Lactation Duration and Long-Term Thyroid Function: A Study among Women with Gestational Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ascertainment of Cumulative Lactation History after Index GDM Pregnancy
2.3. Thyroid Function
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Characteristics Ascertained at Follow-Up (2012–2014) | n | Thyroid Biomarkers | |||
---|---|---|---|---|---|
TSH (mIU/L) | fT3 (pmol/L) | fT4 (ng/dL) | fT3:fT4 Ratio | ||
Age | |||||
Unknown | 6 | 1.73 (1.10) | 4.0 (1.38) | 1.09 (0.41) | 3.74 (0.46) |
<45 | 314 | 2.09 (1.66) | 4.65 (0.60) | 1.14 (0.15) | 4.12 (0.66) |
≥45 | 230 | 2.20 (1.32) | 4.62 (0.52) | 1.15 (0.17) | 4.07 (0.62) |
p * | 0.41 | 0.51 | 0.47 | 0.32 | |
Weight change, kg | |||||
Unknown | 8 | 2.31 (1.73) | 4.19 (1.22) | 1.10 (0.35) | 3.84 (0.45) |
<4.1 | 265 | 2.09 (1.31) | 4.53 (0.56) | 1.17 (0.16) | 3.94 (0.62) |
≥4.1 | 277 | 2.17 (1.70) | 4.74 (0.56) | 1.13 (0.15) | 4.25 (0.64) |
p * | 0.57 | <0.01 | 0.01 | <0.01 | |
Diabetes | |||||
Unknown | 6 | 1.73 (1.10) | 4.0 (1.38) | 1.09 (0.41) | 3.74 (0.46) |
No | 388 | 2.15 (1.63) | 4.61 (0.57) | 1.14 (0.15) | 4.09 (0.60) |
Type 1 | 14 | 2.69 (1.44) | 4.55 (0.48) | 1.04 (0.09) | 4.37 (0.43) |
Type 2 | 142 | 2.04 (1.19) | 4.72 (0.58) | 1.18 (0.18) | 4.09 (0.76) |
p * | 0.29 | 0.13 | <0.01 | 0.28 | |
Post-menopausal | |||||
Unknown | 6 | 1.73 (1.10) | 4.0 (1.38) | 1.09 (0.41) | 3.74 (0.46) |
No | 463 | 2.14 (1.55) | 4.63 (0.56) | 1.14 (0.15) | 4.11 (0.65) |
Yes | 81 | 2.13 (1.36) | 4.70 (0.59) | 1.18 (0.19) | 4.05 (0.62) |
p * | 0.99 | 0.29 | 0.05 | 0.43 |
Thyroid Biomarker | Pre-Menopausal Women (n = 463) | p-Trend * | Post-Menopausal Women (n = 81) | p-Trend * | ||
---|---|---|---|---|---|---|
n | Adjusted 1 β Estimate (95% CI) | n | Adjusted 1 β Estimate (95% CI) | |||
fT3 (pmol/L) | 0.29 | 0.22 | ||||
≥12 months | 190 | 0.10 (−0.08, 0.28) | 20 | 0.47 (0.04, 0.90) | ||
6 to <12 months | 137 | 0.12 (−0.07, 0.03) | 33 | 0.10 (−0.30, 0.50) | ||
<6 months | 87 | 0.02 (−0.17, 0.22) | 17 | 0.46 (0.03, 0.90) | ||
None | 49 | Reference | 11 | Reference | ||
fT3:fT4 ratio | 0.43 | 0.33 | ||||
≥12 months | 190 | 0.00 (−0.20, 0.21) | 20 | 0.38 (−0.06, 0.82) | ||
6 to <12 months | 137 | 0.05 (−0.17, 0.27) | 33 | −0.12 (−0.53, 0.29) | ||
<6 months | 87 | −0.11 (−0.34, 0.12) | 17 | 0.14 (−0.30, 0.59) | ||
None | 49 | Reference | 11 | Reference |
References
- Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef] [PubMed]
- Reece, E.A. The fetal and maternal consequences of gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2010, 23, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Stuebe, A.M.; Schwarz, E.B. The risks and benefits of infant feeding practices for women and their children. J. Perinatol. 2010, 30, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Capuco, A.V.; Connor, E.E.; Wood, D.L. Regulation of mammary gland sensitivity to thyroid hormones during the transition from pregnancy to lactation. Exp. Biol. Med. 2008, 233, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.; Laurberg, P.; Rasmussen, L.B.; Bulow, I.; Perrild, H.; Ovesen, L.; Jorgensen, T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J. Clin. Endocrinol. Metab. 