.43) a | −1.80 (−3.39, −0.21) a | −1.80 (−3.39, −0.21) a | |
Obese | −0.96 (−2.46, 0.55) | −0.58 (−2.15, 1.00) | −0.57 (−2.15, 1.00) | |
DHA+EPA | 531 | |||
Lean | Ref | Ref | Ref | |
Overweight | −0.25 (−0.61, 0.11) | −0.25 (−0.61, 0.11) | −0.24 (−0.60, 0.11) | |
Obese | −0.11 (−0.24, 0.46) | 0.16 (−0.20, 0.52) | 0.13 (−0.22, 0.49) | |
Total n-6 PUFA | 531 | |||
Lean | Ref | Ref | Ref | |
Overweight | 0.68 (−1.14, 2.50) | 0.45 (−1.42, 2.31) | 0.47 (−1.39, 2.34) | |
Obese | 0.48 (−1.29, 2.26) | 0.21 (−1.64, 2.06) | 0.15 (−1.70, 1.99) | |
AA | 531 | |||
Lean | Ref | Ref | Ref | |
Overweight | −0.24 (−1.05, 0.57) | −0.47 (−1.31, 0.37) | −0.45 (−1.29, 0.39) | |
Obese | 1.30 (0.51, 2.10) a | 1.00 (0.17, 1.83) a | 0.96 (0.13, 1.79) a | |
Total n-6/n-3 PUFA | 476 | |||
Lean | Ref | Ref | Ref | |
Overweight | 0.24 (−0.62, 1.10) | 0.25 (−0.65, 1.14) | 0.24 (−0.65, 1.14) | |
Obese | 0.21 (−0.61, 1.03) | 0.26 (−0.61, 1.13) | 0.27 (−0.60, 1.15) | |
AA/DHA+EPA | 460 | |||
Lean | Ref | Ref | Ref | |
Overweight | 0.19 (−0.04, 0.41) | 0.12 (−0.10, 0.35) | 0.12 (−0.10, 0.35) | |
Obese | 0.35 (0.14, 0.56) a | 0.26 (0.04, 0.47) a | 0.26 (0.05, 0.48) a |
n | Treatment Group | p-Value a | ||
---|---|---|---|---|
Placebo | Treatment | |||
Total n-3 PUFA | ||||
All | 472 | −0.2 (−1.2, 0.6) b | 1.5 (−0.3, 5.1) b | <0.000 |
Lean | −0.02 (−1.6, 0.6) | 3.4 (−0.2, 6.6) b | <0.000 | |
Overweight | −0.2 (−1.6, 0.6) | 1.5 (0.0, 4.2) b | <0.000 | |
Obese | −0.6 (−1.5, 0.3) b | 0.4 (−0.8, 2.5) | 0.002 | |
DHA + EPA | ||||
All | 472 | −0.2 (−0.9, 0.4) b | 2.3 (0.0, 5.3) b | <0.000 |
Lean | −0.1 (−0.9, 0.5) | 4.5 (0.7, 6.7) b | <0.000 | |
Overweight | −0.2 (−0.6, 0.4) | 1.9 (0.0, 4.2) b | <0.000 | |
Obese | −0.5 (−1.2, 0.0) b | 1.9 (0.0, 4.2) b | <0.000 | |
Total n-6 PUFA | ||||
All | 472 | −0.3 (−3.5, 2.7) | −2.4 (−5.4, 2.1) b | 0.02 |
Lean | 0.6 (−3.4, 2.2) | −3.7 (−6.5, 1.6) b | 0.01 | |
Overweight | 0.1 (−4.6, 3.3) | −2.0 (−5.2, 2.7) | 0.32 | |
Obese | −0.2 (−3.4, 2.2) | −0.5 (−4.2, 2.2) | 0.65 | |
AA | ||||
All | 472 | −0.9 (−2.3, 0.4) b | −1.5 (−3.1, −0.3) b | 0.001 |
Lean | −0.7(−1.8, 0.4) b | −2.0 (−3.5, −0.8) b | <0.000 | |
Overweight | −1.1 (−2.0, 0.4) b | −1.5 (−3.0, 0.0) b | <0.000 | |
Obese | −1.0 (−3.1, 0.0) b | −1.0 (−2.2, −0.1) b | 0.54 | |
Total n-6/n-3 | ||||
