Egg Intake in Chronic Kidney Disease
Abstract
:1. Introduction
2. Egg Intake and Lipid Metabolism
2.1. Non-CKD Population
2.2. CKD Population
3. Egg Components: Bioactive Molecules and Nutrients
3.1. Phospholipids
3.2. Trimethylamine N-Oxide (TMAO)
3.3. Lutein and Zeaxanthin
3.4. Vitamin D
3.5. Protein
4. Phosphorus and Phosphorus-to-Protein Ratio
5. Nutrient Recommendations in CKD
6. Egg Supplementation Studies
7. Egg Intake and Risk of Developing CKD
7.1. Potential Renal Acid Load (PRAL)
7.2. Dietary Quality
8. Summary
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Global Facts: About Kidney Disease. Available online: https://www.kidney.org/kidneydisease/global-facts-about-kidney-disease (accessed on 11 September 2018).
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- New Report Captures the High Burden, High Cost and Low Awareness of Kidney Disease in the United States—The United States Renal Data System’s Annual Data Report highlights key data and trends for kidney disease in 2018. Available online: https://www.usrds.org/adrhighlights.aspx (accessed on 16 October 2018).
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Kidney Disease Outcomes Quality Initiative, National Kidney Foundation. Clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000, 35, 1–140. [Google Scholar]
- World Agricultural Supply and Demand Estimates. Available online: https://www.usda.gov/oce/commodity/wasde/wasde1018.pdfpdf (accessed on 9 October 2018).
- University, U.N. Protein and amino acid requirements in human nutrition. World Health Organ. Tech. Rep. Ser. 2007, 935, 1–265. [Google Scholar]
- Smith, A.; Gray, J. Considering the benefits of egg consumption for older people at risk of sarcopenia. Br. J. Community Nurs. 2016, 21, 305–309. [Google Scholar] [CrossRef] [PubMed]
- United States Renal Data System—Chapter 4: Cardiovascular Disease in Patients with CKD. Available online: https://www.usrds.org/2018/view/v1_04.aspx (accessed on 16 October 2018).
- United States Renal Data System—Chapter 8: Cardiovascular Disease in Patients with ESRD. Available online: https://www.usrds.org/2018/view/v2_08.aspx (accessed on 16 October 2018).
- United States Renal Data System—Chapter 11: International Comparisons. Available online: https://www.usrds.org/2018/view/v2_11.aspx (accessed on 16 October 2018).
- Cozzolino, M.; Galassi, A.; Pivari, F.; Ciceri, P.; Conte, F. The Cardiovascular Burden in End-Stage Renal Disease. Contrib. Nephrol. 2017, 191, 44–57. [Google Scholar] [CrossRef]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Obi, Y.; Qader, H.; Kovesdy, C.P.; Kalantar-Zadeh, K. Latest consensus and update on protein-energy wasting in chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, A.L.; Nigwekar, S.U. Optimal management of bone mineral disorders in chronic kidney disease and end stage renal disease. Curr. Opin. Nephrol. Hypertens. 2016, 25, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Mikolasevic, I.; Zutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef]
- Ganesh, S.K.; Stack, A.G.; Levin, N.W. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J. Am. Soc. Nephrol. 2001, 12, 2131–2138. [Google Scholar] [PubMed]