2005, 90, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Gamborg, M.; Heitmann, B.L.; Lissner, L.; Sorensen, T.I.; Rasmussen, K.M. Breastfeeding reduces postpartum weight retention. Am. J. Clin. Nutr. 2008, 88, 1543–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bano, A.; Dhana, K.; Chaker, L.; Kavousi, M.; Ikram, M.A.; Mattace-Raso, F.U.S.; Peeters, R.P.; Franco, O.H. Association of thyroid function with life expectancy with and without cardiovascular disease: The rotterdam study. JAMA Intern. Med. 2017, 177, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Fatima, S.S.; Rehman, R.; Butt, Z.; Tauni, M.A.; Munim, T.F.; Chaudhry, B.; Khan, T.A. Screening of subclinical hypothyroidism during gestational diabetes in pakistani population. J. Matern. Fetal Neonatal Med. 2016, 29, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Shahbazian, H.; Shahbazian, N.; Baniani, M.R.; Yazdanpanah, L.; Latifi, S.M. Evaluation of thyroid dysfunction in pregnant women with gestational and pre-gestational diabetes. Pak. J. Med. Sci. 2013, 29, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Speller, E.; Brodribb, W. Breastfeeding and thyroid disease: A literature review. Breastfeed. Rev. 2012, 20, 41–47. [Google Scholar] [PubMed]
- Vafaeimanesh, J.; Asgarani, F.; Bagherzadeh, M.; Ebrahimi, G.; Parham, M. Thyroid function in pregnant women with gestational diabetes: Is screening necessary? Thyroid Res. Pract. 2015, 12, 3–7. [Google Scholar] [CrossRef]
- Vitacolonna, E.; Lapolla, A.; Di Nenno, B.; Passante, A.; Bucci, I.; Giuliani, C.; Cerrone, D.; Capani, F.; Monaco, F.; Napolitano, G. Gestational diabetes and thyroid autoimmunity. Int. J. Endocrinol. 2012, 2012, 867415. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shi, F.T.; Leung, P.C.; Huang, H.F.; Fan, J. Low thyroid hormone in early pregnancy is associated with an increased risk of gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2016, 101, 4237–4243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, F.B.; Olsen, S.F.; Vaag, A.; Gore-Langton, R.; Chavarro, J.E.; Bao, W.; Yeung, E.; Bowers, K.; Grunnet, L.G.; et al. Rationale, design, and method of the diabetes & women’s health study—A study of long-term health implications of glucose intolerance in pregnancy and their determinants. Acta Obstet. Gynecol. Scand. 2014, 93, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.; Melbye, M.; Olsen, S.F.; Sorensen, T.I.; Aaby, P.; Andersen, A.M.; Taxbol, D.; Hansen, K.D.; Juhl, M.; Schow, T.B.; et al. The danish national birth cohort—Its background, structure and aim. Scand. J. Public Health 2001, 29, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Garber, J.R.; Cobin, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Pessah-Pollack, R.; Singer, P.A.; Woeber, K.A. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the american association of clinical endocrinologists and the american thyroid association. Endocr. Pract. 2012, 18, 988–1028. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T4, and thyroid antibodies in the united states population (1988 to 1994): National health and nutrition examination survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011, 34, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.C.; Kim, B.W. Deiodinases: Implications of the local control of thyroid hormone action. J. Clin. Investig. 2006, 116, 2571–2579. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, H.W.; Zhang, Y.; Hood, W.R.; Kavazis, A.N. Lactation has persistent effects on a mother’s metabolism and mitochondrial function. Sci. Rep. 2017, 7, 17118. [Google Scholar] [CrossRef] [PubMed]
