Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Biochemistry
2.2. Anthropometry
2.3. Dietary Nutrient Intake
2.4. Dietary Counseling
2.5. Resting Energy Expenditure (REE)
2.6. Physical Activity and Performance
2.7. Diagnosis of Sarcopenia
2.8. Statistical Analysis
3. Results
3.1. Biochemical Data
3.2. Anthropometry and Body Composition
3.3. Resting Energy Expenditure e Total Energy Requirement
3.4. Estimated Protein and Mineral Intake
3.5. Physical Activity and Performance
3.6. Sarcopenia Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BCMI | Body cell mass index |
CCI | Charlson Comorbidity Index |
CKD | Chronic Kidney Disease |
CNAQ | Council on Nutrition Appetite Questionnaire |
eGFR | estimated Glomerular filtration rate |
ESRD | End stage renal disease |
HB | Harris-Benedict equation |
IBW | Ideal body weight |
MAMC | Middle arm muscle circumference |
MAMA | Middle arm muscle area |
MET | Metabolic equivalent |
6MWT | Six-Minute Walk Test |
MIS | Malnutrition inflammation score |
nPCR | Normalized protein catabolic rate |
PA | Physical activity |
RAPA | Rapid Assessment of Physical Activity |
REE | Resting energy expenditure |
SM | Skeletal muscle |
SMI | Skeletal muscle index |
STS | 30′’: 30-s Sit-to-Stand Chair Test |
TEE | Total energy expenditure |
References
- Kooman, J.P.; van der Sande, F.M.; Leunissen, K.M. Kidney disease and aging: A reciprocal relation. Exp. Gerontol. 2017, 87, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Son, H.; Shin, S.K. Influence of frailty on health-related quality of life in pre-dialysis patients with chronic kidney disease in Korea: A cross-sectional study. Health Qual. Life Outcomes 2015, 29, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Robinson-Cohen, C.; Patel, K.V.; Ayers, E.; Littman, A.J.; de Boer, I.H.; Ikizler, T.A.; Himmelfarb, J.; Katzel, L.I.; Kestenbaum, B.; et al. Association between physical performance and all-cause mortality in CKD. J. Am. Soc. Nephrol. 2013, 24, 822–830. [Google Scholar] [CrossRef]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef]
- Giglio, J.; Kamimura, M.A.; Lamarca, F.; Rodrigues, J.; Santin, F.; Avesani, C.M. Association of Sarcopenia with Nutritional Parameters, Quality of Life, Hospitalization, and Mortality Rates of Elderly Patients on Hemodialysis. J. Ren. Nutr. 2018, 28, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Obermayr, R.P.; Temml, C.; Knechtelsdorfer, M.; Gutjahr, G.; Kletzmayr, J.; Heiss, S.; Ponholzer, A.; Madersbacher, S.; Oberbauer, R.; Klauser-Braun, R. Predictors of new-onset decline in kidney function in a general middle-European population. Nephrol. Dial. Transplant. 2008, 23, 1265–1273. [Google Scholar] [CrossRef]
- Kramer, H.J.; Saranathan, A.; Luke, A.; Durazo-Arvizu, R.A.; Guichan, C.; Hou, S.; Cooper, R. Increasing body mass index and obesity in the incident ESRD population. J. Am. Soc. Nephrol. 2006, 17, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Cupisti, A.; Locatelli, F.; Bolasco, P.; Brunori, G.; Cancarini, G.; Caria, S.; De Nicola, L.; Di Iorio, B.R.; Di Micco, L.; et al. “Conservative Treatment of CKD” study group of the Italian Society of Nephrology. Low-protein diets for chronic kidney disease patients: The Italian experience. BMC Nephrol. 2016, 17, 77. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Copeland, J.L.; Ashe, M.C.; Biddle, S.J.; Brown, W.J.; Buman, M.P.; Chastin, S.; Gardiner, P.A.; Inoue, S.; Jefferis, B.J.; Oka, K.; et al. Sedentary time in older adults: A critical review of measurement, associations with health, and interventions. Br. J. Sports Med. 2017, 51, 1539. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Lee, J.S.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B. Health, Aging and Body Composition Study. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Hanatani, S.; Izumiya, Y.; Onoue, Y.; Tanaka, T.; Yamamoto, M.; Ishida, T.; Yamamura, S.; Kimura, Y.; Araki, S.; Arima, Y.; et al. Non-invasive testing for sarcopenia predicts future cardiovascular events in patients with chronic kidney disease. Int. J. Cardiol. 2018, 268, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Kosmadakis, G.C.; Bevington, A.; Smith, A.C.; Clapp, E.L.; Viana, J.L.; Bishop, N.C.; Feehally, J. Physical exercise in patients with severe kidney disease. Nephron Clin. Pract. 2010, 115, c7–c16. [Google Scholar] [CrossRef] [PubMed]
- Moorthi, R.N.; Avin, K.G. Clinical relevance of sarcopenia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2017, 26, 219–228. [Google Scholar] [CrossRef]
- Zhou, Y.; Hellberg, M.; Svensson, P.; Höglund, P.; Clyne, N. Sarcopenia and relationships between muscle mass, measured glomerular filtration rate and physical function in patients with chronic kidney disease stages 3–5. Nephrol. Dial. Transplant. 2018, 33, 342–348. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Saragat, B.; Buffa, R.; Mereu, E.; De Rui, M.; Coin, A.; Sergi, G.; Marini, E. Specific bioelectrical impedance vector reference values for assessing body composition in the Italian elderly. Exp. Gerontol. 2014, 50, 52–56. [Google Scholar] [CrossRef]
- Wilson, M.M.; Thomas, D.R.; Rubenstein, L.Z.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1081. [Google Scholar] [CrossRef]
- Banca Dati di Composizione Degli Alimenti per Studi Epidemiologi in Italia. Available online: http://www.ieo.it/bda2008 (accessed on 20 July 2018).