- Mallamaci, F.; Zoccali, C.; Tripepi, G.; Fermo, I.; Benedetto, F.A.; Cataliotti, A.; Bellanuova, I.; Malatino, L.S.; Soldarini, A.; Investigators, C. Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients. Kidney Int. 2002, 61, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Bazeley, J.; Bieber, B.; Li, Y.; Morgenstern, H.; de Sequera, P.; Combe, C.; Yamamoto, H.; Gallagher, M.; Port, F.K.; Robinson, B.M. C-reactive protein and prediction of 1-year mortality in prevalent hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Hager, M.R.; Narla, A.D.; Tannock, L.R. Dyslipidemia in patients with chronic kidney disease. Rev. Endocr. Metab. Disord. 2017, 18, 29–40. [Google Scholar] [CrossRef]
- Foundation, N.K. K/DOQI Clinical Practice Guidelines for Managing Dyslipidemias in CKD. Am. J. Kidney Dis. 2003, 41, S1–S91. [Google Scholar]
- Grundy, S.M.; Becker, D.; Clark, L.T.; Cooper, R.S.; Denke, M.A.; Howard, J.; Hunninghake, D.B.; Illingworth, D.R.; Luepker, R.V.; McBride, P.; et al. Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Natl. Inst. Health 2002, 106, 3143–3421. [Google Scholar]
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Cardiovascular Disease in Dialysis Patients. Am. J. Kidney Dis. 2005, 45, A3–A4. [Google Scholar] [CrossRef]
- Kidney Disease Improving Global Outcomes. KDIGO Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 259–305. [Google Scholar]
- Blesso, C.N.; Fernandez, M.L. Dietary Cholesterol, Serum Lipids, and Heart Disease: Are Eggs Working for or Against You? Nutrients 2018, 10, 426. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Green, E.M.; Perez, G.O.; Hsia, S.L.; Crary, M. Effect of egg supplements on serum lipids in uremic patients. J. Am. Diet Assoc. 1985, 85, 355–357. [Google Scholar] [PubMed]
- Noori, N.; Sims, J.J.; Kopple, J.D.; Shah, A.; Colman, S.; Shinaberger, C.S.; Bross, R.; Mehrotra, R.; Kovesdy, C.P.; Kalantar-Zadeh, K. Organic and Inorganic Dietary Phosphorus and Its Management in Chronic Kidney Disease. Iran. J. Kidney Dis. 2010, 4, 89–100. [Google Scholar] [PubMed]
- Taylor, L.M.; Kalantar-Zadeh, K.; Markewich, T.; Colman, S.; Benner, D.; Sim, J.J.; Kovesdy, C.P. Dietary egg whites for phosphorus control in maintenance haemodialysis patients: A pilot study. J. Ren. Care 2011, 37, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Jeloka, T.K.; Dharmatti, G.; Jamdade, T.; Pandit, M. Are oral protein supplements helpful in the management of malnutrition in dialysis patients? Indian J. Nephrol. 2013, 23, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lew, Q.J.; Jafar, T.H.; Koh, H.W.; Jin, A.; Chow, K.Y.; Yuan, J.M.; Koh, W.P. Red Meat Intake and Risk of ESRD. J. Am. Soc. Nephrol. 2017, 28, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Wang, F.; Jiao, A.; Xu, X.; Xie, Z.; Jin, Z. Preparation, characterization and physicochemical properties of novel low-phosphorus egg yolk protein. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef]
- Pignanelli, M.; Bogiatzi, C.; Gloor, G.; Allen-Vercoe, E.; Reid, G.; Urquhart, B.L.; Ruetz, K.N.; Velenosi, T.J.; Spence, J.D. Moderate Renal Impairment and Toxic Metabolites Produced by the Intestinal Microbiome: Dietary Implications. J. Ren. Nutr. 2018. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 18 September 2018).