- Stuebe, A.M.; Michels, K.B.; Willett, W.C.; Manson, J.E.; Rexrode, K.; Rich-Edwards, J.W. Duration of lactation and incidence of myocardial infarction in middle to late adulthood. Am. J. Obstet. Gynecol. 2009, 200, 138.e1–138.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuebe, A.M.; Rich-Edwards, J.W. The reset hypothesis: Lactation and maternal metabolism. Am. J. Perinatol. 2009, 26, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.I.; Nam, J.Y.; Shin, S.K.; Kang, E.W. Low triiodothyronine syndrome and long-term cardiovascular outcome in incident peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 2015, 10, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Fragidis, S.; Sombolos, K.; Thodis, E.; Panagoutsos, S.; Mourvati, E.; Pikilidou, M.; Papagianni, A.; Pasadakis, P.; Vargemezis, V. Low T3 syndrome and long-term mortality in chronic hemodialysis patients. World J. Nephrol. 2015, 4, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.H.; Kong, F.Z.; Cheng, Q.Z.; Luo, W.F.; Du, X.D. Low T3 syndrome predicts severe neurological deficits of cerebral infarction inpatients with large artery artherosclerosis in internal carotid artery system. Neuro Endocrinol. Lett. 2014, 35, 149–153. [Google Scholar] [PubMed]
- Zoccali, C.; Mallamaci, F.; Tripepi, G.; Cutrupi, S.; Pizzini, P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 2006, 70, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Iervasi, G.; Cobb, J.; Ndreu, R.; Nannipieri, M. Insulin resistance and normal thyroid hormone levels: Prospective study and metabolomic analysis. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E429–E436. [Google Scholar] [CrossRef] [PubMed]
- Roef, G.L.; Rietzschel, E.R.; Van Daele, C.M.; Taes, Y.E.; De Buyzere, M.L.; Gillebert, T.C.; Kaufman, J.M. Triiodothyronine and free thyroxine levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid 2014, 24, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarcin, O.; Abanonu, G.B.; Yazici, D.; Tarcin, O. Association of metabolic syndrome parameters with TT3 and FT3/FT4 ratio in obese turkish population. Metab. Syndr. Relat. Disord. 2012, 10, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, E.H.; van Tienhoven-Wind, L.J.; Amini, M.; Schreuder, T.C.; Faber, K.N.; Blokzijl, H.; Dullaart, R.P. Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects: The lifelines cohort study. Metabolism 2017, 67, 62–71. [Google Scholar] [CrossRef] [PubMed]
Characteristics Ascertained at Index Pregnancy (1996–2002) | Overall (n = 550) | Cumulative Lactation Duration, Months | p * | |||
---|---|---|---|---|---|---|
None (n = 62) | >0 to < 6 (n = 106) | 6 to < 12 (n = 171) | ≥12 (n = 211) | |||
Age, years | 31.5 (4.5) | 31.1 (4.5) | 31.8 (4.0) | 32.2 (4.6) | 30.8 (4.4) | 0.01 |
Pre-pregnancy BMI, kg/m2 | <0.001 | |||||
Unknown | 30 (5.5) | 6 (9.7) | 8 (7.6) | 6 (3.5) | 10 (4.7) | |
<25.0 | 221 (40.2) | 13 (21.0) | 30 (28.3) | 76 (44.4) | 102 (48.3) | |
25.0–29.9 | 143 (26.0) | 16 (25.8) | 26 (24.5) | 45 (26.3) | 56 (26.5) | |
≥30.0 | 156 (28.4) | 27 (43.6) | 42 (39.6) | 44 (25.7) | 43 (20.4) | |
Occupation | <0.001 | |||||
Unknown | 49 (8.9) | 13 (21.0) | 12 (11.3) | 9 (5.3) | 15 (7.1) | |
Professional | 254 (46.2) | 20 (32.3) | 31 (29.3) | 82 (48.0) | 121 (57.4) | |
Skilled worker | 152 (27.6) | 16 (25.8) | 41 (38.7) | 47 (27.5) | 48 (22.8) | |
Other (unskilled worker, unemployed, student) | 95 (17.3) | 13 (21.0) | 22 (20.8) | 33 (19.3) | 27 (12.8) | |
Parity | <0.001 | |||||
Unknown | 46 (8.4) | 13 (21.0) | 11 (10.4) | 8 (4.7) | 14 (6.6) | |
0 | 200 (36.4) | 26 (41.9) | 32 (30.2) | 41 (24.0) | 101 (47.9) | |
≥1 | 304 (55.3) | 23 (37.1) | 63 (59.4) | 122 (71.4) | 96 (45.5) | |
Drank any alcohol while pregnant | <0.001 | |||||
Unknown | 21 (3.8) | 8 (12.9) | 4 (3.8) | 3 (1.8) | 6 (2.8) | |
No | 244 (44.4) | 33 (53.2) | 42 (39.6) | 68 (39.8) | 101 (47.9) | |
Yes | 285 (51.8) | 21 (33.9) | 60 (56.6) | 100 (58.5) | 104 (49.3) | |
Smoked while pregnant | 0.002 | |||||
Unknown | 21 (3.8) | 8 (12.9) | 4 (3.8) | 3 (1.8) | 6 (2.8) | |
No | 383 (69.6) | 34 (54.8) | 69 (65.1) | 124 (72.5) | 156 (73.9) | |
Yes | 146 (26.6) | 20 (32.3) | 33 (31.1) | 44 (25.7) | 49 (23.2) | |
Characteristics ascertained at follow-up (2012–2014) | ||||||
Age, year | 43.6 (4.6) | 43 (4.6) | 43.9 (4.3) | 44.3 (4.7) | 43.1 (4.6) | |
Weight change, kg | 0.36 | |||||
Unknown | 8 (1.5) | 2 (3.2) | 2 (1.9) | 2 (1.2) | 2 (1.0) | |
<4.1 | 269 (48.9) | 35 (56.5) | 52 (49.1) | 89 (52.1) | 93 (44.1) | |
≥4.1 | 273 (49.6) | 25 (40.3) | 52 (49.1) | 80 (46.8) | 116 (55.0) | |
Diabetes | 0.02 | |||||
Unknown | 6 (1.1) | 2 (3.2) | 2 (1.9) | 1 (0.6) | 1 (0.5) | |
No | 388 (70.6) | 37 (59.7) | 65 (61.3) | 120 (70.2) | 166 (78.7) | |
Type 1 | 14 (2.6) | 1 (1.6) | 5 (4.7) | 4 (2.3) | 4 (1.9) | |
Type 2 | 142 (25.8) | 22 (35.5) | 34 (32.1) | 46 (26.9) | 40 (19) | |
Post-Menopausal | 0.047 | |||||
Unknown | 6 (1.1) | 2 (3.2) | 2 (1.9) | 1 (0.6) | 1 (0.5) | |
No | 463 (84.2) | 49 (79) | 87 (82.1) | 137 (80.1) | 190 (90.1) | |
Yes | 81 (14.7) | 11 (17.7) | 17 (16) | 33 (19.3) | 20 (9.5) | |
TSH (mIU/L) | 2.1 (1.5) | 2.2 (1.5) | 2 (1.3) | 2.1 (1.3) | 2.2 (1.8) | 0.90 |
fT3 (pmol/L) | 4.6 (0.6) | 4.5 (0.6) | 4.6 (0.7) | 4.6 (0.5) | 4.7 (0.6) | 0.16 |
fT4 (ng/dL) | 1.1 (0.2) | 1.1 (0.2) | 1.2 (0.2) | 1.1 (0.2) | 1.2 (0.2) | 0.67 |
fT3:fT4 ratio | 4.1 (0.6) | 4.1 (0.7) | 4 (0.6) | 4.1 (0.7) | 4.1 (0.6) | 0.59 |
Anti-TPO positive | 78 (14.2) | 8 (12.9) | 13 (12.3) | 30 (17.5) | 27 (12.8) | 0.51 |
Anti-TG Positive | 69 (12.6) | 5 (8.1) | 9 (8.5) | 26 (15.2) | 29 (13.7) | 0.25 |
Outcome | n | Unadjusted OR (95% CI) | p * | Adjusted OR 1 (95% CI) | p * |
---|---|---|---|---|---|
TG-positive 2 | |||||
≥12 months | 211 | 1.82 (0.67, 4.91) | 0.23 | 2.63 (0.74, 9.37) | 0.13 |
6 to <12 months | 171 | 2.04 (0.75, 5.58) | 0.16 | 2.88 (0.80, 10.27) | 0.10 |
<6 months | 106 | 1.06 (0.34, 3.31) | 0.92 | 1.72 (0.44, 6.82) | 0.43 |
None | 62 | 1.00 (reference) | 1.00 (reference) | ||
TPO-positive 2 | |||||
≥12 months | 211 | 0.99 (0.43, 2.31) | 0.98 | 0.93 (0.36, 2.39) | 0.88 |
6 to <12 months | 171 | 1.44 (0.62, 3.33) | 0.40 | 1.17 (0.46, 2.99) | 0.74 |
<6 months | 106 | 0.94 (0.37, 2.42) | 0.90 | 0.70 (0.24, 2.03) | 0.52 |
None | 62 | 1.00 (reference) | 1.00 (reference) |
Thyroid Biomarker | n | Unadjusted β Estimate (95% CI) | p-Trend * | Adjusted 1 β Estimate (95% CI) | p-Trend * |
