Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Sample Population
2.3. Data Collection Procedures
2.4. Metabolic Syndrome Diagnosis
2.5. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Optimal Cut-Off Value in the MetS Screening
3.3. Sex Thresholds for High and Low Ratios of Fat Mass to Muscle Mass According to Anthropometric, Blood Pressure, and Metabolic Biomarker Parameters, and Sex
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BF | body fat |
BIA | bioelectrical impedance analysis |
BMI | body mass index |
CVD | cardiovascular disease |
FUPRECOL | in Spanish: Association between Muscular Strength and Metabolic Risk Factors in Colombia |
HDL-C | high-density lipoprotein cholesterol |
IDF | International Diabetes Federation |
LDL-C | low-density lipoprotein cholesterol |
MetS | metabolic syndrome |
NCEP ATP III | National Cholesterol Education Program Adult Treatment Panel III |
SD | standard deviation |
WC | Waist circumference |
References
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic Syndrome and Risk of Incident Cardiovascular Events and Death. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan American Health Organization (PAHO), Division of Health and Human Development. Health Situation Analysis Program. In Health Situation in the Americas: Basic Indicators 1995; Organizacion Panamericana de la Salud: Quito, Ecuador, 1995. [Google Scholar]
- Schargrodsky, H.; Hernández-Hernández, R.; Champagne, B.M.; Silva, H.; Vinueza, R.; Silva Ayçaguer, L.C.; Touboul, P.-J.; Boissonnet, C.P.; Escobedo, J.; Pellegrini, F.; et al. CARMELA: Assessment of Cardiovascular Risk in Seven Latin American Cities. Am. J. Med. 2008, 121, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Davila, E.P.; Quintero, M.A.; Orrego, M.L.; Ford, E.S.; Walke, H.; Arenas, M.M.; Pratt, M. Prevalence and risk factors for metabolic syndrome in Medellin and surrounding municipalities, Colombia, 2008–2010. Prev. Med. (Baltim) 2013, 56, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Medrano, M.; Maiz, E.; Maldonado-Martín, S.; Arenaza, L.; Rodríguez-Vigil, B.; Ortega, F.B.; Ruiz, J.R.; Larrarte, E.; Diez-López, I.; Sarasúa-Miranda, A.; et al. The effect of a multidisciplinary intervention program on hepatic adiposity in overweight-obese children: Protocol of the EFIGRO study. Contemp. Clin. Trials 2015, 45, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Feliciano-Alfonso, J.E.; Mendivil, C.O.; Ariza, I.D.S.; Pérez, C.E. Cardiovascular risk factors and metabolic syndrome in a population of young students from the National University of Colombia. Rev. Assoc. Med. Bras. 2010, 56, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arteaga-Arredondo, L.F.; Fajardo-Rodríguez, H.A.; Fajardo-Rodríguez, H.A. Prevalencia de factores de riesgo cardiovascular en pilotos de aviación civil en Colombia en el año 2005. Rev. Salud Publica 2010, 12, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagun, G.; Oguz, A.; Karagoz, E.; Filizer, A.T.; Tamer, G.; Mesci, B. Application of alternative anthropometric measurements to predict metabolic syndrome. Clinics 2014, 69, 347–353. [Google Scholar] [CrossRef]
- Mišigoj-Duraković, M.; Sorić, M.; Duraković, Z. Anthropometry in cardio-metabolic risk assessment. Arch. Ind. Hyg. Toxicol. 2014, 65, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornier, M.-A.; Despres, J.-P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.-P.; Towfighi, A.; et al. Assessing Adiposity: A Scientific Statement From the American Heart Association. Circulation 2011, 124, 1996–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, B.B.; Phillips, S.M. Contractile and nutritional regulation of human muscle growth. Exerc. Sport Sci. Rev. 2003, 31, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Patel, K.V.; Fried, L.F.; Robinson-Cohen, C.; de Boer, I.H.; Harris, T.; Murphy, R.A.; Satterfield, S.; Goodpaster, B.H.; Shlipak, M.; et al. Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study. J. Gerontol. Ser. A 2017, 72, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Shiroma, E.J.; Buring, J.E.; Miyachi, M.; Lee, I. Strength Training and All-Cause, Cardiovascular Disease, and Cancer Mortality in Older Women: A Cohort Study. J. Am. Heart Assoc. 2017, 6, e007677. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.; Ortega, F.B.; Lee, D.-C.; Martínez-Vizcaíno, V. Muscular strength as a predictor of all-cause mortality in apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch. Phys. Med. Rehabil. 2018. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sports Exerc. 2009, 41, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.G.; Schmidt, M.D.; Dwyer, T.; Venn, A. Muscular fitness and clustered cardiovascular disease risk in Australian youth. Eur. J. Appl. Physiol. 2012, 112, 3167–3171. [Google Scholar] [CrossRef] [PubMed]
- Grontved, A.; Ried-Larsen, M.; Moller, N.C.; Kristensen, P.L.; Froberg, K.; Brage, S.; Andersen, L.B. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br. J. Sports Med. 2015, 49, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Huynh, Q.L.; Schmidt, M.D.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Childhood Muscular Fitness Phenotypes and Adult Metabolic Syndrome. Med. Sci. Sport Exerc. 2016, 48, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Karlamangla, A.S. Relative Muscle Mass Is Inversely Associated with Insulin Resistance and Prediabetes. Findings from the Third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.-D.; Han, K.; Shin, K.E.; Lee, H.; Kim, T.R.; Cho, K.H.; Kim, D.H.; Kim, Y.H.; Kim, H.; et al. Optimal cutoffs for low skeletal muscle mass related to cardiovascular risk in adults: The Korea National Health and Nutrition Examination Survey 2009–2010. Endocrine 2015, 50, 424–433. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Carrillo, H.A.; González-Ruíz, K.; Vivas, A.; Triana-Reina, H.R.; Martínez-Torres, J.; Prieto-Benavidez, D.H.; Correa-Bautista, J.E.; Ramos-Sepúlveda, J.A.; Villa-González, E.; et al. Fatness mediates the influence of muscular fitness on metabolic syndrome in Colombian collegiate students. PLoS ONE 2017, 12, e0173932. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia Exacerbates Obesity-Associated Insulin Resistance and Dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-T.; Kim, H.-J.; Ahn, H.-Y.; Hong, Y.-H. An analysis of age-related loss of skeletal muscle mass and its significance on osteoarthritis in a Korean population. Korean J. Intern. Med. 2016, 31, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, H.J.; Chen, S.; Chen, L.; Wang, X.; Zhang, L.Y.; Pan, L.; Wang, L.; Feng, K.; Wang, K.; et al. Fat-to-muscle Ratio: A New Anthropometric Indicator for Predicting Metabolic Syndrome in the Han and Bouyei Populations from Guizhou Province, China. Biomed. Environ. Sci. 2018, 31, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Kurinami, N.; Sugiyama, S.; Yoshida, A.; Hieshima, K.; Miyamoto, F.; Kajiwara, K.; Jinnouchi, T.; Jinnouchi, H. Correlation of body muscle/fat ratio with insulin sensitivity using hyperinsulinemic-euglycemic clamp in treatment-naïve type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2016, 120, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.; Ojeda-Pardo, M.; Sandoval-Cuellar, C.; García-Hermoso, A.; Carrillo, H.; González-Ruíz, K.; Prieto-Benavides, D.; Tordecilla-Sanders, A.; Martinkėnas, A.; et al. Optimal Adherence to a Mediterranean Diet and High Muscular Fitness Are Associated with a Healthier Cardiometabolic Profile in Collegiate Students. Nutrients 2018, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.; Sanders-Tordecilla, A.; Ojeda-Pardo, M.; Cobo-Mejía, E.; Castellanos-Vega, R.; García-Hermoso, A.; González-Jiménez, E.; Schmidt-RioValle, J.; González-Ruíz, K. Percentage of Body Fat and Fat Mass Index as a Screening Tool for Metabolic Syndrome Prediction in Colombian University Students. Nutrients 2017, 9, 1009. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, F.; Cristi-Montero, C.; González-Ruíz, K.