The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Clinical and Nutritional Assessment
2.3. Dietary Intake
2.4. Collection and Fatty Acid Analysis from Erythrocytes and Breast Milk Samples
2.5. Statistical Analyses
3. Results
3.1. Background and Anthropometric Characteristics of the Sample
3.2. Daily Intake According to Food Groups during Pregnancy and Lactation
3.3. Energy, Nutrients, and Most Relevant Fatty Acid Intake during Pregnancy and Lactation
3.4. Fatty Acid Composition of Erythrocyte Phospholipids
3.5. Composition of the Most Relevant Fatty Acids of Breast Milk during the First Six Months of Lactation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlson, S.E.; Colombo, J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv. Pediatr. 2016, 63, 453–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svennerholm, L.; Vanier, M.T. The distribution of lipids in the human nervous system. 3. Fatty acid composition of phosphoglycerides of human foetal and infant brain. Brain Res. 1973, 50, 341–351. [Google Scholar] [CrossRef]
- Birch, E.E.; Hoffman, D.R.; Uauy, R.; Birch, D.G.; Prestidge, C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res. 1998, 44, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Hoffman, D.R.; Peirano, P.; Birch, D.G.; Birch, E.E. Essential fatty acids in visual and brain development. Lipids 2001, 36, 885–895. [Google Scholar] [CrossRef] [PubMed]
- González-Mañán, D.; Tapia, G.; Gormaz, J.G.; D’Espessailles, A.; Espinosa, A.; Masson, L.; Varela, P.; Valenzuela, A.; Valenzuela, R. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils. Food Funct. 2012, 3, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Cervera, M.A.; Valenzuela, R.; Hernandez-Rodas, M.C.; Marambio, M.; Espinosa, A.; Mayer, S.; Romero, N.; Barrera, C.; Valenzuela, A.; Videla, L.A. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues. Nutrition 2016, 32, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C.; International Society for the Study of Fatty Acids and Lipids, ISSFAL. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Carlson, S.E. Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern. Child Nutr. 2011, 7, 41–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, R.M.; Desoye, G. Placental Lipid and Fatty Acid Transfer in Maternal Overnutrition. Ann. Nutr. Metab. 2017, 70, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Metherel, A.H.; Lacombe, R.J.S.; Chouinard-Watkins, R.; Hopperton, K.E.; Bazinet, R.P. Complete assessment of whole-body n-3 and n-6 PUFA synthesis-secretion kinetics and DHA turnover in a rodent model. J. Lipid Res. 2018, 59, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Urwin, H.J.; Zhang, J.; Gao, Y.; Wang, C.; Li, L.; Song, P.; Man, Q.; Meng, L.; Frøyland, L.; Miles, E.A.; et al. Immune factors and fatty acid composition in human milk from river/lake, coastal and inland regions of China. Br. J. Nutr. 2013, 109, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Bascuñán, K.; Chamorro, R.; Barrera, C.; Sandoval, J.; Puigrredon, C.; Parraguez, G.; Orellana, P.; Gonzalez, V.; Valenzuela, A. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. Nutrients 2015, 7, 6405–6424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atalah, E.; Castillo, C.; Castro, R.; Aldea, A. Proposalof a new standard for the nutritional assessment of pregnant women. Rev. Med. Chile 1997, 125, 1429–1436. [Google Scholar] [PubMed]
- European Society for Opinion and Marketing Research. The ESOMAR Standard Demographic Classification; ESOMAR: Amsterdam, The Netherlands, 1997. [Google Scholar]
- WHO/FAO/UNU. Human Energy Requirements, Report of a Joint FAO/WHO/UNU Expert Consultation; Food and Agriculture Organization: Rome, Italy, 2014. [Google Scholar]
- Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes: Guiding Principles for Nutrition Labeling and Fortification; Institute of Medicine of the National Academies: Washington, DC, USA, 2001; pp. 1–224. [Google Scholar]
- Cerda, R.; Barrera, C.; Arena, M.; Bascuñán, K.A.; Jimenez, G. Photographic Atlas of Chilean Food and Typical Preparations. National Survey of Food Consumption, 1st ed.; Government of Chile, Ministry of Health: Santiago, Chile, 2010.