- Shin, J.Y.; Xun, P.; Nakamura, Y.; He, K. Egg consumption in relation to risk of cardiovascular disease and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 146–159. [Google Scholar] [CrossRef]
- Rong, Y.; Chen, L.; Zhu, T.; Song, Y.; Yu, M.; Shan, Z.; Sands, A.; Hu, F.B.; Liu, L. Egg consumption and risk of coronary heart disease and stroke: Dose-response meta-analysis of prospective cohort studies. BMJ 2013, 346, e8539. [Google Scholar] [CrossRef] [Green Version]
- Fuller, N.R.; Caterson, I.D.; Sainsbury, A.; Denyer, G.; Fong, M.; Gerofi, J.; Baqleh, K.; Williams, K.H.; Lau, N.S.; Markovic, T.P. The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: The Diabetes and Egg (DIABEGG) study-a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.D.; Lichtenstein, A.H. Dietary Cholesterol and Plasma Lipoprotein Profiles: Randomized-Controlled Trials. Curr. Nutr. Rep. 2013, 2, 274–282. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.J.; Kolb, R.; Parker, T.S. Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J. Clin. Invest. 1987, 79, 1729–1739. [Google Scholar] [PubMed]
- DiMarco, D.M.; Missimer, A.; Murillo, A.G.; Lemos, B.S.; Malysheva, O.V.; Caudill, M.A.; Blesso, C.N.; Fernandez, M.L. Intake of up to 3 Eggs/Day Increases HDL Cholesterol and Plasma Choline While Plasma Trimethylamine-N-oxide is Unchanged in a Healthy Population. Lipids 2017, 52, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, G.; Ratliff, J.; Puglisi, M.; Torres-Gonzalez, M.; Vaishnav, U.; Leite, J.O.; Quann, E.; Volek, J.S.; Luz, M. Fernandez Dietary cholesterol from eggs increases plasma HDL cholesterol in overweight men consuming a carbohydrate-restricted diet. J. Nutr. 2008, 138, 272–276. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, D.M.; Norris, G.H.; Millar, C.L.; Blesso, C.N.; Fernandez, M.L. Intake of up to 3 Eggs per Day Is Associated with Changes in HDL Function and Increased Plasma Antioxidants in Healthy, Young Adults. J. Nutr. 2017, 147, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Herron, K.L.; Lofgren, I.E.; Sharman, M.; Volek, J.S.; Fernandez, M.L. High intake of cholesterol results in less atherogenic low-density lipoprotein particles in men and women independent of response classification. Metabolism 2004, 53, 823–830. [Google Scholar] [CrossRef]
- Kuang, H.; Yang, F.; Zhang, Y.; Wang, T.; Chen, G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. Cholesterol 2018, 2018, 6303810. [Google Scholar] [CrossRef]
- Holzer, M.; Schilcher, G.; Curcic, S.; Trieb, M.; Ljubojevic, S.; Stojakovic, T.; Scharnagl, H.; Kopecky, C.M.; Rosenkranz, A.R.; Heinemann, A.; et al. Dialysis Modalities and HDL Composition and Function. J. Am. Soc. Nephrol. 2015, 26, 2267–2276. [Google Scholar] [CrossRef] [Green Version]
- Florens, N.; Calzada, C.; Lyasko, E.; Juillard, L.; Soulage, C.O. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins. Toxins 2016, 8, 376. [Google Scholar] [CrossRef]
- Saltissi, D.; Morgan, C.; Knight, B.; Chang, W.; Rigby, R.; Westhuyzen, J. Effect of lipid-lowering dietary recommendations on the nutritional intake and lipid profiles of chronic peritoneal dialysis and hemodialysis patients. Am. J. Kidney Dis. 2001, 37, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, M.; Sucajtys-Szulc, E.; Kossowska, E.; Swierczynski, J.; Rutkowski, B.; Boguslawski, W. Feedback inhibition of cholesterol biosynthesis by dietary cholesterol in experimental chronic renal failure. J. Ren. Nutr. 2008, 18, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Pahl, M.V.; Oveisi, F.; Khamiseh, G. Intestinal absorption and biliary secretion of cholesterol in rats with nephrotic syndrome. Nephrol. Dial. Transplant. 1988, 13, 1446–1451. [Google Scholar] [CrossRef]
- Cohn, J.S.; Kamili, A.; Wat, E.; Chung, R.W.; Tandy, S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2010, 2, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J. Bioactive Egg Components and Inflammation. Nutrients 2015, 7, 7889–7913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zierenberg, O.; Grundy, S.M. Intestinal absorption of polyenephosphatidylcholine in man. J. Lipid Res. 1982, 23, 1136–1142. [Google Scholar] [PubMed]
