Rationale for Dietary Antioxidant Treatment of ADHD
Abstract
:1. Introduction: Attention-Deficit Hyperactivity Disorder
1.1. Prevalence and Diagnosis
1.2. Etiology
1.2.1. Genetics
1.2.2. Perinatal Influences
1.3. Treatment Options
2. Oxidative Stress in ADHD
2.1. Oxidants
2.2. Antioxidants
2.3. Oxidative Stress and Oxidative Damage
2.4. Oxidative Stress in ADHD
3. Immune Dysfunction in ADHD
3.1. Hypersensitivity
3.2. Antibodies
3.3. Cytokines
3.4. Prenatal Infections
3.5. Microbiome
4. Nutrition and ADHD
4.1. Dietary Micronutrients
4.2. Food, Food Constituents and Food Additives
5. Correction by Dietary Supplementation
5.1. Antioxidant Effects
5.2. Immune Modulating Effects
5.3. Pycnogenol
5.4. Other Polyphenolic Extracts
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, T.E.; Melchior, M. Why does the worldwide prevalence of childhood attention deficit hyperactivity disorder matter? Am. J. Psychiatry 2007, 164, 856–858. [Google Scholar] [CrossRef] [PubMed]
- APA American Psychiatric Association: DSM-5 Attention Deficit/Hyperactivity Disorder Fact Sheet. Available online: http://www.dsm5.org/Documents/ADHD%20Fact%20Sheet.pdf (accessed on 22 November 2017).
- Milich, R.; Ballentine, A.C.; Lynam, D. ADHD combined type and ADHD predominantly inattentive type are unrelated disroders. Clin. Psychol. Sci. Pract. 2001, 8, 463–488. [Google Scholar] [CrossRef]
- Faraone, S.V.; Bonvicini, C.; Scassellati, C. Biomarkers in the diagnosis of ADHD-promising directions. Curr. Psychiatry Rep. 2014, 16, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Verlaet, A.A.J.; Noriega, D.B.; Hermans, N.; Salvelkoul, H.F.J. Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur. Child Adolesc. Psychiatry 2014, 23, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Guney, E.; Cetin, F.H.; Alisik, M.; Tunca, H.; Torun, Y.T.; Iseri, E.; Taner, Y.I.; Cayci, B.; Erel, O. Attention Deficit Hyperactivity Disorder and oxidative stress: A short term follow up study. Psychiatry Res. 2015, 229, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Gilliam, M.; Liverpool, M.; Weddle, C.; Malek, M.; Sharp, W.; Greenstein, D.; Evans, A.; Rapoport, J.; Giedd, J. Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: Support for a dimensional view of attention deficit hyperactivity disorder. Am. J. Psychiatry 2011, 168, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Bulut, M.; Selek, S.; Gergerlioglu, H.S.; Savas, H.A.; Yilmaz, H.R.; Yuce, M.; Ekici, G. Malondialdehyde levels in adult attention-deficit hyperactivity disorder. J. Psychiatry Neurosci. 2007, 32, 435–438. [Google Scholar] [PubMed]
- Ceylan, M.; Sener, S.; Bayraktar, A.; Kavutcu, M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin. Neurosci. 2012, 66, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Oztop, D.; Altun, H.; Baskol, G.; Ozsoy, S. Oxidative stress in children with attention deficit hyperactivity disorder. Clin. Biochem. 2012, 45, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L. Oxidative and nitrosative stress in ADHD: Possible causes and the potential of antioxidant-targeted therapies. ADHD 2015, 7, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Konrad, K.; Gauggel, S.; Schurek, J. Catecholamine functioning in children with traumatic brain injuries and children with attention-deficit/hyperactivity disorder. Cogn. Brain Res. 2003, 16, 425–433. [Google Scholar] [CrossRef]
- Dvořáková, M.; Ježová, D.; Blažíček, P.; Trebatická, J.; Skodácek, I.; Suba, J.; Iveta, W.; Rohdewald, P.; Duracková, Z. Urinary catecholamines in children with attention deficit hyperactivity disorder (ADHD): Modulation by a polyphenolic extract from pine bark (Pycnogenol). Nutr. Neurosci. 2007, 10, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Scasselati, C.; Bonvicini, C.; Faraone, S.V.; Gennarelli, M. Biomarkers and Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analyses. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 1003–1019. [Google Scholar] [CrossRef] [PubMed]
- Trebatická, J.; Kopasová, S.; Hradečná, Z.; Cinovský, K.; Skodácek, I.; Suba, J.; Muchová, J.; Zitnanová, I.; Waczulíková, I.; Rohdewald, P.; et al. Treatment of ADHD with French maritime pine bark extract, Pycnogenol. Eur. Child Adolesc. Psychiatry 2006, 15, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Sinn, N. Nutritional and dietary influences on attention deficit hyperactivity disorder. Nutr. Rev. 2008, 66, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Zayats, T.; Athanasiu, L.; Sonderby, I.; Djurovic, S.; Westlye, L.T.; Tamnes, C.K. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. PLoS ONE 2015, 10, e0122501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instanes, J.T.; Halmøy, A.; Engeland, A.; Haavik, J.; Furu, K.; Klungsøyr, K. Attention-Deficit/Hyperactivity Disorder in Offspring of Mothers with Inflammatory and Immune System Diseases. Biol. Psychiatry 2017, 81, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, A.O.; Rezin, G.T.; Zanette, F.; Grandi, E.; Assis, L.C.; Dal-Pizzol, F.; Quevedo, J.; Streck, E.L. Chronic administration of methylphenidate activates mitochondrial respiratory chain in brain of young rats. Int. J. Dev. Neurosci. 