- Bascuñán, K.A.; Valenzuela, R.; Chamorro, R.; Valencia, A.; Barrera, C.; Puigrredon, C.; Sandoval, J.; Valenzuela, A. Polyunsaturated fatty acid composition of maternal diet and erythrocyte phospholipid status in Chilean pregnant women. Nutrients 2014, 6, 4918–4934. [Google Scholar] [CrossRef] [PubMed]
- Kashtanova, D.A.; Popenko, A.S.; Tkacheva, O.N.; Tyakht, A.B.; Alexeev, D.G.; Boytsov, S.A. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2016, 32, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern. Child Nutr. 2011, 2, S112–S123. [Google Scholar] [CrossRef] [PubMed]
- Berti, C.; Cetin, I.; Agostoni, C.; Desoye, G.; Devlieger, R.; Emmett, P.M.; Ensenauer, R.; Hauner, H.; Herrera, E.; Hoesli, I.; et al. Pregnancy and Infants’ Outcome: Nutritional and Metabolic Implications. Crit. Rev. Food Sci. Nutr. 2016, 56, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011, 94, S1908–S1913. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhou, T.; Wang, Q.; Liu, P.; Zhang, T.; Zetterström, R.; Strandvik, B. Fatty acid composition of diet, cord blood and breast milk in Chinese mothers with different dietary habits. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, C.; Gao, Y.; Li, L.; Man, Q.; Song, P.; Meng, L.; Du, Z.Y.; Miles, E.A.; Lie, Ø.; et al. Different intakes of n-3 fatty acids among pregnant women in 3 regions of China with contrasting dietary patterns are reflected in maternal but not in umbilical erythrocyte phosphatidylcholine fatty acid composition. Nutr. Res. 2013, 33, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Gil-Sánchez, A.; Koletzko, B.; Larqué, E. Current understanding of placental fatty acid transport. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Grote, V.; Verduci, E.; Scaglioni, S.; Vecchi, F.; Contarini, G.; Giovannini, M.; Koletzko, B.; Agostoni, C.; European Childhood Obesity Project. Breast milk composition and infant nutrient intakes during the first 12 months of life. Eur. J. Clin. Nutr. 2016, 70, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Larqué, E.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Koletzko, B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br. J. Nutr. 2012, 107, S77–S84. [Google Scholar] [CrossRef] [PubMed]
- De la Garza, A.; Montes, R.; Chisaguano, A.M.; Torres-Espínola, F.J.; Arias, M.; de Almeida, L.; Bonilla, M.; Guerendiain, M.; Castellote, A.I.; Segura, M.; et al. Association of maternal weight with FADS and ELOVL genetic variants and fatty acid levels- The PREOBE follow-up. PLoS ONE 2017, 12, e0179135. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—A review. Placenta 2002, 23, S9–S19. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Koletzko, B. Long-chain omega-3 fatty acid supply in pregnancy and lactation. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Glaser, C.; Lattka, E.; Rzehak, P.; Steer, C.; Koletzko, B. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern. Child Nutr. 2011, 7, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholtz, S.A.; Kerling, E.H.; Shaddy, D.J.; Li, S.; Thodosoff, J.M.; Colombo, J.; Carlson, S.E. Docosahexaenoic acid (DHA) supplementation in pregnancy differentially modulates arachidonic acid and DHA status across FADS genotypes in pregnancy. Prostaglandins Leukot. Essent. Fat. Acids 2015, 94, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassek, W.D.; Gaulin, S.J. Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries. Prostaglandins Leukot. Essent. Fat. Acids 2014, 91, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef] [PubMed]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Videla, L.A. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct. 2011, 2, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Araya, J.; Rodrigo, R.; Pettinelli, P.; Araya, A.V.; Poniachik, J.; Videla, L.A. Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity 2010, 18, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Garmendia, M.L.; Alonso, F.T.; Kain, J.; Uauy, R.; Corvalan, C. Alarming weight gain in women of a post-transitional country. Public Health Nutr. 2014, 17, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Araya, B.M.; Padilla, O.; Garmendia, M.L.; Atalah, E.; Uauy, R. Prevalence of obesity among Chilean women in childbearing ages. Rev. Med. Chile 2014, 142, 1440–1448. [Google Scholar]
- Lopez, P.O.; Bréart, G. Trends in gestational age and birth weight in Chile, 1991-2008. A descriptive epidemiological study. BMC Pregnancy Childbirth. 2012, 12, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmos, P.R.; Borzone, G.R.; Olmos, R.I.; Valencia, C.N.; Bravo, F.A.; Hodgson, M.I.; Belmar, C.G.; Poblete, J.A.; Escalona, M.O.; Gómez, B. Gestational diabetes and pre-pregnancy overweight: Possible factors involved in newborn macrosomia. J. Obstet. Gynaecol. Res. 2012, 38, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Noakes, P.S.; Kremmyda, L.S.; Vlachava, M.; Diaper, N.D.; Rosenlund, G.; Urwin, H.; Yaqoob, P.; Rossary, A.; Farges, M.C.; et al. The Salmon in Pregnancy Study: Study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acid status in maternal and umbilical cord blood. Am. J. Clin. Nutr. 2011, 94, S1986–S1992. [Google Scholar] [CrossRef] [PubMed]
- Fayet-Moore, F.; Baghurst, K.; Meyer, B.J. Four Models Including Fish, Seafood, Red Meat and Enriched Foods to Achieve Australian Dietary Recommendations for n-3 LCPUFA for All Life-Stages. Nutrients 2015, 7, 8602–8614. [Google Scholar] [CrossRef] [PubMed]