---|---|---|---|---|---|
TSH (mIU/L) | 0.79 | 0.87 | |||
≥12 months | 211 | −0.05 (−0.48, 0.38) | −0.03 (−0.47, 0.41) | ||
6 to <12 months | 171 | −0.07 (−0.51, 0.37) | −0.03 (−0.49, 0.43) | ||
<6 months | 106 | −0.17 (−0.64, 0.31) | −0.13 (−0.61, 0.35) | ||
None | 62 | Reference | Reference | ||
fT3 (pmol/L) | 0.03 | 0.05 | |||
≥12 months | 211 | 0.18 (0.01, 0.34) | 0.19 (0.03, 0.36) | ||
6 to <12 months | 171 | 0.10 (−0.07, 0.27) | 0.15 (−0.02, 0.32) | ||
<6 months | 106 | 0.10 (−0.08, 0.28) | 0.13 (−0.05, 0.31) | ||
None | 62 | Reference | Reference | ||
fT4 (ng/dL) | 0.65 | 0.55 | |||
≥12 months | 211 | 0.03 (−0.02, 0.07) | 0.03 (−0.02, 0.07) | ||
6 to <12 months | 171 | 0.02 (−0.03, 0.07) | 0.03 (−0.02, 0.07) | ||
<6 months | 106 | 0.03 (−0.02, 0.08) | 0.04 (−0.01, 0.09) | ||
None | 62 | Reference | Reference | ||
fT3:fT4 ratio | 0.24 | 0.30 | |||
≥12 months | 211 | 0.04 −0.14, 0.23) | 0.06 (−0.13, 0.25) | ||
6 to <12 months | 171 | −0.01 (−0.20, 0.18) | 0.03 (−0.16, 0.23) | ||
<6 months | 106 | −0.06 (−0.26, 0.14) | −0.05 (−0.25, 0.15) | ||
None | 62 | Reference | Reference |
Thyroid Biomarker | n | Unadjusted β Estimate (95% CI) | p-Trend * | Adjusted 1 β Estimate (95% CI) | p-Trend * |
---|---|---|---|---|---|
TSH (mIU/L) | 0.045 | 0.04 | |||
>6 months | 24 | 0.67 (−0.09, 1.44) | 0.78 (−0.03, 1.58) | ||
>0 to 6 months | 26 | −0.04 (−0.79, 0.71) | 0.14 (−0.65, 0.94) | ||
None | 20 | Reference | Reference | ||
fT3 (pmol/L) | 0.17 | 0.02 | |||
>6 months | 24 | 0.22 (−0.12, 0.56) | 0.46 (0.12, 0.80) | ||
>0 to 6 months | 26 | 0.04 (−0.29, 0.38) | 0.27 (−0.06, 0.60) | ||
None | 20 | Reference | Reference | ||
fT4 (ng/dL) | 0.07 | 0.36 | |||
>6 months | 24 | −0.09 (−0.20, 0.01) | −0.05 (−0.15, 0.06) | ||
>0 to 6 months | 26 | −0.03 (−0.14, 0.07) | −0.02 (−0.12, 0.09) | ||
None | 20 | Reference | Reference | ||
fT3:fT4 ratio | 0.009 | 0.007 | |||
>6 months | 24 | 0.55 (0.12, 0.99) | 0.61 (0.17, 1.05) | ||
>0 to 6 months | 26 | 0.12 (−0.31, 0.55) | 0.25 (−0.18, 0.69) | ||
None | 20 | Reference | Reference |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panuganti, P.L.; Hinkle, S.N.; Rawal, S.; Grunnet, L.G.; Lin, Y.; Liu, A.; Thuesen, A.C.B.; Ley, S.H.; Olesen, S.F.; Zhang, C. Lactation Duration and Long-Term Thyroid Function: A Study among Women with Gestational Diabetes. Nutrients 2018, 10, 938. https://doi.org/10.3390/nu10070938
Panuganti PL, Hinkle SN, Rawal S, Grunnet LG, Lin Y, Liu A, Thuesen ACB, Ley SH, Olesen SF, Zhang C. Lactation Duration and Long-Term Thyroid Function: A Study among Women with Gestational Diabetes. Nutrients. 2018; 10(7):938. https://doi.org/10.3390/nu10070938
Chicago/Turabian StylePanuganti, Pranati L., Stefanie N. Hinkle, Shristi Rawal, Louise G. Grunnet, Yuan Lin, Aiyi Liu, Anne C. B. Thuesen, Sylvia H. Ley, Sjurdur F. Olesen, and Cuilin Zhang. 2018. "Lactation Duration and Long-Term Thyroid Function: A Study among Women with Gestational Diabetes" Nutrients 10, no. 7: 938. https://doi.org/10.3390/nu10070938
APA StylePanuganti, P. L., Hinkle, S. N., Rawal, S., Grunnet, L. G., Lin, Y., Liu, A., Thuesen, A. C. B., Ley, S. H., Olesen, S. F., & Zhang, C. (2018). Lactation Duration and Long-Term Thyroid Function: A Study among Women with Gestational Diabetes. Nutrients, 10(7), 938. https://doi.org/10.3390/nu10070938