2007, 25, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, S.R. The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Liew, Z.; Ritz, B.; Rebordosa, C.; Lee, P.C.; Olsen, J. Acetaminophen use during pregnancy, behavioral problems, and hyperkinetic disorders. JAMA Pediatr. 2014, 168, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Blais, L.; Kettani, F.Z.; Forget, A.; Beauchesne, M.F.; Lemiere, C. Asthma exacerbations during the first trimester of pregnancy and congenital malformations: Revisiting the association in a large representative cohort. Thorax 2015, 70, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.Z.; Kriebel, D.; Herbert, M.R.; Bornehag, C.G.; Swan, S.H. Prenatal paracetamol exposure and child neurodevelopment: A review. Horm. Behav. 2018. [Google Scholar] [CrossRef] [PubMed]
- Volz, T.J. Neuropharmacological mechanisms underlying the neuroprotective effects of methylphenidate. Curr. Neuropharmacol. 2008, 6, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Heyer, D.B.; Meredith, R.M. Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. NeuroToxicol. 2017, 58, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Schachter, H.M.; Pham, B.; King, J.; Langford, S.; Moher, D. How efficacious and safe is shortacting methylphenidate for the treatment of attention-deficit disorder in children and adolescents? A meta-analysis. CMAJ 2011, 165, 1475–1488. [Google Scholar]
- Storebø, O.J.; Krogh, H.B.; Ramstad, E.; Moreira-Maia, C.R.; Holmskov, M.; Skoog, M.; Nilausen, T.D.; Magnusson, F.L.; Zwi, M.; Gillies, D.; et al. Methylphenidate for attention-deficit/hyperactivity disorder in children and adolescents: Cochrane systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. BMJ 2015, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antshel, K.M.; Hargrave, T.M.; Simonescu, M.; Kaul, P.; Hendricks, K.; Faraone, S.V. Advances in understanding and treating ADHD. BMC Med. 2011, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Biederman, J.; Faraone, S.V. Attention-deficit hyperactivity disorder. Lancet 2005, 366, 237–248. [Google Scholar] [CrossRef]
- Shibib, S.; Chalhoub, N. Stimulant induced psychosis. Child Adolesc. Ment. Health 2009, 14, 20–23. [Google Scholar] [CrossRef]
- The British Psychological Society and the Royal College of Psychiatrist. NICE Attention Deficit Hyperactivity Disorder: Diagnosis and Management of ADHD in Children, Young People and Adults. National Clinical Practice Guideline; The British Psychological Society and The Royal College of Psychiatrist: London, UK, 2009. [Google Scholar]
- Auci, D.L.; Fikrig, S.; Rodriquez, J. Methylphenidate and the immune system. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 1015–1016. [Google Scholar] [CrossRef] [PubMed]
- Steer, C.R. Managing attention deficit/hyperactivity disorder: Unmet needs and future directions. Arch Dis. Child 2005, 90, i19–i25. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; O’Donoghue, T.; Houghton, S. To medicate or not to medicate? The decision-making process of Western Australian parents following their child’s diagnosis with an attention deficit hyperactivity disorder. Int. J. Disabil. Dev. Educ. 2006, 53, 111–128. [Google Scholar] [CrossRef]
- Kortekaas-Rijlaarsdam, A.F.; Luman, M.; Sonuga-Barke, E.; Oosterlaan, J. Does methylphenidate improve academic performance? A systematic review and meta-analysis. ECAP 2018. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Kean, J.; Schweitzera, I.; Lake, J. Complementary medicines (herbal and nutritional products) in the treatment of Attention Deficit Hyperactivity Disorder (ADHD): A systematic review of the evidence. Complement. Ther. Med. 2011, 19, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic. Res. 1996, 25, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef] [PubMed]
- Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Curr. Opin. Psychiatry 2014, 27, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Press, C., Ed.; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. 2004, 44, 275–295. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.; Berk, M.; Dean, O.; Bush, A. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008, 21, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.J.A. Oxidative stress, antioxidant defences, and damage removal, repair, and replacement systems. IUBMB Life 2000, 50, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, M.; Senerb, S.; Bayraktarc, A.C.; Kavutcuc, M. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Hermans, N.; Cos, P.; Maes, L.; De Bruyne, T.; Vanden Berghe, D.; Vlietinck, A.J.; Pieters, L. Challenges and pitfalls in antioxidant research. Curr. Med. Chem. 2007, 14, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.; Zhang-James, Y.; Perl, A.; Faraone, S.V. Oxidative Stress and ADHD: A Meta-Analysis. J. Atten. Disord. 2015, 19, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Farmamozaïek, I. De Peroxidatie van Lipiden, Celmembraandestructie en Atherosclerose. Available online: http://www.farmamozaiek.be/farmamozaiek/?q=node/38355 (accessed on 15 November 2017).