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Bioelectrical Impedance Vector Analysis and Muscular Fitness in Healthy Men. Nutrients 2016, 8, 407. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.; Martínez-Torres, J.; González-Ruíz, K.; González-Jiménez, E.; Schmidt-RioValle, J.; Garcia-Hermoso, A. Performance of Two Bioelectrical Impedance Analyses in the Diagnosis of Overweight and Obesity in Children and Adolescents: The FUPRECOL Study. Nutrients 2016, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 13: Receiver operating characteristic curves. Crit. Care 2004, 8, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Craig, E.; Bland, R.; Ndirangu, J.; Reilly, J.J. Use of mid-upper arm circumference for determining overweight and overfatness in children and adolescents. Arch. Dis. Child 2014, 99, 763–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, M.E.; Harris, G.T. Comparing effect sizes in follow-up studies: ROC Area, Cohen’s d, and r. Law Hum. Behav. 2005, 29, 615–620. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J.L. Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo, J.; Schargrodsky, H.; Champagne, B.; Silva, H.; Boissonnet, C.P.; Vinueza, R.; Torres, M.; Hernandez, R.; Wilson, E. Prevalence of the Metabolic Syndrome in Latin America and its association with sub-clinical carotid atherosclerosis: The CARMELA cross sectional study. Cardiovasc. Diabetol. 2009, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, F.; Rodella, L.F.; Rezzani, R. Metabolic Syndrome, Aging and Involvement of Oxidative Stress. Aging Dis. 2015, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P.; Tracy, R.E.; Wattigney, W.A. Association between Multiple Cardiovascular Risk Factors and Atherosclerosis in Children and Young Adults. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, S. Validity of muscle-to-fat ratio as a predictor of adult metabolic syndrome. J. Phys. Ther. Sci. 2016, 28, 1036–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; ISBN 978-92-4-159-997-9. [Google Scholar]
- Klimcakova, E.; Polak, J.; Moro, C.; Hejnova, J.; Majercik, M.; Viguerie, N.; Berlan, M.; Langin, D.; Stich, V. Dynamic Strength Training Improves Insulin Sensitivity without Altering Plasma Levels and Gene Expression of Adipokines in Subcutaneous Adipose Tissue in Obese Men. J. Clin. Endocrinol. Metab. 2006, 91, 5107–5112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holten, M.K.; Zacho, M.; Gaster, M.; Juel, C.; Wojtaszewski, J.F.P.; Dela, F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 2004, 53, 294–305. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 1416) | Sex | p-Value | |
---|---|---|---|---|
Men (n = 472) | Women (n = 944) | |||
Anthropometric parameters | ||||
Age, years | 20.8 (1.9) | 20.6 (2.2) | 20.8 (1.7) | 0.091 |
Weight, kg | 63.0 (12.6) | 71.0 (12.4) | 59.0 (10.7) | <0.001 |
Height, m | 1.63 (0.09) | 1.72 (0.07) | 1.59 (0.06) | <0.001 |
Body mass index, kg/m2 | 23.5 (3.8) | 23.9 (3.6) | 23.3 (3.9) | 0.008 |
Waist circumference, cm | 74.2 (9.6) | 79.6 (9.9) | 71.6 (8.3) | <0.001 |
Waist-to-height ratio | 0.455 (0.054) | 0.463 (0.056) | 0.451 (0.052) | <0.001 |
Fat mass, kg | 15.3 (7.6) | 12.5 (6.9) | 16.7 (7.5) | <0.001 |
Body fat, % | 23.6 (8.5) | 16.8 (6.1) | 27.0 (7.3) | <0.001 |
Fat mass index | 5.8 (2.9) | 4.2 (2.3) | 6.6 (2.8) | <0.001 |
Fat-to-muscle ratio, kg | 0.343 (0.163) | 0.218 (0.104) | 0.405 (0.151) | <0.001 |
Blood pressure | ||||
Systolic blood pressure | 114.8 (12.7) | 121.9 (13.0) | 111.3 (11.0) | <0.001 |
Diastolic blood pressure | 73.0 (10.0) | 75.2 (10.7) | 72.0 (9.4) | <0.001 |
Mean arterial pressure | 93.9 (10.0) | 98.5 (10.7) | 91.7 (8.8) | <0.001 |
Metabolic parameters | ||||
Total cholesterol, mg/dL | 141.4 (32.2) | 133.4 (29.5) | 145.5 (32.8) | 0.003 |
HDL-C, mg/dL | 41.6 (11.9) | 38.2 (9.9) | 43.3 (12.5) | 0.018 |
LDL-C, mg/dL | 85.5 (26.2) | 80.8 (24.7) | 87.7 (26.6) | <0.001 |
Triglycerides, mg/dL | 92.9 (48.0) | 99.4 (50.9) | 89.7 (46.2) | <0.001 |