- Hebert, I.; Ockene, I.S.; Hurley, T.G.; Luippold, R.; Well, A.D.; Harmatz, M.G. Development and testing of a seven-day dietary recall. J. Clin. Epidemiol. 1997, 50, 925–937. [Google Scholar] [CrossRef]
- Dwyer, J.T. Dietary Assessment. In Modern Nutrition in Health and Disease; Shils, M.E., Olson, J.A., Shike, M., Eds.; Lea & Febiger: Philadelphia, PA, USA, 1994; pp. 842–860. [Google Scholar]
- Affret, A.; Wagner, S.; El Fatouhi, D.; Dow, C.; Correia, E.; Niravong, M.; Clavel-Chapelon, F.; De Chefdebien, J.; Fouque, D.; Stengel, B.; et al. Validity and reproducibility of a short food frequency questionnaire among patients with chronic kidney disease. BMC Nephrol. 2017, 18, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Austin, M.D.; Benezra, L.; Pearce, S.; McInnis, T.; Unick, J.; Gross, S.J. Validation of Cosmed’s FitMate in measuring oxygen consumption and estimating resting metabolic rate. Appalachian State University, Boone, North Carolina, USA. Res. Sports Med. 2006, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. Nutrition 1949, 6, 213–221. [Google Scholar] [CrossRef]
- Macfarlane, D.J.; Chou, K.L.; Cheng, Y.H.; Chi, I. Validity and normative data for thirty second chair stand test in elderly community-dwelling Hong Kong Chinese. Am. J. Hum. Biol. 2006, 18, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef] [PubMed]
- Topolski, T.D.; LoGerfo, J.; Patrick, D.L.; Williams, B.; Walwick, J.; Patrick, M.B. The Rapid Assessment of Physical Activity (RAPA) among older adults. Prev. Chronic Dis. 2006, 3, 1–8. [Google Scholar]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef]
- Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef]
- Laurentani, F.; Russo, C.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- Clinical Practice Guidelines. Nutrition in CKD. Available online: https://renal.org/wp-content/uploads/2017/06/nutrition-in-ckd-5th-edition-1.pdf (accessed on 15 June 2018).