- Agarwala, A.P.; Rodrigues, A.; Risman, M.; McCoy, M.; Trindade, K.; Qu, L.; Cuchel, M.; Billheimer, J.; Rader, D.J. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1515–1519. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.J.; Blesso, C.N.; Lee, J.; Barona, J.; Shah, D.; Thomas, M.J.; Fernandez, M.L. Egg consumption modulates HDL lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome. Lipids 2013, 48, 557–567. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef]
- Ufnal, M.; Zadlo, A.; Ostaszewski, R. TMAO: A small molecule of great expectations. Nutrition 2015, 31, 1317–1323. [Google Scholar] [CrossRef]
- Landfald, B.; Valeur, J.; Berstad, A.; Raa, J. Microbial trimethylamine-N-oxide as a disease marker: Something fishy? Microb. Ecol. Health Dis. 2017, 28, 1327309. [Google Scholar] [CrossRef]
- Fukami, K.; Yamagishi, S.; Sakai, K.; Kaida, Y.; Yokoro, M.; Ueda, S.; Wada, Y.; Takeuchi, M.; Shimizu, M.; Yamazaki, H.; et al. Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J. Cardiovasc. Pharmacol. 2015, 65, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.E.; Caudill, M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol. Metab. 2017, 28, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Stepniewska, J.; Dolegowska, B.; Ciechanowski, K.; Kwiatkowska, E.; Millo, B.; Chlubek, D. Erythrocyte antioxidant defense system in patients with chronic renal failure according to the hemodialysis conditions. Arch. Med. Res. 2006, 37, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Yeum, K.J.; Russell, R.M. Carotenoid bioavailability and bioconversion. Annu. Rev. Nutr. 2002, 22, 483–504. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J. The Role of Carotenoids in Human Health. Nutr. Clin. Care 2002, 5, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin-Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef]
- Chung, H.Y.; Rasmussen, H.M.; Johnson, E.J. Lutein Bioavailability Is Higher from Lutein-Enriched Eggs than from Supplements and Spinach in Men. J. Nutr. 2004, 134, 1887–1893. [Google Scholar] [CrossRef] [Green Version]
- Goodrow, E.F.; Wilson, T.A.; Houde, S.C. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J. Nutr. 2006, 136, 2519–2524. [Google Scholar] [CrossRef]
- Wang, M.X.; Jiao, J.H.; Li, Z.Y.; Liu, R.R.; Shi, Q.; Ma, L. Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers. Atherosclerosis 2013, 227, 380–385. [Google Scholar] [CrossRef]
- Chen, C.Y.; Dai, C.S.; Lee, C.C.; Shyu, Y.C.; Huang, T.S.; Yeung, L.; Sun, C.C.; Yang, H.Y.; Wu, I.W. Association between macular degeneration and mild to moderate chronic kidney disease: A nationwide population-based study. Medicine 2017, 96, e6405. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; Sangiovanni, J.P.; Danis, R.P.; Ferris, F.L., 3rd; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; et al.; Age-Related Eye Disease Study 2 (AREDS 2) Research Group Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kopple, J.D.; Deepak, S.; Block, D.; Block, G. Food intake characteristics of hemodialysis patients as obtained by food frequency questionnaire. J Ren. Nutr. 2002, 12, 17–31. [Google Scholar] [CrossRef]
- Jean, G.; Souberbielle, J.C.; Chazot, C. Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients 2017, 9, 328. [Google Scholar] [CrossRef]
- Nakashima, A.; Yokoyama, K.; Yokoo, T.; Urashima, M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J. Diabetes 2016, 7, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.K.; Koh, G.Y.; Rowling, M.J.; Schalinske, K.L. Whole Egg Consumption Prevents Diminished Serum 25-Hydroxycholecalciferol Concentrations in Type 2 Diabetic Rats. J. Agric. Food Chem. 2016, 64, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Saande, C.J.; Jones, S.K.; Rowling, M.J.; Schalinske, K.L. Whole Egg Consumption Exerts a Nephroprotective Effect in an Acute Rodent Model of Type 1 Diabetes. J. Agric. Food Chem. 2018, 66, 866–870. [Google Scholar] [CrossRef]
- Protein Quality Evaluation. Available online: http://apps.who.int/iris/bitstream/handle/10665/38133/9251030979_eng.pdf;jsessionid=A8166AA45AF071379EAAE4883C101D63?sequence=1 (accessed on 16 October 2018).
- Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar]
- Mekki, K.; Remaoun, M.; Belleville, J.; Bouchenak, M. Hemodialysis duration impairs food intake and nutritional parameters in chronic kidney disease patients. Int. Urol. Nephrol. 2012, 44, 237–244. [Google Scholar] [CrossRef]
- Van Vliet, S.; Shy, E.L.; Sawan, S.A. Consumption of whole eggs promotes greater stimulation of postexercise muscle protein synthesis than consumption of isonitrogenous amounts of egg whites in young men. Am. J. Clin. Nutr. 2017, 106, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Mitch, W.E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014, 10, 504–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, D.S.; Moseley, P.; Dominic, E.A.; Onime, A.; Tzamaloukas, A.H.; Boyd, A.; Shah, V.O.; Glew, R.; Wolfe, R.; Ferrando, A. Interleukin-6 modulates hepatic and muscle protein synthesis during hemodialysis. Kidney Int. 2008, 73, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Vervloet, M.G.; van Ballegooijen, A.J. Prevention and treatment of hyperphosphatemia in chronic kidney disease. Kidney Int. 2018, 93, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, C.; Sayre, S.S.; Leon, J.B.; Machekano, R.; Love, T.E.; Porter, D.; Marbury, M.; Sehgal, A.R. Effect of Food Additives on Hyperphosphatemia Among Patients with End-Stage Renal Disease. JAMA 2009, 301, 629–635. [Google Scholar] [CrossRef] [PubMed]
- De Fornasari, M.L.; Dos Santos Sens, Y.A. Replacing Phosphorus-Containing Food Additives With Foods Without Additives Reduces Phosphatemia in End-Stage Renal Disease Patients: A Randomized Clinical Trial. J. Ren. Nutr. 2017, 27, 97–105. [Google Scholar] [CrossRef]
- Goraya, N.; Wesson, D.E. Is Dietary Red Meat Kidney Toxic? J. Am. Soc. Nephrol. 2017, 28, 5–7. [Google Scholar] [CrossRef]
- Biruete, A.; Jeong, J.H.; Barnes, J.L.; Wilund, K.R. Modified Nutritional Recommendations to Improve Dietary Patterns and Outcomes in Hemodialysis Patients. J. Ren. Nutr. 2017, 27, 62–70. [Google Scholar] [CrossRef]
- Uribarri, J. An aspirational diet for dialysis patients: Evidence and theory. Semin. Dial. 2018. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Moio, M.R.; Fois, A.; Sofronie, A.; Gendrot, L.; Cabiddu, G.; D’Alessandro, C.; Cupisti, A. The Diet and Haemodialysis Dyad: Three Eras, Four Open Questions and Four Paradoxes. A Narrative Review, Towards a Personalized, Patient-Centered Approach. Nutrients 2017, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- McCann, L. Pocket Guide to Nutrition Assessment of the Patient with Chronic Kidney Disease, 5th ed.; McCann, L., Ed.; National Kidney Foundation: New York, NY, USA, 2015. [Google Scholar]
- Shinaberger, C.S.; Greenland, S.; Kopple, J.D.; Van Wyck, D.; Mehrotra, R.; Kovesdy, C.P.; Kalantar-Zadeh, K. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am. J. Clin. Nutr. 2008, 88, 1511–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yari, Z.; Mirmiran, P. Alkaline Diet: A Novel Nutrition Strategy for CKD? Iran. J. Kidney Dis. 2018, 12, 204–208. [Google Scholar] [PubMed]