All | 396 | 0.3 (−1.2, 1.6) | −2.9 (−6.1, 0.9) b | <0.000 |
Lean | −0.1 (−1.8, 1.4) | −4.3 (−7.1, −0.1) b | <0.000 | |
Overweight | 0.5 (−0.6, 1.6) | −2.8 (−5.3, 1.2) b | <0.000 | |
Obese | 1.0 (−0.9, 2.0) | −1.1 (−3.8, 1.5) b | 0.016 | |
AA/DHA + EPA | ||||
All | 384 | −0.1 (−0.4, −0.2) | −1.4 (−2.0, −0.4) b | <0.000 |
Lean | −0.1 (−0.3, 0.1) | −1.6 (−2.1, −0.8) b | <0.000 | |
Overweight | 0.0 (−0.4, 0.3) | −1.4 (−2.2, −0.5) b | <0.000 | |
Obese | −0.1 (−0.6, 0.2) | −0.5 (−1.5, −0.1) b | 0.002 |
n | Overall | pa | Pre-Pregnancy BMI Category | p for Interaction | |||
---|---|---|---|---|---|---|---|
Lean | Overweight | Obese | |||||
n-3 PUFA | |||||||
Total n-3 PUFA | 471 | 1.62 (0.03, 3.21) | 0.046 | 2.52 (−0.16, 5.20) | 2.33 (−0.16, 4.81) | 0.19 (−2.98, 3.22) | 0.230 |
DHA + EPA | 471 | 3.08 (2.59, 3.56) | 0.000 | 4.03 (3.24, 4.82) b | 2.14 (1.17, 3.10) b | 2.12 (1.32, 2.92) b | 0.000 |
n-6 PUFA | |||||||
Total n-6 PUFA | 471 | −0.46 (−2.41, 1.49) | 0.640 | −1.70 (−4.59, 1.19) | 1.17 (−5.69, 3.36) | 0.21 (−3.17, 3.58) | 0.430 |
AA | 471 | −0.42 (−1.12, 0.27) | 0.240 | −1.13 (−2.16, −0.11) b | −0.67 (−2.08, 0.74) | 0.53 (−0.87, 1.93) | 0.190 |
n-6/n-3 PUFA ratio | |||||||
Total n-6/n-3 PUFA | 395 | −2.71 (−3.70, −1.72) | 0.000 | −3.67 (−5.13, −2.21) b | −2.83 (−5.16, −0.51) b | −1.55 (−3.41, −0.30) b | 0.017 |
AA/ DHA + EPA | 383 | −1.13 (−1.36, −0.91) | 0.000 | −1.48 (−1.78, −1.17) b | −1.21 (−1.80, −0.63) b | −0.52 (−0.94, −0.10) b | 0.046 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monthé-Drèze, C.; Penfield-Cyr, A.; Smid, M.C.; Sen, S. Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy. Nutrients 2018, 10, 1908. https://doi.org/10.3390/nu10121908
Monthé-Drèze C, Penfield-Cyr A, Smid MC, Sen S. Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy. Nutrients. 2018; 10(12):1908. https://doi.org/10.3390/nu10121908
Chicago/Turabian StyleMonthé-Drèze, Carmen, Annie Penfield-Cyr, Marcela C. Smid, and Sarbattama Sen. 2018. "Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy" Nutrients 10, no. 12: 1908. https://doi.org/10.3390/nu10121908
APA StyleMonthé-Drèze, C., Penfield-Cyr, A., Smid, M. C., & Sen, S. (2018). Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy. Nutrients, 10(12), 1908. https://doi.org/10.3390/nu10121908