- Rahmawaty, S.; Lyons-Wall, P.; Charlton, K.; Batterham, M.; Meyer, B.J. Effect of replacing bread, egg, milk, and yogurt with equivalent ω-3 enriched foods on ω-3 LCPUFA intake of Australian children. Nutrition 2014, 30, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Yeates, A.J.; Thurston, S.W.; Li, H.; Mulhern, M.S.; McSorley, E.M.; Watson, G.E.; Shamlaye, C.F.; Strain, J.J.; Myers, G.J.; Davidson, P.W.; et al. PUFA Status and Methylmercury Exposure Are Not Associated with Leukocyte Telomere Length in Mothers or Their Children in the Seychelles Child Development Study. J. Nutr. 2017, 147, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Golding, J.; Gregory, S.; Emond, A.; Iles-Caven, Y.; Hibbeln, J.; Taylor, C.M. Prenatal mercury exposure and offspring behaviour in childhood and adolescence. Neurotoxicology 2016, 57, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Gil, F. Fish, a Mediterranean source of n-3 PUFA: Benefits do not justify limiting consumption. Br. J. Nutr. 2015, 113, S58–S67. [Google Scholar] [CrossRef] [PubMed]
- Lassek, W.D.; Gaulin, S.J. Maternal milk DHA content predicts cognitive performance in a sample of 28 nations. Matern. Child Nutr. 2015, 11, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Smit, E.N.; Koopmann, M.; Boersma, E.R.; Muskiet, F.A. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition. Prostaglandins Leukot. Essent. Fat. Acids 2000, 62, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Sherry, C.L.; Oliver, J.S.; Marriage, B.J. Docosahexaenoic acid supplementation in lactating women increases breast milk and plasma docosahexaenoic acid concentrations and alters infant omega 6:3 fatty acid ratio. Prostaglandins Leukot. Essent. Fat. Acids 2015, 95, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, F.; Valenzuela, R.; Hernandez-Rodas, M.C.; Valenzuela, A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fat. Acids 2017, 124, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Atalah, S.E.; Araya, B.M.; Rosselot, P.G.; Araya, L.H.; Vera, A.G.; Andreu, R.R.; Barba, G.C.; Rodriguez, L. Consumption of a DHA-enriched milk drink by pregnant and lactating women, on the fatty acid composition of red blood cells, breast milk, and in the newborn. Arch. Latinoam. Nutr. 2009, 59, 271–277. [Google Scholar]
- Contreras, A.; Herrera, Y.; Rodríguez, L.; Pizarro, T.; Atalah, E. Acceptability and consumption of a dairy drink with omega-3 in pregnant and lactating women of the national supplementary program. Rev. Chil. Nutr. 2011, 38, 313–320. [Google Scholar]
Variable | (n = 50) | |
---|---|---|
Age (Years) | 29.4 ± 6.2 | |
SES | High (%) | 20.4 |
Medium (%) | 68.2 | |
Low (%) | 11.4 | |
Preconception Weight (kg) | 64.9 ± 9.3 | |