- Grotto, D.; Maria, L.S.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.C.; Farina, M. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova 2009, 32, 169–174. [Google Scholar] [CrossRef]
- Bulut, M.; Selek, S.; Bez, Y.; Cemal Kaya, M.; Gunes, M.; Karababa, F.; Celik, H.; Savas, H.A. Lipid peroxidation markers in adult attention deficit hyperactivity disorder: New findings for oxidative stress. Psychiatry Res. 2013, 209, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Hensley, K.; Williamson, K.S.; Floyd, R.A. Measurement of 3-nitrotyrosine and 5-nitro-gamma-tocopherol by high-performance liquid chromatography with electrochemical detection. Free Radic. Biol. Med. 2000, 28, 520–528. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonylation in human diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.L.; Chioiu, C.; Chang, P.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 2004, 339, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chiou, C.-C.; Chang, P.-Y.; Chan, E.-C.; Wu, T.-L.; Tsao, K.-C.; Wu, J.T. Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: Development of an ELISA and measurement in both bladder and prostate cancers. Clin. Chim. 2003, 334, 87–94. [Google Scholar] [CrossRef]
- Kul, M.; Unal, F.; Kandemir, H.; Sarkarati, B.; Kilinc, K.; Kandemir, S.B. Evaluation of oxidative metabolism in child and adolescent patients with attention deficit hyperactivity disorder. Psychol. Invest. 2015, 12, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol. 2006, 197, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Dufault, R.; Schnoll, R.; Lukiw, W.; LeBlanc, B.; Cornett, C.; Patrick, L.; Wallinga, D.; Gilbert, S.; Crider, R. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children. Behav. Brain Funct. 2009, 5, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Iuga, C.; Alvarez-Idaboy, J.R.; Vivier-bunge, A. ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipid environments. J. Phys. Chem. 2011, 115, 12234–12246. [Google Scholar] [CrossRef] [PubMed]
- El Adham, E.K.; Hassan, A.I.; El Aziz El-Mahdy, A.A. Nutritional and Metabolic Disturbances in Attention Deficit Hyperactivity Disease. Res. J. Med. Med. Sci. 2011, 6, 10–16. [Google Scholar]
- Ross, B.M.; McKenzie, I.; Glen, I.; Bennett, C.P. Increased levels of ethane, a non-invasive marker of n-3 fatty acid oxidation, in breath of children with attention deficit hyperactivity disorder. Nutr. Neurosci. 2003, 6, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Kawatani, M.; Tsukahara, H.; Mayumi, M. Evaluation of oxidative stress status in children with pervasive developmental disorder and attention deficit hyperactivity disorder using urinary-specific biomarkers. Redox Rep. 2011, 16, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Rocchi, G.; Escelsior, A.; Fornaro, M. Immunomodulation mechanism of antidepressants: Interactions between serotonin/norepinephrine balance and Th1/Th2 balance. Curr. Neuropharmacol. 2012, 10, 97–123. [Google Scholar] [CrossRef] [PubMed]
- Buske-Kirschbaum, A.; Schmitt, J.; Plessowa, F.; Romanos, M.; Weidinger, S.; Roessner, V. Psychoendocrine and psychoneuroimmunological mechanisms in the comorbidity of atopic eczema and attention deficit/hyperactivity disorder. Psychoneuroendocrinol 2013, 38, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Oades, R.; Dauvermann, M.; Schimmelmann, B.; Schwarz, M.; Myint, A.-M. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism-effects of medication. Behav. Brain Funct. 2010, 6, 2–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelsser, L.M.J.; Frankena, K.; Toorman, J.; Savelkoul, H.F.J.; Pereira, R.R.; Buitelaar, J.K. A randomised controlled trial into the effects of food on ADHD. Eur. Child Adolesc. Psychiatry 2009, 18, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Su, T.; Chen, Y.; Hsu, J.; Huang, K.; Chang, W.; Bai, Y. Comorbidity of allergic and autoimmune diseases among patients with ADHD: A nationwide population-based study. J. Atten. Disord. 2013, 21, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Su, T.; Chen, Y.; Hsu, J.; Huang, K.; Chang, W.; Bai, Y. Attention deficit hyperactivity disorder, tic disorder, and allergy: Is there a link? A nationwide population-based study. J. Child Psychol. Psychiatry 2013, 54, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Beyreiss, J.; Schlenzka, K.; Beyer, H. Coincidence of Attention Deficit Disorder and Atopic Disorders in Children: Empirical Findings and Hypothetical Background. J. Abnorm. Child Psychol. 