Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject
Abstract
:1. Introduction
2. Acid Balance
3. Dietary Acids and Bases
4. Proponents of the Alkali Replacement for Prevention of Osteoporosis Theory
5. Opponents of the Alkali Replacement for Prevention of Osteoporosis Theory
6. Controls on Physiologic Acid-Base Regulation
7. Synthesis
Author Contributions
Conflicts of Interest
References
- Wachman, A.; Bernstein, D.S. Diet and osteoporosis. Lancet 1968, 1, 958–959. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, I.; Maher, T.; Hulter, H.N.; Schambelan, M.; Sebastian, A. Effect of diet on plasma acid-base composition in normal humans. Kidney Int. 1983, 24, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.; Sebastian, A. Age and systemic acid-base equilibrium: Analysis of published data. J. Gerontol. A Biol. Sci. Med. Sci. 1996, 51, B91–B99. [Google Scholar] [CrossRef] [PubMed]
- Folin, O. Laws governing the chemical composition of urine. Am. J. Physiol. 1905, 13, 66–115. [Google Scholar] [CrossRef]
- Sherman, H.C.; Gettler, A.O. The balance of acid-forming and base-forming elements in foods, and its relation to ammonia metabolism. J. Biol. Chem. 1912, 11, 323–338. [Google Scholar] [CrossRef]
- Blatherwick, N.R. The specific role of foods in relation to the composition of the urine. Arch. Int. Med. 1914, 14, 409–450. [Google Scholar] [CrossRef]
- Relman, A.S.; Lennon, E.J.; Lemann, J., Jr. Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J. Clin. Investig. 1961, 40, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Lennon, E.J.; Lemann, J., Jr.; Relman, A.S. The effects of phosphoproteins on acid balance in normal subjects. J. Clin. Investig. 1962, 41, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Lemann, J., Jr.; Relman, A.S. The relation of sulfur metabolism to acid-base balance and electrolyte excretion: The effects of dl-methionine in normal man. J. Clin. Investig. 1959, 38, 2215–2223. [Google Scholar] [CrossRef] [PubMed]
- Lennon, E.J.; Lemann, J., Jr. Influence of diet composition on endogenous fixed acid production. Am. J. Clin. Nutr. 1968, 21, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Lennon, E.J.; Lemann, J., Jr.; Litzow, J.R. The effects of diet and stool composition on the net external acid balance of normal subjects. J. Clin. Investig. 1966, 45, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Manz, F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 1994, 59, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Frassetto, L.A.; Sellmeyer, D.E.; Merriam, R.L.; Morris, R.C., Jr. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am. J. Clin. Nutr. 2002, 76, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Lemann, J., Jr. Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: A review. Nephron 1999, 81 (Suppl. 1), 18–25. [Google Scholar] [CrossRef] [PubMed]
- Barzel, U.S. The effect of excessive acid feeding on bone. Calcif. Tissue Res. 1969, 4, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Arnett, T.R.; Dempster, D.W. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 1986, 119, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A.; Frick, K.K. The effects of acid on bone. Curr. Opin. Nephrol. Hypertens. 2000, 9, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A.; Smith, S.B.; Gavrilov, K.L.; Gavrilov, L.F.; Li, J.; Levi-Setti, R. Chronic acidosis-induced alteration in bone bicarbonate and phosphate. Am. J. Physiol. Ren. Physiol. 2003, 285, F532–F539. [Google Scholar] [CrossRef] [PubMed]
- Frick, K.K.; Krieger, N.S.; Nehrke, K.; Bushinsky, D.A. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J. Bone Miner. Res. 2009, 24, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Shock, N.W.; Hastings, A.B. Studies of the acid-base balance of the blood. III. Variation in the acid-base balance of the blood in normal individuals. J. Biol. Chem. 1934, 104, 585–600. [Google Scholar]
- Martin, G.R.; Jain, R.K. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 1994, 54, 5670–5674. [Google Scholar] [PubMed]
- Tomura, H.; Mogi, C.; Sato, K.; Okajima, F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: A novel type of multi-functional receptors. Cell Signal. 2005, 17, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Sellmeyer, D.E.; Stone, K.L.; Sebastian, A.; Cummings, S.R. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am. J. Clin. Nutr. 2001, 73, 118–122. [Google Scholar] [PubMed]
- Wynn, E.; Krieg, M.A.; Aeschlimann, J.M.; Burckhardt, P. Alkaline mineral water lowers bone resorption even in calcium sufficiency: Alkaline mineral water and bone metabolism. Bone 2009, 44, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Libuda, L.; Schonau, E.; Frassetto, L.; Remer, T. Long term higher urinary calcium excretion within the normal physiologic range predicts impaired bone status of the proximal radius in healthy children with higher potential renal acid load. Bone 2012, 50, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Harris, S.T.; Ottaway, J.H.; Todd, K.M.; Morris, R.C., Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N. Engl. J. Med. 1994, 330, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Jehle, S.; Hulter, H.N.; Krapf, R. Effect of potassium citrate on bone density, microarchitecture, and fracture riskin healthy older adults without osteoporosis: A randomized controlled trial. J. Clin. Endocrinol. MeTable 2013, 98, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Buclin, T.; Cosma, M.; Appenzeller, M.; Jacquet, A.F.; Décosterd, L.A.; Biollaz, J.; Burckhardt, P. Diet acids and alkalis influence calcium retention in bone. Osteoporos. Int. 2001, 12, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J., 3rd; Khosla, S.; Atkinson, E.J.; Oconnor, M.K.; Ofallon, W.M.; Riggs, B.L. Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporos. Int. 2000, 11, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Kaptoge, S.; Reid, D.M.; Scheidt-Nave, C.; Poor, G.; Pols, H.A.; Khaw, K.T.; Felsenberg, D.; Benevolenskaya, L.I.; Diaz, M.N.; Stepan, J.J.; et al. Geographic and other determinants of BMD change in European men and women at the hip and spine: A population-based study from the Network in Europe for Male Osteoporosis (NEMO). Bone 2007, 40, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.S. Irrelevance of bone buffering to acid-base homeostasis in chronic metabolic acidosis. Nephron 1991, 59, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Douyon, H.; Oh, M.S. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995, 47, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.S. New perspectives on acid-base balance. Semin. Dial. 2000, 13, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Black, A.J.; Aucott, L.; Duthie, G.; Duthie, S.; Sandison, R.; Hardcastle, A.C.; Lanham New, S.A.; Fraser, W.D.; Reid, D.M. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: A randomized controlled trial. Am. J. Clin. Nutr. 2008, 88, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.A.; Hardcastle, A.C.; Sebastian, A.; Aucott, L.; Fraser, W.D.; Reid, D.M.; Macdonald, H.M. No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur. J. Clin. Nutr. 2012, 66, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J. Bone Miner. Res. 2009, 24, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Eliasziw, M.; Tough, S.C.; Lyon, A.W.; Brown, J.P.; Hanley, D.A. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: A prospective cohort study. BMC Musculoskelet. Disord. 2010, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Mardon, J.; Habauzit, V.; Trzeciakiewicz, A.; Davicco, M.J.; Lebecque, P.; Mercier, S.; Tressol, J.C.; Horcajada, M.N.; Demigné, C.; Coxam, V. Long-term intake of a high-protein diet with or without potassium citrate modulates acid-base metabolism, but not bone status, in male rats. J. Nutr. 2008, 138, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., 3rd; Simons-Morton, D.G.; et al. DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Parmenter, B.; Frassetto, L.; Slater, G. Spot-testing urine pH, a novel dietary biomarker? A randomized cross-over trial. Nutr. Diet. (AU) 2016. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. J. Am. Med. Assoc. 2001, 285, 785–795. [Google Scholar]
- Frassetto, L.A.; Morris, R.C., Jr.; Sebastian, A. Effect of age on blood acid-base composition in adult humans: Role of age-related renal functional decline. Am. J. Physiol. 1996, 271, F1114–F1122. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.W.; Andres, R.; Tobin, J.D.; Norris, A.H.; Shock, N.W. The effect of age on creatinine clearance in men: A cross-sectional and longitudinal study. J. Gerontol. 1976, 31, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.D.; Lemann, J., Jr.; Lennon, E.J.; Relman, A.S. Production, excretion, and net balance of fixed acid in patients with renal acidosis. J. Clin. Investig. 1965, 44, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Levin, N.W.; Delmez, J.; Depner, T.A.; Ornt, D.; Owen, W.; Yan, G. Association of acidosis and nutritional parameters in hemodialysis patients. Am. J. Kidney Dis. 1999, 34, 493–499. [Google Scholar] [CrossRef]
- Wesson, D.E.; Simoni, J.; Broglio, K.; Sheather, S. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am. J. Physiol. Ren. Physiol. 2011, 300, F830–F837. [Google Scholar] [CrossRef] [PubMed]
- Phisitkul, S.; Khanna, A.; Simoni, J.; Broglio, K.; Sheather, S.; Rajab, M.H.; Wesson, D.E. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 2010, 77, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Simoni, J.; Sheather, S.J.; Broglio, K.R.; Rajab, M.H.; Wesson, D.E. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010, 78, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Madias, N.E.; Sager, L.N.; Simoni, J.; Wesson, D.E. Acid Retention Revealed by Urine Citrate Excretion Might Identify CKD Patients for Whom Dietary Alkali Is Kidney Protective. ASN Abstract FR-PO433. 2017. Available online: https://www.asn-online.org/education/kidneyweek/2017/program-abstract.aspx?controlId=2785922 (accessed on 11 April 2018).
- Wesson, D.E.; Simoni, J. Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int. 2009, 75, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Hood, V.L.; Tannen, R.L. Protection of acid-base balance by pH regulation of acid production. N. Engl. J. Med. 1998, 339, 819–826. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frassetto, L.; Banerjee, T.; Powe, N.; Sebastian, A. Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject. Nutrients 2018, 10, 517. https://doi.org/10.3390/nu10040517
Frassetto L, Banerjee T, Powe N, Sebastian A. Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject. Nutrients. 2018; 10(4):517. https://doi.org/10.3390/nu10040517
Chicago/Turabian StyleFrassetto, Lynda, Tanushree Banerjee, Neil Powe, and Anthony Sebastian. 2018. "Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject" Nutrients 10, no. 4: 517. https://doi.org/10.3390/nu10040517
APA StyleFrassetto, L., Banerjee, T., Powe, N., & Sebastian, A. (2018). Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject. Nutrients, 10(4), 517. https://doi.org/10.3390/nu10040517