Effect of Nutritional Interventions on Micronutrient Status in Pregnant Malawian Women with Moderate Malnutrition: A Randomized, Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lartey, A. Maternal and child nutrition in Sub-Saharan Africa: Challenges and interventions. Proc. Nutr. Soc. 2008, 67, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Hossain, M.; Sanin, K.I. Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann. Nutr. Metab. 2012, 61 (Suppl. 1), 8–17. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G.; Nantel, G.; Shetty, P. The scourge of “hidden hunger”: Global dimensions of micronutrient deficiencies. FNA/ANA 2003, 32, 8–16. [Google Scholar]
- Christian, P.; Schulze, K.; Stoltzfus, R.J.; West, K.P., Jr. Hyporetinolemia, illness symptoms, and acute phase protein response in pregnant women with and without night blindness. Am. J. Clin. Nutr. 1998, 67, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gropper, S.S.; Smith, J.L.; Groff, J.L. Advanced Nutrition and Human Metabolism, 6th ed.; Wadsworth Publishing: Belmont, CA, USA, 2009. [Google Scholar]
- King, J.C. Determinants of maternal zinc status during pregnancy. Am. J. Clin. Nutr. 2000, 71, 1334S–1343S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, R.; Sommerfelt, A.; Boyo, A.; Barba, C. Are We Making Progress on Reducing Anemia in Women? Cross-Country Comparison of Anemia Prevalence, Reach, and Use of Antenatal Care and Anemia Reduction Interventions; AED: Washington, DC, USA, 2011; 88p. [Google Scholar]
- Bhutta, Z.A.; Imdad, A.; Ramakrishnan, U.; Martorell, R. Is it time to replace iron folate supplements in pregnancy with multiple micronutrients? Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 27–35. [Google Scholar] [CrossRef] [PubMed]
- Arimond, M.; Zeilani, M.; Jungjohann, S.; Brown, K.H.; Ashorn, P.; Allen, L.H.; Dewey, K.G. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: Experience from the International Lipid-Based Nutrient Supplements (iLiNS) Project. Matern. Child Nutr. 2013, 11, 31–61. [Google Scholar] [CrossRef] [PubMed]
- Ashorn, P.; Alho, L.; Ashorn, U.; Cheung, Y.B.; Dewey, K.G.; Harjunmaa, U.; Lartey, A.; Nkhoma, M.; Phiri, N.; Phuka, J.; et al. The impact of lipid-based nutrient supplement provision to pregnant women on newborn size in rural Malawi: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Adu-Afarwuah, S.; Lartey, A.; Okronipa, H.; Ashorn, P.; Zeilani, M. Impact of small-quantity lipid-based nutrient supplement on hemoglobin, iron status and biomarkers of inflammation in pregnant Ghanaian women. Matern. Child Nutr. 2016, 13, e12262. [Google Scholar] [CrossRef] [PubMed]
- Callaghan-Gillespie, M.; Schaffner, A.A.; Garcia, P.; Fry, J.; Eckert, R.; Malek, S.; Trehan, I.; Thakwalakwa, C.; Maleta, K.M.; Manary, M.J.; et al. Trial of ready-to-use supplemental food and corn-soy blend in pregnant Malawian women with moderate malnutrition: A randomized controlled clinical trial. Am. J. Clin. Nutr. 2017, 106, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Van den Broek, N.R.; Letsky, E.A. Etiology of anemia in pregnancy in south Malawi. Am. J. Clin. Nutr. 2000, 72, 247S–256S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumar, N.; Rafnsson, S.B.; Kandala, N.; Bhopal, R.; Yajnik, C.S.; Saravanan, P. Prevalence of vitamin B-12 insufficiency during pregnancy and its effect on offspring birth weight: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 1232–1251. [Google Scholar] [CrossRef] [PubMed]
- Influence of Infection and Inflammation on Biomarkers of Nutritional Status with an Emphasis on Vitamin A and Iron. Available online: http://www.who.int/nutrition/publications/micronutrients/background_paper4_report_assessment_vitAandIron_status.pdf (accessed on 26 September 2014).