1991, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gaitens, T.; Kaplan, B.J.; Freigang, B. Absence of an Association between IgE-mediated Atopic Responsiveness and ADHD Symptomatology. J. Child Psychol. Psychiatry 1998, 39, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.; Sonuga-Barke, E.; McCann, D.; Grimshaw, K.; Parker, K.M.; Rose-Zerilli, M.J.; Warner, J.O. The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms. Am. J. Psychiatry 2010, 167, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Pelsser, L.M.J.; Frankena, K.; Toorman, J.; Savelkoul, H.F.J.; Dubois, A.E.; Pereira, R.R.; Haagen, T.A.; Rommelse, N.N.; Buitelaar, J.K. Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): A randomised controlled trial. Lancet 2011, 377, 494–503. [Google Scholar] [CrossRef]
- Stevenson, J.; Buitelaar, J.; Cortese, S.; Ferrin, M.; Konofal, E.; Lecendreux, M.; Sonuga-Barke, E. Research review: The role of diet in the treatment of attention-deficit/hyperactivity disorder-an appraisal of the evidence on efficacy and recommendations on the design of future studies. J. Child Psychol. Psychiatry 2014, 55, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Mittleman, B.B.; Castellanos, F.X.; Jacobsen, L.K.; Rapoport, J.L.; Swedo, S.E.; Shearer, G.M. Cerebrospinal Fluid Cytokines in Pediatric Neuropsychiatric Disease. J. Immunol. 1997, 159, 2994–2999. [Google Scholar] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology; Elsevier Saunders: Philadelphia, PA, USA, 2015. [Google Scholar]
- Tsai, S.J. Signal transducer and activator of transcription 6 (STAT6) and attention-deficit hyperactivity disorder: A speculative hypothesis. Med. Hypotheses 2006, 67, 1341–1343. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, J.; Nilsson, K.W.; Lindblad, F. Early psychosocial adversity and cortisol levels in children with attention-deficit/hyperactivity disorder. ECAP 2013, 22, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Işık, U.; Bilgiç, A.; Toker, A.; Kılınç, I. Serum levels of cortisol, dehydroepiandrosterone, and oxytocin in children with attention-deficit/hyperactivity disorder combined presentation with and without comorbid conduct disorder. Psychol. Res. 2018, 261, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Sonar, S.A.; Lal, G. Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity. Front. Immunol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, C.; Koyama, M.; Ota, E.; Swa, T.; Mlunde, L.B.; Amiya, R.M.; Tachibana, Y.; Yamamoto-Hanada, K.; Mori, R. Allergic diseases in children with attention deficit hyperactivity disorder: A systematic review and meta-analysis. BMC Psychiatry 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Goines, P.E.; Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicol. Teratol. 2013, 36, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Turner-Henson, A. The Roles of Formaldehyde Exposure and Oxidative Stress in Fetal Growth in the Second Trimester. J. Obstet. Gynecol. Neonatal Nurs. 2017, 46, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Huang, H.; Oishi, K.; Mori, S. Gene expression is altered in hippocampus following prenatal viral infection in mouse at E16. Eur. Neuropsychopharmacol. 2009, 19, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, E.Y.; Patterson, P.H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 2011, 25, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Baharnoori, M.; Brake, W.G.; Srivastava, L.K. Prenatal immune challenge induces developmental changes in the morphology of pyramidal neurons of the prefrontal cortex and hippocampus I rats. Schizophr. Res. 2009, 107, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillisch, K. The effects of gut microbiota on CNS function in humans. Gut Microbes 2014, 5, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Mülek, M.; Fekete, A.; Wiest, J.; Holzgrabe, U.; Mueller, M.J.; Högger, P. Profiling a gut microbiota-generated catechin metabolite’s fate in human blood cells using a metabolomic approach. J. Pharm. Biomed. Anal. 2015, 114, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kasper, L.H. The role of microbiome in central nervous system disorders. Brain Behav. Immun. 2014, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.; Ederveen, T.H.A.; Naaijen, J.; Zwiers, M.P.; Boekhorst, J.; Timmerman, H.M.; Smeekens, S.P.; Netea, M.G.; Buitelaar, J.K.; Franke, B.; et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS ONE 2017, 12, e0183509. [Google Scholar] [CrossRef] [PubMed]
- Konofal, E.; Lecendreux, M.; Arnulf, I.; Mouren, M.C. Iron deficiency in children with attention-deficit/hyperactivity disorder. Arch. Pediatr. Adolesc. Med. 2004, 158, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, L.; Zhang, L.; Qu, Y.; Mu, D. Iron status in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0169145. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.T.; Cheng, Y.S.; Yen, C.F.; Chen, Y.W.; Stubbs, B.; Whiteley, P.; Carvalho, A.F.; Li, D.J.; Chen, T.Y.; Yang, W.C.; et al. Peripheral iron levels in children with attention-deficit hyperactivity disorder: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Hariri, M.; Azadbakht, L. Magnesium, iron and zinc supplementation for the treatment of attention deficit hyperactivity disorder: A systematic review on the recent lieterature. Int. J. Prev. Med. 2015, 6. [Google Scholar] [CrossRef]
- Kozielec, T.; Starobrat-Hermelin, B. Assessment of magnesium levels in children with attention deficit hyperactivity disorder (ADHD). Magn. Res. 1997, 10, 143–148. [Google Scholar]
- Antalis, C.J.; Stevens, L.J.; Campbell, M.; Pazdro, R.; Ericson, K.; Burgess, J.R. Omega-3 fatty acid status in attention deficit/hyperactivity disorder. Prostagland Leukot. Essent. Fat. Acids 2006, 75, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.M.; El-Mazary, A.A.; Maher, R.M.; Saber, M.M. Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder. Ital. J. Pëdiatr. 2011, 37. [Google Scholar] [CrossRef] [PubMed]
- Archana, E.; Pai, P.; Prabhu, B.K.; Shenoy, R.P.; Prabhu, K.; Rao, A. Altered Biochemical parameters in saliva of pediatric attention deficit hyperactivity disorder. Neurochem. Res. 2012, 37, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Irmisch, G.; Thome, J.; Reis, O.; Hässler, F.; Weirich, S. Modified magnesium and lipoproteins in children with attention deficit hyperactivity disorder (ADHD). World J. Biol. Psychiatry 2011, 12, S63–S65. [Google Scholar] [CrossRef] [PubMed]
- Croteau, D.L.; Bohr, V.A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 1997, 272, 25409–25412. [Google Scholar] [CrossRef] [PubMed]
- Viktorinova, A.; Ursinyova, M.; Trebaticka, J.; Uhnakova, I.; Durackova, Z.; Masanova, V. Changed plasma levels of zinc and copper to zinc ratio and their possible associations with parent- and teacher-rated symptoms in children with attention-deficit hyperactivity disorder. Biol. Trace Elem. Res. 2016, 169, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wu, F.; Zou, S.; Chen, Y.; Feng, C.; Fan, G. Dietary, nutrient patterns and blood essential elements in Chinese children with ADHD. Nutrients 2016, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Jiang, H.; Wang, J.; Xie, J. Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats. Neurosci. Bull. 2008, 24, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicol 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.E.; DiSilvestro, R.A. Zinc in attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2005, 15, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, E.; Hilgers, R.D.; Uciechowski, P.; Petersen, A.; Plumäkers, B.; Rink, L. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur. J. Nutr. 2017, 56, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, A.; Berk, M. Zinc for treating of children and adolescents with attention-deficit hyperactivity disorder: A systematic review of randomized controlled clinical trials. Eur. J. Clin. Nutr. 2013, 67, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Rucklidge, J.J.; Johnstone, J.; Kaplan, B.J. Nutrient supplementation approaches in the treatment of ADHD. Expert Rev. Neurother. 2009, 9, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.E.; DiSilvestro, R.A.; Bozzolo, D.; Bozzolo, H.; Crowl, L.; Fernandez, S.; Ramadan, Y.; Thompson, S.; Mo, X.; Abdel-Rasoul, M.; et al. Zinc for attention-deicit/hyperactivity disorder: Placebo-controlled double-blind pilot trial alone and combined with amphetamine. J. Child Adolesc. Psychopharmacol. 2011, 21, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Nigg, J.T.; Knottnerus, G.M.; Martel, M.M.; Nikolas, M.; Cavanagh, K.; Karmaus, W.; Rappley, M.D. Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control. Biol. Psychiatry 2008, 63, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Tuthill, R.W. Hair lead levels related to children’s classroom attention-deficit behaviour. Arch. Environ. Health 1996, 51, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Issazadeh-Navikas, S.; Teimer, R.; Bockermann, R. Influence of dietary components on regulatory T cells. Mol. Med. 2012, 18, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.R.; Madani, M.; Tabatabaei, F.; Tabatabaee, Z. The relationship between serum vitamin D level and attention deficit hyperactivity disorder. Iran J. Child Neurol. 2015, 9, 48–53. [Google Scholar] [PubMed]
- Holick, M.F. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin. Proc. 2006, 81, 353–373. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; van der Heijden, K.B.; Arnold, L.E.; Kenemans, J.L. Geographic variation in the prevalence of attention-deficit/hyperactivity disorder: The sunny perspective. Biol. Psychiatry 2013, 74, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Bateman, B.; Warner, J.O.; Hutchinson, E.; Dean, T.; Rowlandson, P.; Gant, C.; Grundy, J.; Fitzgerald, C.; Stevenson, J. The effects of a double blind, placebo controlled, sample of preschool children challenge on hyperactivity in a general population artificial food colourings and benzoate preservative. J. Arch. Dis. Child 2004, 89, 506–511. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Stevens, L.J.; Zentall, S.S.; Deck, J.L.; Abate, M.L.; Watkins, B.A.; Lipp, S.R.; Burgess, J.R. Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 1995, 62, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Boris, M.; Mandel, F. Foods and additives are common causes of the attention deficit hyperactive disorder in children. Ann. Allergy 1994, 73, 462–467. [Google Scholar]
- Ferro, M.A.; van Lieshout, R.J.; Ohayon, J.; Scott, J.G. Emotional and behavioural problems in adolescents and young adults with food allergy. Allergy 2015, 71, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.; Puri, B. A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specifc learning diffculties. Prog. Neupopsychopharmacol. Biol. Psychiatry 2002, 26, 233–239. [Google Scholar] [CrossRef]
- Richardson, A.J. The importance of omega-3 fatty acids for behaviour, cognition and mood. Scand. J. Nutr. 2003, 47, 92–98. [Google Scholar] [CrossRef]
- Bos, D.J.; van Montfort, S.J.T.; Oranje, B.; Durston, S.; Smeets, P.A.M. Effects of omega-3 polyunsaturated fatty acids on human brain morphology and function: What is the evidence? Eur. Neuropsychopharmacol. 2016, 26, 546–561. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Zhang, Z.; Saha, A.; Sarkar, C.; Zhao, Z.; Xu, Y.; Mukherjee, A.B. Omega-3 and omega-6 fatty acids suppress ER- and oxidative stress in cultured neurons and neuronal progenitor cells from mice lacking PPT1. Neurosci. Lett. 2010, 479, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Han, S.C.; Kang, G.J.; Ko, Y.J.; Kang, H.K.; Moon, S.W.; Ann, Y.S.; Yoo, E.S. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol. 2012, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Puri, B.K.; Martins, J.G. Which polyunsaturated fatty acids are active in children with attention-deficit hyperactivity disorder receiving PUFA supplementation? A fatty acid validated meta-regression analysis of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2014, 90, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, E.; Nigg, J.T. Omega-3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials. Clin. Psychol. Rev. 2014, 34, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Kremmyda, L.S.; Vlachava, M.; Noakes, P.S.; Diaper, N.D.; Miles, E.A.; Calder, P.C. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: A systematic review. Clin. Rev. Allergy Immunol. 2011, 41, 36–66. [Google Scholar] [CrossRef] [PubMed]
- Matsudaira, T.; Gow, R.V.; Kelly, J.; Murphy, C.; Potts, L.; Sumich, A.; Ghebremeskel, K.; Crawford, M.A.; Taylor, E. Biochemical and psychological effects of omega-3/6 supplements in male adolescents with Attention-Deficit/Hyperactivity Disorder: A randomized, placebo-controlled, clinical trial. J. Child Adolesc. Psychopharmacol. 2015, 25, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Gillies, D.; Sinn, J.K.H.; Lad, S.S.; Leach, M.J.; Ross, M.J. Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents (review). Cochrane Database Syst. Rev. 2012, 7. [Google Scholar] [CrossRef]