Preconception BMI (kg/m2) | 24.9 ± 3.3 | |
Nutritional Status | Underweight (%) | 4.4 |
Normal Weight (%) | 46.7 | |
Overweight (%) | 37.8 | |
Obese (%) | 11.1 | |
Gestational Age (Weeks) * | 24.2 ± 3.8 |
Variable | 6th Month of Pregnancy | Delivery | 1th Month of Lactation | 6th Month of Lactation |
---|---|---|---|---|
Weight (kg) | 70.3 ± 9.0 b | 82.5 ± 10.8 a,c,d | 69.1 ± 9.7 b | 66.2 ± 9.4 b |
Height (m) | 1.61 ± 0.1 | 1.61 ± 0.1 | 1.61 ± 0.1 | 1.61 ± 0.1 |
BMI (kg/m2) | 27.1 ± 3.2 b | 31.9 ± 3.9 a,c,d | 26.5 ± 3.5 b | 25.5 ± 3.4 b |
Nutritional Status | ||||
Underweight (%) | 4.4 | 0 | 0 | 0 |
Normal Weight (%) | 46.7 | 42.2 | 40.8 | 37.2 |
Overweight (%) | 37.8 | 38.3 | 44.4 | 46.7 |
Obese (%) | 11.1 | 19.5 | 14.8 | 16.1 |
Gestational age at birth (weeks) | --------- | 39 ± 1 | --------- | --------- |
Vaginal delivery (%) | --------- | 55 | --------- | --------- |
Cesarean delivery (%) | --------- | 45 | --------- | --------- |
Gender: male (%) | --------- | 53 | --------- | --------- |
Gender: female (%) | --------- | 47 | --------- | --------- |
Infant Weight (g) | --------- | 4251 ± 489 d | 4619 ± 619 | 7916 ± 852 b |
Infant Height (cm) | --------- | 47.9 ± 4.2 d | 53.9 ± 5.8 | 66.9 ± 6.4 b |
Food Groups Intake (g/Day) | |||
---|---|---|---|
Food Groups | 6th Month of Pregnancy | 1st Month of Lactation | 6th Month of Lactation |
Cereals | 347.0 ± 59.8 | 302.7 ± 40.3 | 299.7 ± 31.7 |
Fruits and Vegetables | 638.9 ± 51.2 b,c | 371.5 ± 54.6 a | 303.6 ± 38.9 a |
Dairy | 461.4 ± 40.2 c | 383.6 ± 38.6 | 332.2 ± 27.6 a |
Meats and Eggs | 113. 5 ± 12.5 c | 112.0 ± 10.6 c | 85.2 ± 8.4 a,b |
Fish and Seafood | 28.5 ± 6.9 b,c | 17.3 ± 3.3 a | 13.1 ± 2.4 a |
Legumes | 20.0 ± 4.4 b | 10.5 ± 2.6 a | 15.9 ± 4.4 |
High-Lipid Foods | 47.1 ± 10.9 | 38.6 ± 9.7 | 37.1 ± 8.9 |
Oils and Fats | 39.8 ± 7.3 b,c | 23.5 ± 5.5 a | 22.6 ± 4.4 a |
Sugar and Processed Foods | 537.7 ± 53.5 b,c | 368.6 ± 48.6 a | 390.3 ± 41.7 a |
Time of Study | ||||||
---|---|---|---|---|---|---|
Energy/Nutrients/Fatty Acid | 6th Month of Pregnancy | Adequacy (%) Φ | 1st Month of Lactation | Adequacy (%) Φ | 6th Month of Lactation | Adequacy (%) Φ |
Energy (kcal) | 2721.4 ± 254.5 b,c | 126.9 ± 18.6 b,c | 2157.6 ± 219.3 a | 92.4 ± 8.9 a | 2110.2 ± 231.4 a | 96.2 ± 9.2 a |
Protein (g) | 97.1 ± 26.6 | 139.6 ± 35.4 | 86.8 ± 29.7 | 121.1 ± 27.5 | 81.4 ± 32.6 | 123.6 ± 27.9 |
Carbohydrate (g) | 442.4 ± 75.8 b,c | 121.8 ± 21.5 b,c | 278.4 ± 61.1 a | 83.1 ± 9.2 a | 261.5 ± 55.9 a | 82.1 ± 8.7 a |
Fiber (g) | 32.6 ± 12.4 | 116.6 ± 25.8 | 22.3 ± 8.1 | 76.8 ± 14.6 | 25.7 ± 11.7 | 79.6 ± 15.8 |
Fat (g) | 90.9 ± 31.1 | 129.1 ± 23.5 | 82.0 ± 26.6 | 115.4 ± 16.8 | 86.9 ± 28.4 | 118.7 ± 19.0 |
