Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. General Participant Characteristics and Anthropometric Measurements
2.3. Dietary Assessment
2.4. Ascertainment of T2DM
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. 1), S81–S90. [Google Scholar] [CrossRef]
- Tenenbaum, A.; Fisman, E.Z.; Motro, M. Metabolic syndrome and type 2 diabetes mellitus: Focus on peroxisome proliferator activated receptors (PPAR). Cardiovasc. Diabetol. 2003, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef]
- The Organisation for Economic Co-operation and Development. Health at a Glance 2017. Available online: http://www.oecd-ilibrary.org/content/publication/health_glance-2017-en (accessed on 12 May 2018).
- Statistics Korea. Statistical Database. Available online: http://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_11702_N102&conn_path=I2 (accessed on 11 May 2018).
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Wollheim, C.B.; Sharp, G.W. Regulation of insulin release by calcium. Physiol. Rev. 1981, 61, 914–973. [Google Scholar] [CrossRef]
- Dong, J.Y.; Qin, L.Q. Dietary calcium intake and risk of type 2 diabetes: Possible confounding by magnesium. Eur. J. Clin. Nutr. 2012, 66, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.M.; Woo, H.W.; Kim, M.K.; Lee, Y.H.; Shin, D.H.; Shin, M.H.; Choi, B.Y. Dietary total, animal, vegetable calcium and type 2 diabetes incidence among Korean adults: The Korean Multi-Rural Communities Cohort (MRCohort). Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1152–1164. [Google Scholar] [CrossRef]
- Kim, K.N.; Oh, S.Y.; Hong, Y.C. Associations of serum calcium levels and dietary calcium intake with incident type 2 diabetes over 10 years: The Korean Genome and Epidemiology Study (KoGES). Diabetol. Metab. Syndr. 2018, 10, 50. [Google Scholar] [CrossRef]
- Yu, A.; Yang, Y.J.; Jeong, S.; Kim, J.; Kim, Y.J.; Kwon, O.; Oh, S.-Y.; Kim, J. Calcium intakes in Korean and American populations. J. Korean Diet. Assoc. 2013, 19, 46–58. [Google Scholar] [CrossRef]
- The United Sates Department of Agriculture. Dairy: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (accessed on 10 October 2018).
- Lee, S.H.; Chang, S.O. Comparison of the Bioavailability of Calcium from Anchovy, Tofu and Nonfat Dry Milk (NFDM) in Growing Male Rats. Korean J. Nutr. 1994, 27, 473–482. [Google Scholar]
- Kirii, K.; Mizoue, T.; Iso, H.; Takahashi, Y.; Kato, M.; Inoue, M.; Noda, M.; Tsugane, S. Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 2009, 52, 2542–2550. [Google Scholar] [CrossRef] [Green Version]
- Eussen, S.J.; van Dongen, M.C.; Wijckmans, N.; den Biggelaar, L.; Oude Elferink, S.J.; Singh-Povel, C.M.; Schram, M.T.; Sep, S.J.; van der Kallen, C.J.; Koster, A.; et al. Consumption of dairy foods in relation to impaired glucose metabolism and type 2 diabetes mellitus: The Maastricht Study. Br. J. Nutr. 2016, 115, 1453–1461. [Google Scholar] [CrossRef]
- Diaz-Lopez, A.; Bullo, M.; Martinez-Gonzalez, M.A.; Corella, D.; Estruch, R.; Fito, M.; Gomez-Gracia, E.; Fiol, M.; Garcia de la Corte, F.J.; Ros, E.; et al. Dairy product consumption and risk of type 2 diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. Eur. J. Nutr. 2016, 55, 349–360. [Google Scholar] [CrossRef]
- Grantham, N.M.; Magliano, D.J.; Hodge, A.; Jowett, J.; Meikle, P.; Shaw, J.E. The association between dairy food intake and the incidence of diabetes in Australia: The Australian Diabetes Obesity and Lifestyle Study (AusDiab). Public Health Nutr. 2013, 16, 339–345. [Google Scholar] [CrossRef]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, 1350. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2012; pp. 305–307. ISBN 0190240849. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef]
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Available online: http://www.wpro.who.int/nutrition/documents/Redefining_obesity/en (accessed on 15 May 2018).
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Nevalainen, J.; Kenward, M.G.; Virtanen, S.M. Missing values in longitudinal dietary data: A multiple imputation approach based on a fully conditional specification. Stat. Med. 2009, 28, 3657–3669. [Google Scholar] [CrossRef]
- Korean Diabetes Association. Treatment Guideline for Diabetes. Available online: http://www.diabetes.or.kr/pro/publish/guide.php?code=guide&mode=list&year_v=2015 (accessed on 10 July 2018).
- Sluijs, I.; Forouhi, N.G.; Beulens, J.W.; van der Schouw, Y.T.; Agnoli, C.; Arriola, L.; Balkau, B.; Barricarte, A.; Boeing, H.; Bueno-de-Mesquita, H.B.; et al. The amount and type of dairy product intake and incident type 2 diabetes: Results from the EPIC-InterAct Study. Am. J. Clin. Nutr. 2012, 96, 382–390. [Google Scholar] [CrossRef]
- O’Connor, L.M.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Dietary dairy product intake and incident type 2 diabetes: A prospective study using dietary data from a 7-day food diary. Diabetologia 2014, 57, 909–917. [Google Scholar] [CrossRef]
- Bourlioux, P.; Pochart, P. Nutritional and health properties of yogurt. World Rev. Nutr. Diet. 1988, 56, 217–258. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Shadnoush, M.; Shaker Hosseini, R.; Mehrabi, Y.; Delpisheh, A.; Alipoor, E.; Faghfoori, Z.; Mohammadpour, N.; Zaringhalam Moghadam, J. Probiotic yogurt Affects Pro- and Anti-inflammatory Factors in Patients with Inflammatory Bowel Disease. Iran J. Pharm. Res. 2013, 12, 929–936. [Google Scholar]
- Tamang, J.P. Health Benefits of Fermented Foods and Beverages; CRC Press: New York, NY, USA, 2015; pp. 285–293. ISBN 978-1-46-658810-3. [Google Scholar]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef]
- Kobyliak, N.; Falalyeyeva, T.; Mykhalchyshyn, G.; Kyriienko, D.; Komissarenko, I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab. Syndr. 2018. [Google Scholar] [CrossRef]
- Bayat, A.; Azizi-Soleiman, F.; Heidari-Beni, M.; Feizi, A.; Iraj, B.; Ghiasvand, R.; Askari, G. Effect of Cucurbita ficifolia and Probiotic Yogurt Consumption on Blood Glucose, Lipid Profile, and Inflammatory Marker in Type 2 Diabetes. Int. J. Prev. Med. 2016, 7, 30. [Google Scholar] [CrossRef]
- Wang, H.; Livingston, K.A.; Fox, C.S.; Meigs, J.B.; Jacques, P.F. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women. Nutr. Res. 2013, 33, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Hruby, A.; Meigs, J.B.; O’Donnell, C.J.; Jacques, P.F.; McKeown, N.M. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged americans. Diabetes Care 2014, 37, 419–427. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, T.; Ran, X. Vitamin D and Incidence of Prediabetes or Type 2 Diabetes: A Four-Year Follow-Up Community-Based Study. Dis. Markers 2018, 2018, 1926308. [Google Scholar] [CrossRef]
- Liu, S.; Choi, H.K.; Ford, E.; Song, Y.; Klevak, A.; Buring, J.E.; Manson, J.E. A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care 2006, 29, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, B.S.; Yu, H.; Elitsur, Y. The probiotic content of commercial yogurts in west virginia. Clin. Pediatr. 2009, 48, 522–527. [Google Scholar] [CrossRef] [PubMed]
Total Calcium Product Intake (Quartile) | p value a | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
n | 2143 | 2144 | 2144 | 2143 | |
Total calcium product intake (servings/week) | 7.0 | 12.2 | 17.6 | 26.9 | |
Male | 1272 (59.4) | 1190 (55.5) | 1009 (47.1) | 613 (28.6) | <0.001 |
Age (years) | 51.4 ± 0.2 | 50.7 ± 0.2 | 51.4 ± 0.2 | 53.3 ± 0.2 | <0.001 |
Residential area | <0.001 | ||||
Ansung | 1318 (61.5) | 902 (42.1) | 867 (40.4) | 1033 (48.2) | |
Ansan | 825 (38.5) | 1242 (57.9) | 1277 (59.6) | 1110 (51.8) | |
Education level | <0.001 | ||||
Elementary school graduation or lower | 744 (35.0) | 609 (28.6) | 635 (29.8) | 770 (36.1) | |
Middle school graduation | 494 (23.2) | 470 (22.1) | 474 (22.2) | 522 (24.5) | |
High school graduation | 629 (29.6) | 725 (34.0) | 699 (32.8) | 594 (27.8) | |
College graduation or higher | 260 (12.2) | 328 (15.4) | 325 (15.2) | 248 (11.6) | |
Monthly household income (KRW) | <0.001 | ||||
<1,000,000 | 861 (40.7) | 643 (30.3) | 625 (29.5) | 753 (35.7) | |
1,000,000–<2,000,000 | 626 (29.6) | 640 (30.2) | 591 (27.9) | 639 (30.3) | |
2,000,000–<4,000,000 | 525 (24.8) | 660 (31.2) | 687 (32.5) | 563 (26.7) | |
≥4,000,000 | 103 (4.9) | 176 (8.3) | 213 (10.1) | 153 (7.3) | |
Body mass index (kg/m2) | 24.5 ± 0.1 | 24.5 ± 0.1 | 24.6 ± 0.1 | 24.5 ± 0.1 | 0.3 |
Physical activity b | <0.001 | ||||
Low | 674 (31.6) | 773 (36.3) | 713 (33.7) | 678 (31.9) | |
Mid | 563 (26.4) | 719 (33.8) | 760 (35.9) | 789 (37.1) | |
High | 894 (42.0) | 638 (30.0) | 646 (30.5) | 661 (31.1) | |
Alcohol consumption (yes) | 1113 (52.2) | 1152 (53.9) | 1050 (49.2) | 808 (37.9) | <0.001 |
Smoking status | <0.001 | ||||
Non-smokers | 1031 (48.5) | 1151 (53.9) | 1260 (59.5) | 1557 (73.5) | |
Former smokers | 361 (17.0) | 378 (17.7) | 331 (15.6) | 217 (10.3) | |
Smokers | 736 (34.6) | 606 (28.4) | 528 (24.9) | 344 (16.2) | |
Dietary supplement use (yes) | 277 (13.1) | 347 (16.4) | 409 (19.4) | 541 (25.3) | <0.001 |
Frequency of Consumption (Quartile) | p for Trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Milk | |||||
Median, servings/week | 0 | 0.3 | 2.0 | 8.0 | |
Case/n | 307/2139 | 305/2140 | 271/2140 | 288/2139 | |
Person year | 13,815 | 15,407 | 15,750 | 15,312 | |
Model 1 | 1 | 0.89 (0.76, 1.05) | 0.78 (0.66, 0.91) | 0.85 (0.72, 1.00) | 0.2 |
Model 2 | 1 | 1.00 (0.85, 1.18) | 0.95 (0.80, 1.12) | 1.04 (0.88, 1.23) | 0.6 |
Model 3 | 1 | 1.05 (0.88, 1.25) | 0.95 (0.79, 1.13) | 1.05 (0.88, 1.25) | 0.7 |
Yogurt | |||||
Median, servings/week | 0 | 0.3 | 1.3 | 5.0 | |
Case/n | 323/2139 | 311/2139 | 295/2040 | 241/2139 | |
Person year | 13,246 | 15,558 | 15,751 | 15,708 | |
Model 1 | 1 | 0.82 (0.70, 0.96) | 0.77 (0.66, 0.90) | 0.63 (0.53, 0.74) | <0.001 |
Model 2 | 1 | 0.83 (0.71, 0.97) | 0.84 (0.72, 0.99) | 0.72 (0.60, 0.86) | 0.002 |
Model 3 | 1 | 0.82 (0.70, 0.97) | 0.84 (0.70, 0.99) | 0.73 (0.61, 0.88) | 0.01 |
Anchovies | |||||
Median, servings/week | 0.2 | 0.8 | 1.8 | 4.6 | |
Case/n | 310/2141 | 291/2141 | 282/2142 | 288/2141 | |
Person year | 13,596 | 15,607 | 15,830 | 15,281 | |
Model 1 | 1 | 0.82 (0.70, 0.96) | 0.78 (0.66, 0.92) | 0.83 (0.70, 0.97) | 0.1 |
Model 2 | 1 | 0.93 (0.79, 1.10) | 0.86 (0.73, 1.02) | 0.89 (0.75, 1.05) | 0.3 |
Model 3 | 1 | 0.91 (0.77, 1.08) | 0.82 (0.69, 0.98) | 0.87 (0.73, 1.04) | 0.2 |
Other calcium sources * | |||||
Median, servings/week | 4.0 | 7.1 | 10.5 | 17.6 | |
Case/n | 327/2143 | 296/2144 | 257/2144 | 293/2143 | |
Person year | 14,635 | 15,564 | 15,499 | 14,688 | |
Model 1 | 1 | 0.83 (0.70, 0.97) | 0.81 (0.69, 0.95) | 1.07 (0.91, 1.25) | 0.1 |
Model 2 | 1 | 0.91 (0.77, 1.08) | 0.86 (0.72, 1.02) | 1.05 (0.89, 1.24) | 0.4 |
Model 3 | 1 | 0.86 (0.72, 1.03) | 0.78 (0.85, 0.93) | 0.97 (0.81, 1.16) | 1.0 |
Total calcium products | |||||
Median, servings/week | 7.0 | 12.2 | 17.6 | 26.9 | |
Case/n | 341/2143 | 276/2144 | 284/2144 | 272/2143 | |
Person year | 14,526 | 15,512 | 15,395 | 14,953 | |
Model 1 | 1 | 0.77 (0.66, 0.91) | 0.82 (0.70, 0.97) | 0.93 (0.79, 1.08) | 0.8 |
Model 2 | 1 | 0.85 (0.72, 1.00) | 0.88 (0.74, 1.04) | 0.98 (0.83, 1.16) | 0.9 |
Model 3 | 1 | 0.82 (0.69, 0.97) | 0.83 (0.70, 0.99) | 0.92 (0.77, 1.11) | 0.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Jang, J.; