Effect of Whey Protein Supplementation on Physical Performance and Body Composition in Army Initial Entry Training Soldiers
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Dietary Analysis
2.3. Body Composition and Performance Measures
2.3.1. Height and Weight
2.3.2. Body Composition
2.3.3. Performance Assessments
2.4. Statistical Analysis
3. Results
3.1. Dietary Intake
3.2. Body Composition
4. Discussion
Limitations
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
IET | Initial Entry Training |
FM | Fat Mass |
FFM | Fat Free Mass |
WP | Whey Protein |
CHO | Carbohydrate |
RDA | Recommended Daily Allowance |
USG | Urine Specific Gravity |
ACSM | American College of Sports Medicine |
APFT | Army Physical Fitness Test |
References
- Knapik, J.; Rieger, W.; Palkoska, F.; Van Camp, S.; Darakjy, S. United states army physical readiness training: Rationale and evaluation of the physical training doctrine. J. Strength Cond. Res. 2009, 23, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.; Feltwell, D.; Scott, S.; Niebuhr, D. Physical training injuries and interventions for military recruits. Mil. Med. 2012, 177, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Army Medicine. Performance Triad. Available online: https://p3.amedd.army.mil/ (accessed on 23 June 2018).
- DOD US Army. Us Army Field Manual (fm) 21–20, Physical Fitness Training. Available online: http://www.apft-standards.com/files/fm21_20.pdf (accessed on 6 June 2018).
- United States Army Training and Doctrine Command. Standardized Physical Training Guide. Available online: army.rotc.umich.edu/public/resources/TRADOC-PT-Guide.pdf (accessed on 6 June 2018).
- Thomas, D.; Erdman, K.; Burke, L. Position of the academy of nutrition and dietetics, dietitians of canada, and the american college of sports medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Ihle, R.; Loucks, A.B. Dose-response relationships between energy availability and bone turnover in young exercising women. J. Bone Miner. Res. 2004, 19, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.; Redmond, J.; Cohen, B.; Hendrickson, N.; Spiering, B.; Steelman, R.; Knapik, J.; Sharp, M. Quantification of physical activity performed during us army basic combat training. US Army Med. Dep. J. 2013, 4, 55–65. [Google Scholar]
- McAdam, J.; McGinnis, K.; Ory, R.; Young, K.; Frugé, A.; Roberts, M.; Sefton, J. Estimation of energy balance and training volume during army initial entry training. J. Int. Soc. Sports Nutr. 2018. in review. [Google Scholar]
- Margolis, L.; Pasiakos, S.; Karl, J.; Rood, J.; Cable, S.; Williams, K.; Young, A.; McClung, J. Differential effects of military training on fat-free mass and plasma amino acid adaptations in men and women. Nutrients 2012, 4, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Lemon, P.; Tarnopolsky, M.; MacDougall, J.; Atkinson, S. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J. Appl. Physiol. 1992, 73, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Suzuki, K.; Bannai, M.; Moore, D. Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.; Zinn, C.; Rowlands, D.; Brown, S. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: A case for higher intakes. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Kingsbury, K.; Kay, L.; Hjelm, M. Contrasting plasma free amino acid patterns in elite athletes: Association with fatigue and infection. Br. J. Sports Med. 1998, 32, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Flakoll, P.; Judy, T.; Flinn, K.; Carr, C.; Flinn, S. Postexercise protein supplementation improves health and muscle soreness during basic military training in marine recruits. J. Appl. Physiol. 2004, 96, 951–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortes, M.; Diment, B.; Greeves, J.; Casey, A.; Izard, R.; Walsh, N. Effects of a daily mixed nutritional supplement on physical performance, body composition, and circulating anabolic hormones during 8 weeks of arduous military training. Appl. Physiol. Nutr. Metab. 2011, 36, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Oliver, A.J.; Contreras-Calderón, J.; Puya-Braza, J.M.; Guerra-Hernández, E. Quality analysis of commercial protein powder supplements and relation to characteristics declared by manufacturer. LWT 2018, 97, 100–108. [Google Scholar] [CrossRef]
- Patel, S. Emerging trends in nutraceutical applications of whey protein and its derivatives. J. Food Sci. Technol. 2015, 52, 6847–6858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Moore, D.; Kujbida, G.; Tarnopolsky, M.; Phillips, S. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Farup, J.; Rahbek, S.; Riis, S.; Vendelbo, M.; Paoli, F.; Vissing, K. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J. Appl. Physiol. 2014, 117, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, F.; Larumbe-Zabala, E. Effects of whey protein alone or as part of a multi-ingredient formulation on strength, fat-free mass, or lean body mass in resistance-trained individuals: A meta-analysis. Sports Med. 2015, 46, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.; Thomson, R.; Coates, A.; Howe, P.; DeNichilo, M.; Rowney, M. Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J. Sci. Med. Sport 2010, 13, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Bangsbo, J.; Jensen, J.; Bibby, B.; Madsen, K. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.; Kane, M.; Todd, M. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med. Sci. Sports Exerc. 2004, 36, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Army, U.S. Joint Cullinary Center of Excellence. Available online: http://www.quartermaster.army.mil/jccoe/Operations_Directorate/QUAD/nutrition/G4G_Recipe_Nutrition_Analysis_Red_Amber_Green_New.pdf (accessed on 7 July 2017).
- United States Department of Agriculture. What’s in the Foods You Eat Search Tool. Available online: https://reedir.arsnet.usda.gov/codesearchwebapp/(S(qyik1tmzmfjccldwhglgsntv))/CodeSearch.aspx (accessed on 7 July 2017).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; ISBN 3-900051-07-0. [Google Scholar]
- Dwyer, G.; Davis, S. Acsm’s Health-Related Physical Fitness Assessment Manual; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; p. 172. [Google Scholar]
- Sefton, J.; Lohse, K.; McAdam, J. Prediction of injuries and injury types in army basic training, infantry, armor, and cavalry trainees using a common fitness screen. J. Athl. Train. 2016, 51, 849–857. [Google Scholar] [CrossRef] [PubMed]
- RStudio. Rstudio: Integrated Development Environment for R. Available online: https://web.warwick.ac.uk/statsdept/useR-2011/abstracts/180111-allairejj.pdf2014 (accessed on 1 June 2016).
- Schneider, B.; Avivi-Reich, M.; Mozuraitis, M. A cautionary note on the use of the analysis of covariance (ancova) in classification designs with and without within-subject factors. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Sonna, L.; Sharp, M.; Knapik, J.; Cullivan, M.; Angel, K.; Patton, J.; Lilly, C. Angiotensin-converting enzyme genotype and physical performance during us army basic training. J. Appl. Physiol. 2001, 91, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.; Canham-Chervak, M.; Hauret, K.; Hoedebecke, E.; Laurin, M.; Cuthie, J. Discharges during U.S. Army basic training: Injury rates and risk factors. Mil. Med. 2001, 166, 641–647. [Google Scholar] [PubMed]
- Larson, E.; Eaton, D.; Linick, M.; Peters, J.; Schaefer, A.; Walters, K.; Young, S.; Massey, H.; Ziegler, M. Defense Planning in a Time of Conflict: A Comparative Analysis of the 2001–2014 Quadrennial Defense Reviews, and Implications for the Army-Executive Summary. Available online: https://www.rand.org/pubs/research_reports/RR1309z1.html (accessed on 27 February 2018).
- Bornstein, D.; Grieve, G.; Clennin, M.; McLain, A.; Whitsel, L.; Beets, M.; Hauret, K.; Jones, B.; Sarzynski, M. Which US states pose the greatest threats to military readiness and public health? Public health policy implications for a cross-sectional investigation of cardiorespiratory fitness, body mass index, and injuries among us army recruits. J. Public Health Manag. Pract. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, C.; Roberts, M.; Dalbo, V.; Smith-Ryan, A.; Kendall, K.; Moon, J.; Stout, J. Effects of hydrolyzed whey versus other whey protein supplements on the physiological response to 8 weeks of resistance exercise in college-aged males. J. Am. Coll. Nutr. 2017, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Cribb, P.; Williams, A.; Carey, M.; Hayes, A. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 494–509. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; Cruthirds, C.; Lockwood, C.; Pappan, K.; Childs, T.; Company, J.; Brown, J.; Toedebusch, R.; Booth, F. Comparing serum responses to acute feedings of an extensively hydrolyzed whey protein concentrate versus a native whey protein concentrate in rats: A metabolomics approach. Appl. Physiol. Nutr. Metab. 2014, 39, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Mobley, C.; Haun, C.; Roberson, P.; Mumford, P.; Romero, M.; Kephart, W.; Anderson, R.; Vann, C.; Osburn, S.; Pledge, C.; et al. Effects of whey, soy or leucine supplementation with 12 weeks of resistance training on strength, body composition, and skeletal muscle and adipose tissue histological attributes in college-aged males. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Bergström, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 1967, 71, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M.; Atkinson, S.; MacDougall, J.; Chesley, A.; Phillips, S.; Schwarcz, H. Evaluation of protein requirements for trained strength athletes. J. Appl. Physiol. 1992, 73, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.; Murphy, K.; McKellar, S.; Schoenfeld, B.; Henselmans, M.; Helms, E.; Aragon, A.; Devries, M.; Banfield, L.; Krieger, J. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018. [Google Scholar] [CrossRef] [PubMed]
Group | Variable | Pre-NS | Post-NS | Post-SI | |
---|---|---|---|---|---|
WP | Energy | (kcal/day) | 2825 ± 611 | 2930 ± 681 | 3516 ± 681 * |
(kcal/kg/day) | 40.3 ± 12.7 | 40.8 ± 11.1 | 49.0 ± 11.7 * | ||
CHO | (kcal/day) | 2624 ± 740 | 2766 ± 542 | 3348 ± 542 * | |
(kcal/kg/day) | 37.5 ± 13.7 | 38 ± 9.3 | 46.0 ± 9.9 * | ||
WP | PRO | (g/day) | 122 ± 25 | 124 ± 29 | 201 ± 29 *,# |
(g/kg/day) | 1.7 ± 0.5 | 1.7 ± 0.4 | 2.8 ± 0.5 *,# | ||
CHO | (g/day) | 112 ± 32 | 113 ± 21 | 114 ± 21 | |
(g/kg/day) | 1.6 ± 0.6 | 1.5 ± 0.4 | 1.6 ± 0.4 | ||
WP | CARB | (g/day) | 371 ± 84 | 392 ± 96.6 | 430 ± 97 * |
(g/kg/day) | 5.3 ± 1.7 | 5.5 ± 1.6 | 6.0 ± 1.6 * | ||
CHO | (g/day) | 349 ± 95 | 368 ± 85 | 495 ± 85 *,# | |
(g/kg/day) | 5.0 ± 1.7 | 5.0 ± 1.4 | 6.8 ± 1.5 * | ||
WP | FAT | (g/day) | 98 ± 27 | 100 ± 30.9 | 115 ± 31 * |
(g/kg/day) | 1.4 ± 0.5 | 1.4 ± 0.5 | 1.6 ± 0.5 * | ||
CHO | (g/day) | 90 ± 31 | 98 ± 23.2 | 106 ± 23 * | |
(g/kg/day) | 1.3 ± 0.6 | 1.4 ± 0.4 | 1.5 ± 0.4 * |
Variable | Group | Pre-Intervention | Post-Intervention |
---|---|---|---|
Body weight (kg) | WP | 73.4 ± 12.7 | 73.2 ± 10.5 |
CHO | 72.3 ± 10.9 | 73.2 ± 7.9 | |
FFM (kg) | WP | 60.0 ± 7.9 | 64.2 ± 7.5 |
CHO | 60.1 ± 7.3 | 63.7 ± 6.1 | |
Fat Mass (kg) | WP | 13.5 ± 6.1 | 8.9 ± 4.2 * |
CHO | 12.2 ± 6.1 | 9.5 ± 3.9 * |
Variable | Group | Mean Difference | 95% CI | Units | Effect Size | Classification |
---|---|---|---|---|---|---|
FFM | WP | 4.2 | (3.1, 5.4) | kg | 0.44 | Medium |
CHO | 3.6 | (2.3, 4.9) | kg | 0.42 | Medium | |
FM | WP | −4.5 | (−5.8, −3.2) | kg | −0.67 | Large |
CHO | −2.7 | (−4, −1.3) | kg | −0.4 | Medium | |
PU | WP | 6.8 | (2.9, 10.7) | push-ups | 0.41 | Medium |
CHO | 2.6 | (−0.7, 6) | push-ups | 0.18 | Small | |
SU | WP | 9.3 | (5.4, 13.2) | sit-ups | 0.62 | Large |
CHO | 8.9 | (6.3, 11.5) | sit-ups | 0.68 | Large | |
Run | WP | −48.3 | (−63, −33.6) | seconds | −0.56 | Large |
CHO | −74.2 | (−96.5, −51.9) | seconds | −0.74 | Large |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McAdam, J.S.; McGinnis, K.D.; Beck, D.T.; Haun, C.T.; Romero, M.A.; Mumford, P.W.; Roberson, P.A.; Young, K.C.; Lohse, K.R.; Lockwood, C.M.; et al. Effect of Whey Protein Supplementation on Physical Performance and Body Composition in Army Initial Entry Training Soldiers. Nutrients 2018, 10, 1248. https://doi.org/10.3390/nu10091248
McAdam JS, McGinnis KD, Beck DT, Haun CT, Romero MA, Mumford PW, Roberson PA, Young KC, Lohse KR, Lockwood CM, et al. Effect of Whey Protein Supplementation on Physical Performance and Body Composition in Army Initial Entry Training Soldiers. Nutrients. 2018; 10(9):1248. https://doi.org/10.3390/nu10091248
Chicago/Turabian StyleMcAdam, Jeremy S., Kaitlin D. McGinnis, Darren T. Beck, Cody T. Haun, Matthew A. Romero, Petey W. Mumford, Paul A. Roberson, Kaelin C. Young, Keith R. Lohse, Christopher M. Lockwood, and et al. 2018. "Effect of Whey Protein Supplementation on Physical Performance and Body Composition in Army Initial Entry Training Soldiers" Nutrients 10, no. 9: 1248. https://doi.org/10.3390/nu10091248
APA StyleMcAdam, J. S., McGinnis, K. D., Beck, D. T., Haun, C. T., Romero, M. A., Mumford, P. W., Roberson, P. A., Young, K. C., Lohse, K. R., Lockwood, C. M., Roberts, M. D., & Sefton, J. M. (2018). Effect of Whey Protein Supplementation on Physical Performance and Body Composition in Army Initial Entry Training Soldiers. Nutrients, 10(9), 1248. https://doi.org/10.3390/nu10091248