- Manach, C.; Donovan, J.L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res. 2004, 38, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.; Shim, J.; Lee, C.Y.; Lee, K.W.; Lee, H.J. Cocoa phytochemicals: Recent advances in molecular mechanisms on health. Crit. Rev. Food Sci. Nutr. 2014, 54, 1458–1472. [Google Scholar] [CrossRef] [PubMed]
- Trebatická, J.; Ďuračková, Z. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy? Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Pae, M.; Wu, D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: Mechanisms and applications. Food Funct. 2013, 4, 1287–1303. [Google Scholar] [CrossRef] [PubMed]
- Pogačnik, L.; Pirc, K.; Palmela, I.; Skrt, M.; Kim, K.S.; Brites, D.; Brito, M.A.; Ulrih, N.P.; Silva, R.F. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro. Brain Res. 2015, 1651, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215s–217s. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, Pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [Google Scholar] [CrossRef]
- Chovanová, Z.; Muchová, J.; Sivoňová, M.; Dvoráková, M.; Zitnanová, I.; Waczulíková, I.; Trebatická, J.; Skodácek, I.; Duracková, Z. Effect of polyphenolic extract, Pycnogenol, on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder. Free Radic. Res. 2006, 40, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N. Diet-derived Phenols in plasma and tissues and their implications for health. Planta Med. 2004, 70, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Tumer, T.B.; Rojas-Silva, P.; Poulev, A.; Raskin, I.; Waterman, C. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera. J. Agric. Food Chem. 2015, 63, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Bayeta, E.; Lau, B.H.S. Pycnogenol inhibits generation of inflammatory mediators in macrophages. Nutr. Res. 2000, 20, 249–259. [Google Scholar] [CrossRef]
- Herken, H.; Akyol, O.; Yilmaz, H.R.; Tutkun, H.; Savas, H.A.; Ozen, M.E.; Kalenderoglu, A.; Gulec, M. Nitric oxide, adenosine deaminase, xanthine oxidase and superoxide dismutase in patients with panic disorder: Alterations by antidepressant treatment. Hum. Psychopharmacol. 2006, 21, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Selek, S.; Savas, H.A.; Gergerlioglu, H.S.; Bulut, M.; Yilmaz, H.R. Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biol. Psychol. 2008, 79, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Selek, S.; Bulut, M.; Ocak, A.R.; Kalenderoglu, A.; Savas, H.A. Evaluation of total oxidative status in adult attention deficit hyperactivity disorder and its diagnostic implications. J. Psychiatr. Res. 2012, 46, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Canali, R.; Comitato, R.; Schonlau, F.; Virgili, F. The anti-inflammatory pharmacology of Pycnogenol in humans involves COX-2 and 5-LOXmRNA expression in leukocytes. Int. Immunopharmacol. 2009, 9, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, X.; Chu, Y.; Li, M. Identification of Baicalin as an immunoregulatory compound by controlling T(H)17 cell differentiation. PLoS ONE 2011, 6, e17164. [Google Scholar]
- Hassanain, E.; Silverberg, J.I.; Norowitz, K.B.; Chice, S.; Bluth, M.H.; Brody, N.; Joks, R.; Durkin, H.G.; Smith-Norowitz, T.A. Green tea (Camelia sinensis) suppresses B cell production of IgE without inducing apoptosis. Ann. Clin. Lab. Sci. 2010, 40, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Yan, G.H. Pycnogenol inhibits immunoglobulin E-mediated allergic response in mast cells. Phytother. Res. 2009, 23, 1691–1695. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. Biomed. Res. Int. 2015, 905215. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Ellam, S.; Williamson, G. Cocoa and human health. Ann. Rev. Nutr. 2013, 33, 105–128. [Google Scholar] [CrossRef] [PubMed]
- Kurlbaum, M.; Mülek, M.; Högger, P. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Rohdewald, P.J. Pycnogenol, French Maritime Pine Bark Extract. In Encyclopedia of Dietary Supplements, 1st ed.; Coates, P.M., Cragg, G.M., Blackman, M.R., Levine, M., White, J.D., Moss, J., Eds.; Marcel Dekker, Taylor and Francis: Boca Raton, FL, USA, 2005; Volume 1, pp. 545–553. [Google Scholar]