- Ko, B.J.; Chang, Y.; Ryu, S.; Kim, E.M.; Lee, M.Y.; Hyun, Y.Y.; Lee, K.B. Dietary acid load and chronic kidney disease in elderly adults: Protein and potassium intake. PLoS ONE 2017, 12, e0185069. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Coresh, J.; Grams, M.E.; Steffen, L.M.; Anderson, C.A.; Appel, L.J.; Crews, D.C. Dietary Acid Load and Incident Chronic Kidney Disease: Results from the ARIC Study. Am. J. Nephrol. 2016, 42, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Crews, D.C.; Wesson, D.E.; Tilea, W.; Saran, R. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 2014, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Brown, A. Understanding Food: Principles and Preparation; Wadsworth/Thomson Learning: Belmont, CA, USA, 2000. [Google Scholar]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Haring, B.; Selvin, E.; Liang, M.; Coresh, J.; Grams, M.E.; Petruski-Ivleva, N.; Steffen, L.M.; Rebholz, C.M. Dietary Protein Sources and Risk for Incident Chronic Kidney Disease: Results From the Atherosclerosis Risk in Communities (ARIC) Study. J. Ren. Nutr. 2017, 27, 233–242. [Google Scholar] [CrossRef]
- Fadupin, G.T.; Keshinro, O.O.; Arije, A.; Taiwo, V.O. The Effects of Controlled Intake of Selected Protein Foods on Nephrectomized Rats. Afr. J. Biomed. Res. 2008, 11, 47–54. [Google Scholar] [CrossRef]
Reference | Author, Year | Journal | Study Design | Conclusion |
---|---|---|---|---|
1 | Green EM, et al., 1985 [28] | Journal of the American Dietetic Association | Crossover open design (n = 4 MHD; n = 2 CKD) three eggs daily for 4 weeks (900 mg cholesterol/day) | Ingestion of a high cholesterol diet for 4 weeks was not associated with an increase in serum cholesterol |
2 | Noori N, et al., 2010 [29] | Iranian Journal of Kidney Diseases | Review article | Egg white has one of the lowest phosphorus-protein ratios |
3 | Taylor LM, et al., 2011 [30] | Journal of Renal Care | Pilot study: (n = 13 MHD) Eight ounces (225 g) of pasteurized liquid egg whites one meal per day for six weeks | Serum phosphorus level decreased significantly by 0.9 mg/dL |
4 | Jeloka TK, et al., 2013 [31] | Indian Journal of Nephrology | RCT (n = 50 HD and PD) supplemented with either whey protein or egg albumin for 6 months based on protein deficits | No increase in total protein or caloric intake in either group because of poor tolerance and severe side effects |
5 | Lew QJ, et al. 2017 [32] | Journal of the American Society of Nephrology | Epidemiological Study: Singapore Chinese Health Study | Intake of poultry, fish, eggs, or dairy products was not associated with risk of ESRD |
6 | Long J, et al., 2018 [33] | Journal of the science of food and agriculture | Food science study | Novel method was developed for low-phosphorus yolk protein (LPYP) using alkaline protease auxiliary dephosphorization |