- Hotz, C.; Peerson, J.M.; Brown, K.H. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980 ). Am. J. Clin. Nutr. 2003, 78, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.; Srinivasan, K.; Thomas, T.; Samuel, T.; Rajendran, R.; Muthayya, S.; Finkelstein, J.L.; Lukose, A.; Fawzi, W.; Allen, L.H.; et al. V Vitamin B-12 Supplementation during Pregnancy and Early Lactation Increases Maternal, Breast Milk, and Infant Measures of Vitamin B-12. J. Nutr. 2014, 144, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Bondevik, G.; Schneede, J.; Refsum, H.; Lie, R.; Ulstein, M.; Kvale, G. Homocysteine and methylmalonic acid levels in pregnant Nepali women. Should cobalamin supplementation be considered? Eur. J. Clin. Nutr. 2001, 55, 856–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, C.G.; Oace, S.M.; Chaparro, M.P.; Herman, D.; Drorbaugh, N.; Bwibo, N.O. Low vitamin B 12 intake during pregnancy and lactation and low breastmilk vitamin B 12 content in rural Kenyan women consuming predominantly maize diets. Food Nutr. Bull. 2014, 34, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Ramlal, R.; Tembo, M.; King, C.; Ellington, S.; Soko, A.; Chigwenembe, M.; Chasela, C.; Jamieson, D.; van der Horst, C.; Bentley, M.; et al. Dietary Patterns and Maternal Anthropometry in HIV-Infected, Pregnant Malawian Women. Nutrients 2015, 7, 584–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne-Lyman, A.; Fawzi, W.W. Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2013, 26, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.; Rouse, D.J.; Momirova, V.; Peaceman, A.M.; Sciscione, A.; Spong, C.Y.; Varner, M.W.; Malone, F.D. Maternal 25-hydroxyvitamin D and preterm birth in twin gestations. Obstet. Gynecol. 2013, 122, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef] [PubMed]
- Guang Bi, W.; Monique Nuyt, A.; Weiler, H.; Leduc, L.; Santamaria, C.; Qin Wei, S. Association Between Vitamin D Supplementation During Pregnancy and Offspring Growth, Morbidity, and Mortality A Systematic Review and Meta-analysis. JAMA Pediatr. 2018. [Google Scholar] [CrossRef]
- Jiang, H.L.; Cao, L.Q.; Chen, H.Y. Blood folic acid, vitamin B12, and homocysteine levels in pregnant women with fetal growth restriction. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Yajnik, C.S.; Kanade, A.; Fall, C.H.D.; Margetts, B.M.; Jackson, A.A.; Shier, R.; Joshi, S.; Rege, S.; Lubree, H.; et al. Intake of Micronutrient-Rich Foods in Rural Indian Mothers Is Associated with the Size of Their Babies at Birth: Pune Maternal Nutrition Study. J. Nutr. 2001, 131, 1217–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prawirohartono, E.; Nystrom, L.; Nurdiati, D.; Hakimi, M.; Lind, T. The impact of prenatal vitamin A and zinc supplementation on birth size and neonatal survival-a double-blind, randomized controlled trial in a rural area of Indonesia. Int. J. Vitam. Nutr. Res. 2013, 83, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Mathews, F.; Youngman, L.; Neil, A. Maternal circulating nutrient concentrations in pregnancy: Implications for birth and placental weights of term infants. Am. J. Clin. Nutr. 2004, 79, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Ray, M.; Dua, T.; Radhakrishnan, G.; Kumar, R.; Sachdev, H.P.S. Multimicronutrient supplementation for undernourished pregnant women and the birth size of their offspring: A double-blind, randomized, placebo-controlled trial. Arch. Pediatr. Adolesc. Med. 2007, 161, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Klemm, R.; Shamim, A.A.; Ali, H.; Rashid, M.; Shaikh, S.; Wu, L.; Mehra, S.; Labrique, A.; Katz, J.; et al. Effects of vitamin A and beta-carotene supplementation on birth size and length of gestation in rural Bangladesh: A cluster-randomized trial. Am. J. Clin. Nutr. 2013, 97, 188–194. [Google Scholar] [CrossRef] [PubMed]
- WHO. Serum retinol concentrations for determining the prevalence of vitamin A deficiency in populations. World Heal. Organ. 2011, 3–7. [Google Scholar]
- De Pee, S.; Dary, O. Biochemical Indicators of Vitamin A Deficiency: Serum Retinol and Serum Retinol Binding Protein. J. Nutr. 2002, 132, 2895S–2901S. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.W.S. Plasma Retinol-Binding Protein. Ann. N. Y. Acad. Sci. 1980, 348, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Talegawkar, S.A.; Merialdi, M.; Caulfield, L.E. Dietary intakes of women during pregnancy in low- and middle-income countries. Public Health Nutr. 2013, 16, 1340–1353. [Google Scholar] [CrossRef] [PubMed]
- USAID. Malawi: Nutrition Profile; USAID: Washington, DC, USA, 2014.
- Malawi National Statistical Office; Malawi Community Health Sciences Unit of the Ministry of Health; Centers for Disease Control and Prevention; Emory University. Malawi Micronutrient Survey Key Indicators Report 2015-16; NSO, CHSU, CDC and Emory University: Atlanta, GA, USA, 2017; pp. 1–36. [Google Scholar]
- McCauley, M.; van den Broek, N.R.; Dou, L.; Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes (Review). Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Micronutrient Initiative. In Safe Vitamin A Dosage during Pregnancy and Lactation; Recommendations and Report of a Consultation; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Nguyen, V.H. World Food Programme: Technical Specifications for the Manufacture of Super Cereal; WFP: Rome, Italy, 2013; Volume 13. [Google Scholar]
- Allen, L.H. Anemia and iron deficiency: Effects on pregnancy outcome. Am. J. Clin. Nutr. 2000, 71, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Kaestel, P.; Aaby, P.; Ritz, C.; Friis, H. Markers of iron status are associated with stage of pregnancy and acute-phase response, but not parity among pregnant women in Guinea-Bissau. Br. J. Nutr. 2015, 114, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, L.E.; Zavaleta, N.; Figueroa, A. Adding zinc to prenatal iron and folate supplements improves maternal and neonatal zinc status in a Peruvian population. Am. J. Clin. Nutr. 1999, 69, 1257–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.S.; Huddle, J.M. Suboptimal zinc status in pregnant Malawian women: Its association with low intakes of poorly available zinc, frequent reproductive cycling, and malaria. Am. J. Clin. Nutr. 1998, 67, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, A. Assessing micronutrient status in the presence of inflammation. J. Nutr. 2003, 133, 1649S–1655S. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H. Multiple micronutrients in pregnancy and lactation: An overview. Am. J. Clin. Nutr. 2005, 81, 1206S–1212S. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O. Iron status during pregnancy: Setting the stage for mother and infant. Am. J. Clin. Nutr. 2005, 81, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
Nutrient | CSB+IFA 2 | CSB+UNIMMAP 3 | RUSF 4 | RDA 5 | UL 6 |
---|---|---|---|---|---|
Energy (kcal) | 893 | 893 | 920 | NA | NA |
Protein (g) | 33 | 33 | 36 | NA | NA |
α-linolenic acid (g) | 0 | 0 | 2.3 (161) | 1.4 | NA |
Linoleic acid (g) | 0 | 0 | 14.0 (107) | 13 | NA |
Docosahexaenoic acid (mg) | 0 | 0 | 211 | NA | NA |
Eicosapentaenoic acid (mg) | 0 | 0 | 43 | NA | NA |
Vitamin A (µg) | 2410 (312) | 3210 (417) | 2628 (341) | 770 | 3000 |
Vitamin B1 (mg) | 0.3 (20) | 1.7 (121.5) | 3.2 (228) | 1.4 | NA |
Vitamin B2 (mg) | 3.29 (235) | 4.7 (355) | 3.8 (270) | 1.4 | NA |