Glucose, mg/dL | 87.7 (10.5) | 88.4 (9.7) | 87.4 (10.8) | 0.073 |
TG/HDL ratio | 2.5 (1.6) | 2.8 (1.9) | 2.3 (1.5) | <0.001 |
TG/G ratio | 8.2 (0.5) | 8.3 (0.5) | 8.2 (0.4) | <0.001 |
MetS prevalence, n (%) * | 147 (10.3) | 72 (15.2) | 75 (8.0) | <0.001 |
Parameter | Sex | |
---|---|---|
Men | Women | |
AUC (Standard error) | 0.837 (0.027) | 0.889 (0.019) |
95% CI | 0.782 to 0.892 | 0.852 to 0.927 |
p-value | <0.0001 | <0.0001 |
J-Youden | 0.511 | 0.627 |
Cut-off (kg) | 0.225 | 0.495 |
Sensitivity (95% CI) | 0.805 (0.695 to 0.889) | 0.826 (0.721 to 0.904) |
Specificity (95% CI) | 0.706 (0.658 to 0.750) | 0.800 (0.772 to 0.827) |
Likelihood ratio | 2.740 | 4.153 |
Characteristics | Men (n = 472) | p-Value | Women (n = 944) | p-Value | ||
---|---|---|---|---|---|---|
FTMr < 0.225 (n = 295) | FTMr ≥ 0.225 (n = 177) | FTMr < 0.495 (n = 708) | FTMr ≥ 0.495 (n = 236) | |||
Anthropometric parameters | ||||||
Weight, kg | 65.0 (7.3) | 81.1 (12.6) | <0.001 | 54.5 (6.2) | 72.8 (9.5) | <0.001 |
Body mass index, kg/m2 | 21.9 (1.9) | 27.2 (3.4) | <0.001 | 21.7 (2.4) | 28.3 (3.3) | <0.001 |
Waist circumference, cm | 74.6 (5.3) | 87.9 (10.1) | <0.001 | 68.3 (5.5) | 81.2 (7.4) | <0.001 |
Waist-to-height ratio | 0.434 (0.030) | 0.510 (0.057) | <0.001 | 0.432 (0.038) | 0.507 (0.048) | <0.001 |
Fat mass, kg | 8.5 (2.4) | 19.0 (7.1) | <0.001 | 13.3 (4.1) | 26.8 (6.3) | <0.001 |
Body fat, % | 13.0 (2.8) | 23.0 (5.0) | <0.001 | 23.9 (5.3) | 36.5 (3.6) | <0.001 |
Fat mass index | 1.7 (0.4) | 3.7 (1.3) | <0.001 | 3.3 (1.0) | 6.5 (1.4) | <0.001 |
Fat-to-muscle ratio, kg | 0.157 (0.036) | 0.321 (0.101) | <0.001 | 0.337 (0.093) | 0.611 (0.099) | <0.001 |
Blood pressure | ||||||
Systolic blood pressure | 119.4 (12.3) | 125.9 (13.1) | <0.001 | 109.9 (10.8) | 115.6 (10.5) | <0.001 |
Diastolic blood pressure | 73.0 (10.1) | 78.7 (10.7) | <0.001 | 71.3 (9.5) | 74.1 (9.0) | <0.001 |
Mean arterial pressure | 96.2 (10.1) | 102.3 (10.5) | <0.001 | 90.6 (8.7) | 94.9 (8.3) | <0.001 |
Metabolic parameters | ||||||
Total cholesterol (mg/dL) | 130.3 (26.9) | 138.7 (32.9) | 0.003 | 144.6 (33. 3) | 148.1 (31.3) | 0.161 |
HDL-C (mg/dL) | 39.7 (9.6) | 35.7 (9.8) | 0.018 | 44.8 (12.5) | 38.6 (11.3) | <0.001 |
LDL-C (mg/dL) | 78.3 (23.2) | 84.5 (26.4) | <0.001 | 87.0 (26.6) | 89.2 (6.77) | 0.209 |
Triglycerides (mg/dL) | 90.7 (41.7) | 113.8 (60.7) | <0.001 | 84.6 (42.4) | 105.1 (53.2 | <0.001 |
Glucose (mg/dL) | 87.6 (9.0) | 89.8 (10.7) | 0.020 | 86.7 (11.2) | 89.3 (9.2) | <0.001 |
TG/HDL ratio | 2.5 (1.6) | 3.4 (2.1) | <0.001 | 2.0 (1.2) | 3.0 (1.9) | <0.001 |
TG/G ratio | 8.2 (0.4) | 8.4 (0.5) | <0.001 | 8.1 (0.4) | 8.4 (0.4) | <0.001 |
MetS prevalence, n (%) * | 13 (4.4) | 59 (33.3) | <0.001 | 13 (1.8) | 62 (26.2) | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Vélez, R.; Carrillo, H.A.; Correa-Bautista, J.E.; Schmidt-RioValle, J.; González-Jiménez, E.; Correa-Rodríguez, M.; González-Ruíz, K.; García-Hermoso, A. Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People. Nutrients 2018, 10, 1027. https://doi.org/10.3390/nu10081027
Ramírez-Vélez R, Carrillo HA, Correa-Bautista JE, Schmidt-RioValle J, González-Jiménez E, Correa-Rodríguez M, González-Ruíz K, García-Hermoso A. Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People. Nutrients. 2018; 10(8):1027. https://doi.org/10.3390/nu10081027
Chicago/Turabian StyleRamírez-Vélez, Robinson, Hugo Alejandro Carrillo, Jorge Enrique Correa-Bautista, Jacqueline Schmidt-RioValle, Emilio González-Jiménez, María Correa-Rodríguez, Katherine González-Ruíz, and Antonio García-Hermoso. 2018. "Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People" Nutrients 10, no. 8: 1027. https://doi.org/10.3390/nu10081027
APA StyleRamírez-Vélez, R., Carrillo, H. A., Correa-Bautista, J. E., Schmidt-RioValle, J., González-Jiménez, E., Correa-Rodríguez, M., González-Ruíz, K., & García-Hermoso, A. (2018). Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People. Nutrients, 10(8), 1027. https://doi.org/10.3390/nu10081027