7 | Pignanelli M, et al. 2018 [34] | Journal of Renal Nutrition | Cohort Study | Moderate impairment of renal function was associated with higher plasma levels of gut-derived uremic toxins. Intake of choline/pre-TMA, largely from egg yolk, contributed significantly to plasma levels of TMAO, hippuric acid, and p-cresyl gluronide |
Nutrient Recommendations for Adults with CKD [90] | CKD (Stage 4) | HD | Nutrients in One Hard Cooked Egg (1 large/50 g) [35] | Benefit (+) or Concern (−) | |
---|---|---|---|---|---|
Energy kcal/kg 1 | 23–35 | 30–35 ≥ 60 years 35 < 60 years | Kcals | 78 | ++ |
Protein g/kg 1,2 | 0.8; avoid high protein intake >1.3 | 1.2 stable 1.2--1.3 acutely ill or PEW | Protein (g) | 6.29 | +++ |
Sodium mg/day | <2000 | 750–2000 | Sodium (mg) | 62 | ++ |
Iron mg/day | NA | Individualized | Iron (mg) | 0.59 | + |
Magnesium mg/day | NA | 200–300 | Magnesium (mg) | 5 | + |
Phosphorus mg/day | 800–1000 Maintain blood P/PTH WNL | 10–17 mg/kg/day (e.g., 700–1190 g for a 70 kg adult) | Phosphorus (mg) | 86 | −−− |
Potassium mg/day | Unrestricted unless serum level is high | Up to 1100 to 1250 mg/day; adjust to serum levels | Potassium (mg) | 63 | − |
Calcium mg/day | DRI; maintain serum calcium WNL | ≤1000 | Calcium (mg) | 25 | − |
Zinc mg/day | NA | 15 | Zinc (mg) | 0.53 | + |
2003 Kidney Disease Outcomes Quality Initiative (K/DOQI) Clinical Practice Guidelines for Managing Dyslipidemias in CKD [21] | |||||
Criteria: (1) TG > 500 mg/dL (2) LDL > 100 mg/dL, and (3) TG ≥ 200 mg/dL and non-HDL ≥ 130 mg/dL | |||||
Cholesterol mg/day | 200 | 200 | Cholesterol (mg) | 186 | −−− |
Saturated Fat | < 7% of calories (e.g., 14 g for an 1800 calorie diet) | < 7% of calories (e.g., 14 g for an 1800 calorie diet) | Saturated Fat (g) | 1.63 | − |
Food Type | Average Portion Size | Energy (kcals) | Protein (g) | Potassium (mg) | Phosphorus (mg) | PRAL mEq per Average Portion Size |
---|---|---|---|---|---|---|
Beef, lean only | 3 oz (85 g) | 105 | 17.3 | 298 | 153 | 6.7 |
Chicken, meat only | 3 oz (85 g) | 103 | 17.4 | 272 | 170 | 7.5 |
Frankfurters | 1 link (85 g) | 208 | 7.22 | 98 | 130 | 5.1 |
Pork, lean only | 3 oz (85 g) | 125 | 17.6 | 315 | 170 | 6.7 |
Eggs, chicken, whole | 1 large (50 g) | 73.5 | 6.25 | 65 | 100 | 2 |
Eggs, white | 1 large (33 g) | 12 | 3 | 49.5 | 11 | 0.4 |
Eggs, yolk | 1 large (17 g) | 58 | 2.7 | 20.4 | 85 | 4 |
Lentils, green and brown, dried | 1/2 cup cooked (32 g dried) | 95 | 7.8 | 301 | 112 | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tallman, D.A.; Sahathevan, S.; Karupaiah, T.; Khosla, P. Egg Intake in Chronic Kidney Disease. Nutrients 2018, 10, 1945. https://doi.org/10.3390/nu10121945
Tallman DA, Sahathevan S, Karupaiah T, Khosla P. Egg Intake in Chronic Kidney Disease. Nutrients. 2018; 10(12):1945. https://doi.org/10.3390/nu10121945
Chicago/Turabian StyleTallman, Dina A., Sharmela Sahathevan, Tilakavati Karupaiah, and Pramod Khosla. 2018. "Egg Intake in Chronic Kidney Disease" Nutrients 10, no. 12: 1945. https://doi.org/10.3390/nu10121945
APA StyleTallman, D. A., Sahathevan, S., Karupaiah, T., & Khosla, P. (2018). Egg Intake in Chronic Kidney Disease. Nutrients, 10(12), 1945. https://doi.org/10.3390/nu10121945