- Carrero, J.J.; Johansen, K.L.; Lindholm, B.; Stenvinkel, P.; Cuppari, L.; Avesani, C.M. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016, 90, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Carrero, J.J.; von Walden, F.; Ikizler, T.A.; Nader, G.A. Muscle wasting in end-stage renal disease promulgates premature death: Established, emerging and potential novel treatment strategies. Nephrol. Dial. Transplant. 2016, 31, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Hawkins, M.; Abramowitz, M.K. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin. J. Am. Soc. Nephrol. 2014, 9, 2079–2088. [Google Scholar] [CrossRef]
- Heiwe, S.; Jacobson, S.H. Exercise training for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2011, 5, CD003236. [Google Scholar] [CrossRef] [PubMed]
- Lanza, I.R.; Short, D.K.; Short, K.R.; Raghavakaimal, S.; Basu, R.; Joyner, M.J.; McConnell, J.P.; Nair, K.S. Endurance exercise as a countermeasure for aging. Diabetes 2008, 57, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.R. Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 2007, 26, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.I.; Chiou, T.T.Y.; Wu, C.H.; Liao, Y.C.; Chen, C.N.; Yang, P.H.; Wang, H.J.; Lee, C.T. Effects of Diet Intervention on Body Composition in the Elderly with Chronic Kidney Disease. Int. J. Med. Sci. 2017, 14, 735–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients (n = 80) | Older Seniors (n = 40) | Younger Seniors (n = 40) | p Older vs. Younger Seniors | |
---|---|---|---|---|
Age, years | 73.7 ± 7.2 | 79.8 ± 3.3 | 67.5 ± 4.3 | 0.0001 |
Charlson Index (median) | 7 | 7 | 6 | 0.01 |
eGFR, mL/min × 1.73 m2 | 28.3 ± 9.8 | 30.2 ± 12.6 | 29.4 ± 9.8 | 0.31 |
BUN, mg/dL | 42 ± 14 | 42 ± 11 | 43 ± 15 | 0.73 |
sCreatinine, mg/dL | 2.65 ± 1.0 | 2.7 ± 1.1 | 2.6 ± 1.0 | 0.55 |
sSodium, mEq/L | 141 ± 2.2 | 141 ± 2.5 | 140 ± 1.7 | 0.06 |
sPotassium, mEq/L | 4.75 ± 0.5 | 4.8 ± 0.5 | 4.7 ± 0.5 | 0.20 |
sCalcium, mg/dL | 9.25 ± 0.4 | 9.2 ± 0.5 | 9.3 ± 0.4 | 0.87 |
sPhosphate, mg/dL | 3.3 ± 0.6 | 3.2 ± 0.5 | 3.4 ± 0.6 | 0.12 |
Bicarbonate, mEq/L | 24.5 ± 2.9 | 24.5 ± 2.9 | 24.5 ± 3.0 | 0.95 |
sTotal Protein, g/dL | 7.0 ± 0.5 | 7.1 ± 0.5 | 7.1 ± 0.5 | 0.97 |
sAlbumin, g/dL | 4.1 ± 0.4 | 4.0 ± 0.4 | 4.2 ± 0.3 | 0.03 |
Hemoglobin, g/dL | 13.1 ± 1.6 | 12.9 ± 1.3 | 13.4 ± 1.8 | 0.18 |
Hematocrit, % | 39.5 ± 4.4 | 38.9 ± 3.9 | 40.1 ± 4.9 | 0.24 |
All Patients (n = 80) | Older Seniors (n = 40) | Younger Seniors (n = 40) | p Older vs. Younger Seniors | |
---|---|---|---|---|
Body weight, kg | 80.6 ± 12.6 | 77.3 ± 10.3 | 84.0 ± 14.0 | 0.02 |
BMI, kg/m2 | 28.2 ± 3.7 | 27.1 ± 3.3 | 29.2 ± 3.9 | 0.012 |
Waist circ., cm | 102.7 ± 13 | 101 ± 14 | 104 ± 11.2 | 0.23 |
MAMC, cm | 25.9 ± 3.2 | 24.8 ± 2.3 | 27.0 ± 3.6 | 0.0014 |
MAMA, cm2 | 54.2 ± 12.5 | 49.3 ± 9.2 | 54.2 ± 13.5 | 0.0003 |
Phase angle, | 5.0 ± 1.2 | 4.8 ± 1.3 | 5.2 ± 1.0 | 0.18 |
BCMI, kg/m2 | 9.9 ± 3.0 | 9.5 ± 3.9 | 10.2 ± 1.6 | 0.34 |
SM, kg | 28.0 ± 3.8 | 26.6 ± 3.5 | 29.5 ± 3.5 | 0.001 |
SMI, kg/m2 | 9.6 ± 1.9 | 9.0 ± 2.4 | 9.2 ± 1.9 | 0.002 |
RAPA score | 2.4 ± 2.2 | 2.5 ± 1.9 | 2.4 ± 2.4 | 0.72 |
Average daily METS | 1.2 ± 0.2 | 1.1 ± 0.1 | 1.3 ± 0.2 | 0.006 |
PA level > 3METS/min | 47.7 ± 50.9 | 31.7 ± 37.2 | 62.0 ± 57.7 | 0.03 |
Hand grip, kg | 32.1 ± 11.9 | 27.5 ± 6.3 | 36.8 ± 14.5 | 0.0004 |
STS30”, n.rep | 10.9 ± 2.8 | 10.1 ± 3.0 | 11.7 ± 2.4 | 0.01 |
6MWT, m | 309 ± 84 | 282 ± 80 | 336 ± 80 | 0.003 |
Older Seniors (n = 40) | Younger Seniors (n = 40) | p Older vs. Younger Seniors | |
---|---|---|---|
Data from 24-h urinary excretion: | |||
PCR, g die | 59.1 ± 16.8 | 74.3 ± 21.6 | 0.007 |
nPCR, g/kg IBW/day | 0.86 ± 0.25 | 1.04 ± 0.27 | 0.015 |
Phosphate, mg/day | 444 ± 222 | 678 ± 266 | 0.004 |
Sodium, mEq/day | 131 ± 53 | 146 ± 66 | 0.749 |
Data from food journals: | |||
Energy, Kcal | 1663 ± 320 | 1613 ± 343 | 0.536 |
Energy, Kcal/IBW | 24.5 ± 5.5 | 23.2 ± 5.9 | 0.351 |
Protein, g | 51.5 ± 15.8 | 52.3 ± 17.9 | 0.851 |
Protein, kg/IBW | 0.76 ± 0.27 | 0.74 ± 0.24 | 0.713 |
Fats, g | 63.8 ± 15.7 | 62.1 ± 14.4 | 0.647 |
Carbohydrates, g | 215 ± 47.7 | 212 ± 59.6 | 0.768 |
Phosphate, mg | 737 ± 231 | 731 ± 239 | 0.914 |
Potassium, mg | 2058 ± 534 | 2013 ± 567 | 0.734 |
Sodium, mg | 967 ± 521 | 853 ± 613 | 0.407 |
Fiber, g | 16.6 ± 5.9 | 15.6 ± 4.7 | 0.466 |
Older Seniors (n = 40) | p Sarcopenic vs. Non Sarcopenic | ||
---|---|---|---|
Sarcopenic (n = 22) | Non-Sarcopenic (n = 18) | ||
Age, years | 81.0 ± 3.4 | 78.3 ± 2.6 | 0.01 |
BMI, kg/m2 | 26.4 ± 3.3 | 27.9 ± 3.9 | 0.16 |
eGFR, mL/min 1.73 m2 | 32.2 ± 15.5 | 28.0 ± 8.5 | 0.38 |
BUN, mg/dL | 41 ± 12 | 42 ± 13 | 0.81 |
Bicarbonate, mEq/L | 24.7 ± 2.9 | 24.1 ± 2.8 | 0.60 |
sProtein, g/dL | 7.0 ± 0.5 | 7.1 ± 0.5 | 0.68 |
sAlbumin, g/dL | 4.0 ± 0.4 | 4.1± 0.2 | 0.21 |
Hemoglobin, g/dL | 12.8 ± 1.3 | 13.1 ± 1.4 | 0.57 |
Hematocrit, % | 39.0 ± 3.9 | 38.8 ± 4.0 | 0.90 |
PCR, g die | 55.5 ± 17.8 | 63.3 ± 15.1 | 0.25 |
nPCR, g/kg IBW/day | 0.81 ± 0.25 | 0.93 ± 0.24 | 0.46 |
Phase angle, | 4.7 ± 1.1 | 5.0 ± 1.5 | 0.39 |
BCMI, kg/m2 | 8.5 ± 1.7 | 10.8 ± 5.4 | 0.06 |
RAPA score | 1.9 ± 2.5 | 2.9 ± 2.1 | 0.20 |
Average daily METS | 1.16 ± 0.1 | 1.12 ± 0.1 | 0.47 |
STS30”, n.rep | 9.4 ± 3.2 | 11.1 ± 2.7 | 0.09 |
6MWT, m | 257 ± 82 | 312 ± 66 | 0.03 |
REE, Kcal/day | 1196 ± 170 | 1315 ± 208 | 0.06 |
TEE, Kcal/day | 1388 ± 237 | 1379 ± 217 | 0.93 |
nTEE, Kcal/kg IBW/day | 19.7 ± 4.0 | 20.0 ± 3.5 | 0.69 |
Energy, Kcal/kg IBW/day | 25.8 ± 4.1 | 24.0 ± 4.5 | 0.27 |
Protein, g | 50.6 ± 15.8 | 52.8 ± 16.3 | 0.70 |
Protein, kg/IBW/day | 0.75 ± 0.25 | 0.78 ± 0.30 | 0.77 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, C.; Piccoli, G.B.; Barsotti, M.; Tassi, S.; Giannese, D.; Morganti, R.; Cupisti, A. Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care. Nutrients 2018, 10, 1951. https://doi.org/10.3390/nu10121951
D’Alessandro C, Piccoli GB, Barsotti M, Tassi S, Giannese D, Morganti R, Cupisti A. Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care. Nutrients. 2018; 10(12):1951. https://doi.org/10.3390/nu10121951
Chicago/Turabian StyleD’Alessandro, Claudia, Giorgina Barbara Piccoli, Massimiliano Barsotti, Serena Tassi, Domenico Giannese, Riccardo Morganti, and Adamasco Cupisti. 2018. "Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care" Nutrients 10, no. 12: 1951. https://doi.org/10.3390/nu10121951
APA StyleD’Alessandro, C., Piccoli, G. B., Barsotti, M., Tassi, S., Giannese, D., Morganti, R., & Cupisti, A. (2018). Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care. Nutrients, 10(12), 1951. https://doi.org/10.3390/nu10121951