SFA (g) | 38.5 ± 4.8 | 154.5 ± 44.3 | 32.6 ± 3.9 | 135.4 ± 33.2 | 34.8 ± 2.8 | 145.1 ± 36.8 |
MUFA (g) | 24.7 ± 3.7 | 102.2 ± 10.5 | 22.9 ± 2.9 | 95.8 ± 9.9 | 25.7 ± 2.9 | 101.8 ±10.1 |
PUFA (g) | 25.6 ± 3.1 | 98.3 ± 9.5 | 24.4 ± 7.4 | 101.1 ± 11.4 | 25.3 ± 7.4 | 95.2 ± 10.2 |
n-3 fatty acid (g) | 2.96 ± 0.92 | 59.4 ± 5.8 | 2.68 ± 0.5 | 61.9 ± 6.8 | 2.75 ± 0.5 | 47.1 ± 5.1 |
n-6 fatty acid (g) | 22.5 ± 3.23 | 161.8 ± 15.4 | 21.4 ± 2.6 | 155.3 ± 18.9 | 22.4 ± 2.6 | 143.3 ± 14.4 |
18:2n-6 (LA) (g) | 18.5 ± 1.27 | 152.2 ± 19.3 | 18.5 ± 2.1 | 168.5 ± 20.3 | 21.1 ± 2.2 | 149.1 ± 14.8 |
18:3n-3 (ALA) (g) | 2.78 ± 0.90 | 68.7 ± 10.9 | 2.54 ± 0.4 | 71.4 ± 9.3 | 2.68 ± 0.6 | 59.4 ± 8.5 |
20:4n-6 (AA) (g) | 1.57 ± 0.03 | 191.5 ± 23.5 | 1.06 ± 0.02 | 132.5 ± 25.4 | 1.12 ± 0.05 | 145 ± 27.5 |
20:5n-3 (EPA) (g) | 0.04 ± 0.01 b,c | 41.4 ± 8.8 b.c | 0.02 ± 0.005 a | 23.8 ± 5.3 a | 0.02 ± 0.005 a | 25.2 ± 5.0 a |
22:6n-3 (DHA) (g) | 0.06 ± 0.01 b,c | 30.1 ± 3.8 b,c | 0.04 ± 0.005 a | 20.8 ± 2.5 a | 0.03 ± 0.005 a | 16.9 ± 1.8 a |
n-6/n-3 PUFA ratio | 7.60 ± 0.61 | ----- | 7.99 ± 0.64 | ----- | 8.15 ± 0.72 | ----- |
Time of Study | ||||
---|---|---|---|---|
6th Month of Pregnancy | Delivery | 1st Month of Lactation | 6th Month of Lactation | |
Fatty Acid | Fatty Acid Composition (FAME) | |||
C16:0 | 33.5 ± 3.7 | 32.5 ± 3.9 | 30.8 ± 2.9 | 31.4 ± 3.2 |
C18:0 | 16.2 ± 1.2 | 18.9 ± 1.7 | 17.9 ± 1.6 | 18.6 ± 1.7 |
C18:1n-9 | 11.8 ± 1.1 | 12.8 ± 1.6 | 13.5 ± 1.8 | 12.7 ± 1.1 |
C18:2n-6 (LA) | 12.6 ± 1.0 | 12.8 ± 1.1 | 12.5 ± 1.3 | 12.4 ± 0.9 |
C18:3n-3 (ALA) | 1.06 ± 0.1 | 1.09 ± 0.2 | 1.12 ± 0.1 | 1.14 ± 0.2 |
C20:4n-6 (AA) | 12.9 ± 1.2 | 12.5 ± 1.4 | 12.1 ± 1.0 | 11.8 ± 1.3 |
C20:5n-3 (EPA) | 0.98 ± 0.1 | 0.95 ± 0.1 | 1.03 ± 0.2 | 0.93 ± 0.2 |
C22:5n-6 (DPAn-6) | 0.73 ± 0.05 d | 0.76 ± 0.05 | 0.81 ± 0.1 | 0.98 ± 0.1 a |
C22:5n-6 (DPAn-3) | 0.57 ± 0.04 | 0.62 ± 0.05 | 0.67 ± 0.05 | 0.70 ± 0.1 |
C22:6n-3 (DHA) | 4.16 ± 0.6 d | 4.03 ± 0.4 | 3.96 ± 0.3 | 3.01 ± 0.2 a |
SFA | 52.6 ± 3.2 | 54.6 ± 4.3 | 52.8 ± 3.2 | 51.8 ± 3.8 |
MUFA | 13.5 ± 1.4 | 15.6 ± 1.7 | 16.8 ± 1.9 | 14.6 ± 1.6 |
PUFA | 33.9 ± 2.8 | 29.8 ± 2.5 | 30.4 ± 3.1 | 33.6 ± 2.9 |
LCPUFA | 19.7 ± 1.6 | 19.1 ± 1.4 | 18.9 ± 1.2 | 17.6 ± 1.0 |
n-6 LCPUFA | 13.7 ± 1.5 | 13.4 ± 1.2 | 13.1 ± 1.0 | 12.9 ± 1.1 |
n-3 LCPUFA | 6.00 ± 0.6 d | 5.70 ± 0.5 | 5.80 ± 0.04 | 4.70 ± 0.05 a |
n-6/n-3 LCPUFA ratio | 2.28 ± 0.05 | 2.35 ± 0.04 | 2.26 ± 0.05 | 2.75 ± 0.05 |
Time of Study | ||||||
---|---|---|---|---|---|---|
FA Composition | 1st Month | 2rd Month | 3rd Month | 4th Month | 5th Month | 6th Month |
C12:0 | 2.75 ± 0.2 | 2.64 ± 0.2 | 2.29 ± 0.1 | 2.84 ± 0.2 | 2.55 ± 0.2 | 2.34 ± 0.1 |
C14:0 | 6.92 ± 0.4 | 6.17 ± 0.5 | 6.34 ± 0.4 | 6.19 ± 0.5 | 5.98 ± 0.4 | 5.83 ± 0.6 |