- Grimm, T.; Skrabala, R.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Ďuračková, Z.; Högger, P. Single and multiple dose pharmacokinetics of maritime pine bark extract (Pycnogenol) after oral administration to healthy volunteers. BMC Clin. Pharmacol. 2006, 6. [Google Scholar] [CrossRef] [PubMed]
- Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacol 2001, 40, 959–975. [Google Scholar] [CrossRef]
- Uhlenhut, K.; Högger, P. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol). Free Radic. Biol. Med. 2012, 53, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Dvořáková, M.; Sivoňová, M.; Trebatická, J.; Skodácek, I.; Waczuliková, I.; Muchová, J.; Duracková, Z. The effect of polyphenolic extract from pine bark, Pycnogenol, on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD). Redox Rep. 2006, 11, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Droy-Lefaix, M.T. Effect of the antioxidant action of Ginkgo biloba extract (EGb 761) on aging and oxidative stress. Age 1997, 20, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Puebla-Pérez, A.M.; Lozoya, X.; Villaseñor-García, M.M. Effect of Ginkgo biloba extract, EGb 761, on the cellular immune response in a hypothalamic-pituitary-adrenal axis activation model in the rat. Int. Immunopharmacol. 2003, 3, 75–80. [Google Scholar] [CrossRef]
- Aghili, T.; Arshami, J.; Tahmasbi, A.M.; Haghparast, A.R. Effects of Hypericum perforatum extract on IgG titer, leukocytes subset and spleen index in rats. Avicenna J. Phytomed. 2014, 4, 413–419. [Google Scholar] [PubMed]
- Orčić, D.Z.; Mimica-Dukić, N.M.; Francišković, M.M.; Petrović, S.S.; Jovin, E.D. Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chem. Cent. J. 2011, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Ingale, S.P.; Kasture, S.B. Antioxidant and antiparkinsonian activity of Passiflora incarnata leaves. Orient. Pharm. Exp. Med. 2014, 14, 231–236. [Google Scholar] [CrossRef]
- Beaumont, D.M.; Mark, T.M.J.; Hills, R.; Dixon, P.; Veit, B.; Garrett, N. The effects of chrysin, a Passiflora incarnata extract, on natural killer cell activity in male Sprague-Dawley rats undergoing abdominal surgery. AANA J. 2008, 76, 113–117. [Google Scholar] [PubMed]
- Salehi, B.; Imani, R.; Mohammadi, M.R.; Fallah, J.; Mohammadi, M.; Ghanizadeh, A.; Tasviechi, A.A.; Vossoughi, A.; Rezazadeh, S.A.; Akhondzadeh, S. Ginkgo biloba for attention-deficit/hyperactivity disorder in children and adolescents: A double blind, randomized controlled trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Uebel-von Sandersleben, H.; Rothenberger, A.; Albrecht, B.; Rothenberger, L.G.; Klement, S.; Bock, N. Ginkgo biloba extract EGb 761 in children with ADHD. Z. Kinder Jugendpsychiatrie Psychother. 2014, 42, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.; Vander Stoep, A.; McCarty, R.L.; Weiss, N.S.; Biederman, J.; McClellan, J. Hypericum perforatum (St John’s Wort) for attention-deficit/hyperactivity disorder in children and adolescents: A randomized controlled trial. JAMA 2008, 229, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Maksyutina, N.P.; Koget, T.A. Polyphenols of the herb Hypericum perforatum and the preparation novoimanin. Chem. Nat. Compd. 1971, 7, 338–341. [Google Scholar] [CrossRef]
- Akhondzadeh, S.; Mohammadi, M.R.; Momeni, F. Passiflora incarnata in the treatment of attention-deficit hyperactivity disorder in children and adolescents. Therapy 2005, 2, 609–614. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verlaet, A.A.J.; Maasakkers, C.M.; Hermans, N.; Savelkoul, H.F.J. Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients 2018, 10, 405. https://doi.org/10.3390/nu10040405
Verlaet AAJ, Maasakkers CM, Hermans N, Savelkoul HFJ. Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients. 2018; 10(4):405. https://doi.org/10.3390/nu10040405
Chicago/Turabian StyleVerlaet, Annelies A. J., Carlijn M. Maasakkers, Nina Hermans, and Huub F. J. Savelkoul. 2018. "Rationale for Dietary Antioxidant Treatment of ADHD" Nutrients 10, no. 4: 405. https://doi.org/10.3390/nu10040405
APA StyleVerlaet, A. A. J., Maasakkers, C. M., Hermans, N., & Savelkoul, H. F. J. (2018). Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients, 10(4), 405. https://doi.org/10.3390/nu10040405