Vitamin B3 (mg) | 18.8 (104) | 36.8 (204) | 35 (194) | 18 | 35 |
Vitamin B6 (mg) | 4.0 (210) | 5.9 (310) | 4.0 (210) | 1.9 | 100 |
Vitamin B12 (µg) | 4.7 (181) | 7.3 (280) | 5.5 (211) | 2.6 | NA |
Folic acid (µg) | 659 (165) | 659 (165) | 574 (143) | 400 | 1000 |
Vitamin C (mg) | 211 (249) | 281 (331) | 170 (200) | 85 | 2000 |
Vitamin D (µg) | 25.4 (169) | 20.9 (139) | 30 (200) | 15 | 100 |
Vitamin E (mg) | 19.5 (130) | 29.5 (197) | 39.2 (261) | 15 | 1000 |
Vitamin K (µg) | 70.5 (78) | 70.5 (78) | 192 (213) | 90 7 | NA |
Iodine (µg) | 94 (43) | 244 (111) | 300 (136.4) | 220 | 1100 |
Copper (µg) | 0 | 2000 (200) | 2400 (240) | 1.0 | 10.0 |
Iron (mg) | 79.2 (292) | 45.3 (180.7) | 45 (170) | 27 | 45 |
Zinc (mg) | 11.8 (107) | 26.8 (243) | 24.6 (223) | 11 | 40 |
Magnesium (mg) | 400 (114) | 400 (114) | 327 (93) | 350 | 350 |
Calcium (mg) | 851 (85) | 851 (85) | 1830 (183) | 1000 | 2500 |
Selenium (µg) | 0 | 65 (108) | 123 (205) | 60 | 400 |
7.5 | Units | Severely Deficient | Deficiency | Deficiency with Inflammation | Marginal Cut-off Values |
---|---|---|---|---|---|
Vitamin B12 1 | pg/mL | <203.0 | -- | -- | |
Vitamin D 2 | ng/mL | <12.0 | 12–20 | -- | 20–30 |
Folate 3 | ng/mL | <3.0 | -- | 3.0–5.9 | |
Retinol | µmol/L | <0.70 | <0.60 4 | <1.05 | |
Ferritin | ng/mL | <15.0 | <19.0 4 | -- | |
Zinc 5 | µg/dL | 1st trimester: <57 2nd/3rdtrimester: <50 | -- | -- | |
Albumin | g/dL | <3.4 | -- | -- | |
CRP 6 | mg/L | Elevated >5.0 | -- | -- |
Characteristic | CSB+IFA (n = 115) | CSB+UNIMMAP (n = 110) | RUSF (n = 118) | p1 |
---|---|---|---|---|
Age at enrollment (years) | 20.8 ± 4.4 2 | 20.6 ± 3.8 | 20.4 ± 4.7 | 0.79 |
16–17 (%) | 19.1 | 13.6 | 26.2 | 0.15 |
18–21 (%) | 52.2 | 58.2 | 44.1 | |
22–29 (%) | 19.1 | 23.6 | 22.9 | |
30–40 (%) | 9.6 | 4.6 | 6.8 | |
Illness (previous 2 months, %) | 22.6 | 21.1 | 20.3 | 0.92 |
Diarrhea (previous 2 months, %) | 5.2 | 6.5 | 4.2 | 0.75 |
Malaria (previous 2 months, %) | 13.9 | 13.0 | 17.8 | 0.55 |
Fundal height (cm) | 19.7 ± 3.6 | 19.6 ± 4.2 | 18.4 ± 4.4 | 0.04 |
Previous pregnancies | 1.0 ± 1.3 | 1.0 ± 1.3 | 0.9 ± 1.6 | 0.84 |
Currently taking supplements | 67.8 | 70.6 | 72.0 | 0.78 |
Folic acid (%) | 3.5 | 0.9 | 2.5 | 0.43 |
Iron (%) | 64.4 | 68.2 | 69.5 | 0.69 |
HIV status (% positive) 3 | 15.8 | 9.2 | 8.6 | 0.16 |
Height (cm) | 154.1 ± 5.4 | 153.9 ± 5.3 | 154.2 ± 5.3 | 0.92 |
MUAC 4 (cm) | 22.2 ± 0.6 | 22.2 ± 0.6 | 22.2 ± 0.6 | 0.84 |
Weight (kg) | 45.7 ± 3.5 | 45.8 ± 3.8 | 45.9 ± 3.8 | 0.92 |
BMI 5 (kg/m2) | 19.2 ± 1.1 | 19.3 ± 1.3 | 19.3 ± 1.4 | 0.80 |
Underweight (%) 6 | 30.4 | 25.5 | 28.8 | 0.70 |
Nutrient | CSB+IFA 1 | CSB+UNIMMAP 2 | RUSF 3 | p4 | |||
---|---|---|---|---|---|---|---|
Week 0 | Week 10 | Week 0 | Week 10 | Week 0 | Week 10 | ||
Vitamin B12 5 | 18.0 | 41.8 | 22.0 | 23.0 | 22.6 | 20.5 | <0.001 |
Vitamin D 6 | |||||||
Marginal | 34.2 | 24.1 | 33.0 | 24.3 | 38.3 | 23.1 | 0.98 |
Deficient | 1.8 | 0.0 | 0.9 | 1.4 | 7.0 | 2.6 | |
Folate 7 | 26.1 | 6.3 | 20.2 | 16.2 | 18.3 | 12.8 | 0.15 |
Retinol | |||||||
marginal 8 | 34.9 | 25.3 | 37.0 | 32.4 | 25.9 | 33.3 | 0.49 |
deficient 9 | 4.6 | 7.6 | 8.3 | 8.1 | 6.0 | 5.1 | 0.74 |
Ferritin 10 | 25.2 | 48.7 | 26.6 | 42.5 | 23.5 | 53.8 | 0.37 |
Zinc 11 | 24.8 | 32.9 | 16.8 | 33.8 | 25.0 | 29.9 | 0.86 |
Outcome | CSB+IFA 3 | CSB+UNIMMAP 4 | RUSF 5 | p6 | |||
---|---|---|---|---|---|---|---|
Week 0 | Week 10 | Week 0 | Week 10 | Week 0 | Week 10 | ||
(n = 111) | (n = 79) | (n = 109) | (n = 74) | (n = 115) | (n = 78) | ||
Vitamin B12 (pg/mL) 7,10 | 281 b | 225 a | 277 a | 255 a,b | 285 a | 275 a | 0.001 |
Δ = 0.80 a | Δ = 0.92 b | Δ = 0.97 b | |||||
25-hydroxy-vitamin D (ng/mL) 11 | 34.6 (0.9) c | 36.3 (1.0) b,c | 35.9 (0.9) c | 38.6 (1.0) a,b | 34.5 (0.9) c | 40.9 (1.0) a | <0.001 |
Δ = 1.7 (0.8) a | Δ = 2.7 (0.8) a | Δ = 6.4 (0.8) b | |||||
Folate (ng/mL) | 8.9 (0.5) | 13.1 (0.6) | 9.7 (0.6) | 11.7 (0.7) | 9.4 (0.6) | 11.6 (0.7) | 0.11 |
Retinol (μmol/L) 8 | 1.05 (0.04) | 1.01 (0.04) | 1.07 (0.04) | 1.05 (0.04) | 1.05 (0.04) | 1.01 (0.04) | 0.93 |
Ferritin (ng/mL) 7,10 | 29.1 | 18.6 | 29.0 | 20.9 | 33.2 | 18.2 | 0.30 |
Plasma zinc (μg/dL) 8,9 | 53.8 (1.1) | 53.1 (1.2) | 55.0 (1.1) | 53.8 (1.3) | 53.1 (1.1) | 54.9 (1.3) | 0.40 |
Albumin (g/dL) 8 | 3.44 (0.05) | 3.27 (0.05) | 3.41 (0.05) | 3.29 (0.06) | 3.48 (0.05) | 3.19 (0.06) | 0.43 |
C-reactive protein (mg/L) 7 | 6.5 | 6.1 | 7.0 | 6.9 | 7.3 | 5.2 | 0.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glosz, C.M.; Schaffner, A.A.; Reaves, S.K.; Manary, M.J.; Papathakis, P.C. Effect of Nutritional Interventions on Micronutrient Status in Pregnant Malawian Women with Moderate Malnutrition: A Randomized, Controlled Trial. Nutrients 2018, 10, 879. https://doi.org/10.3390/nu10070879
Glosz CM, Schaffner AA, Reaves SK, Manary MJ, Papathakis PC. Effect of Nutritional Interventions on Micronutrient Status in Pregnant Malawian Women with Moderate Malnutrition: A Randomized, Controlled Trial. Nutrients. 2018; 10(7):879. https://doi.org/10.3390/nu10070879
Chicago/Turabian StyleGlosz, Cambria M., Andrew A. Schaffner, Scott K. Reaves, Mark J. Manary, and Peggy C. Papathakis. 2018. "Effect of Nutritional Interventions on Micronutrient Status in Pregnant Malawian Women with Moderate Malnutrition: A Randomized, Controlled Trial" Nutrients 10, no. 7: 879. https://doi.org/10.3390/nu10070879
APA StyleGlosz, C. M., Schaffner, A. A., Reaves, S. K., Manary, M. J., & Papathakis, P. C. (2018). Effect of Nutritional Interventions on Micronutrient Status in Pregnant Malawian Women with Moderate Malnutrition: A Randomized, Controlled Trial. Nutrients, 10(7), 879. https://doi.org/10.3390/nu10070879