C16:0 | 25.5 ± 2.9 | 24.3 ± 2.5 | 25.1 ± 2.8 | 25.7 ± 3.1 | 24.9± 2.8 | 24.6 ± 2.4 |
C18:0 | 4.15 ± 0.5 | 4.23 ± 0.4 | 4.38 ± 0.6 | 4.56 ± 0.4 | 5.01± 0.5 | 4.09 ± 0.5 |
C18:1n-9 | 33.2 ± 3.9 | 33.1 ± 3.7 | 35.2 ± 4.0 | 37.5 ± 4.5 | 37.7 ± 3.5 | 40.7 ± 4.6 |
C18:2n-6 (LA) | 18.1 ± 2.1 | 18.7 ± 1.9 | 17.2 ± 2.0 | 16.8 ± 1.7 | 17.0 ± 1.5 | 16.8 ± 1.3 |
C18:3n-3 (ALA) | 2.12 ± 0.3 | 2.29 ± 0.4 | 1.99 ± 0.3 | 1.92 ± 0.4 | 1.85 ± 0.2 | 1.79 ± 0.2 |
C20:4n-6 (AA) | 0.75 ± 0.1 | 0.79 ± 0.1 | 0.74 ± 0.1 | 0.72 ± 0.05 | 0.68 ± 0.1 | 0.70 ± 0.05 |
C20:5n-3 (EPA) | 0.13 ± 0.04 | 0.11 ± 0.02 | 0.12 ± 0.03 | 0.09 ± 0.03 | 0.11 ± 0.03 | 0.09 ± 0.02 |
C22:6n-3 (DHA) | 0.39 ± 0.04 d,e,f | 0.37 ± 0.04 d,e,f | 0.36 ± 0.03 d,e,f | 0.24 ± 0.02 a,b,c,f | 0.19 ± 0.03 a,b,c | 0.14 ± 0.02 a,b,c,d |
SFA | 40.5 ± 4.6 | 39.5 ± 4.3 | 40.6 ± 3.9 | 39.5 ± 3.8 | 38.6 ± 4.8 | 36.9 ± 3.8 |
MUFA | 36.9 ± 3.2 | 37.2 ± 3.8 | 38.9 ± 4.1 | 40.6 ± 4.0 | 40.7 ± 4.5 | 43.1 ± 4.8 |
PUFA | 22.6 ± 2.7 | 23.3 ± 2.8 | 20.5 ± 2.5 | 19.9 ± 2.0 | 20.7 ± 1.8 | 20.0 ± 1.6 |
LCPUFA | 1.46 ± 0.1 d,e,f | 1.40 ± 0.1 d,e,f | 1.36 ± 0.1 e,f | 1.19 ± 0.1 a,b,f | 1.08 ± 0.05 a,b,c | 0.99 ± 0.05 a,b,c,d |
n-6 LCPUFA | 0.83 ± 0.1 | 0.85 ± 0.1 | 0.81 ± 0.1 | 0.78 ± 0.05 | 0.74 ± 0.05 | 0.72 ± 0.05 |
n-3 LCPUFA | 0.63 ± 0.05 d,e,f | 0.55 ± 0.05 d,e,f | 0.55 ± 0.04 d,e,f | 0.41 ± 0.03 a,b,c,e,f | 0.34 ± 0.02 a,b,c,d,f | 0.27 ± 0.02 a,b,c,d,e |
n-6/n-3 LCPUFA ratio | 1.32 ± 0.1 b,c,d,e,f | 1.55 ± 0.1 a,d,e,f | 1.74 ± 0.1 a,e,f | 1.90 ± 0.2 a,b,f | 2.18 ± 0.3 a,b,c | 2.67 ± 0.3 a,b,c,d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, C.; Valenzuela, R.; Chamorro, R.; Bascuñán, K.; Sandoval, J.; Sabag, N.; Valenzuela, F.; Valencia, M.-P.; Puigrredon, C.; Valenzuela, A. The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women. Nutrients 2018, 10, 839. https://doi.org/10.3390/nu10070839
Barrera C, Valenzuela R, Chamorro R, Bascuñán K, Sandoval J, Sabag N, Valenzuela F, Valencia M-P, Puigrredon C, Valenzuela A. The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women. Nutrients. 2018; 10(7):839. https://doi.org/10.3390/nu10070839
Chicago/Turabian StyleBarrera, Cynthia, Rodrigo Valenzuela, Rodrigo Chamorro, Karla Bascuñán, Jorge Sandoval, Natalia Sabag, Francesca Valenzuela, María-Paz Valencia, Claudia Puigrredon, and Alfonso Valenzuela. 2018. "The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women" Nutrients 10, no. 7: 839. https://doi.org/10.3390/nu10070839
APA StyleBarrera, C., Valenzuela, R., Chamorro, R., Bascuñán, K., Sandoval, J., Sabag, N., Valenzuela, F., Valencia, M. -P., Puigrredon, C., & Valenzuela, A. (2018). The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women. Nutrients, 10(7), 839. https://doi.org/10.3390/nu10070839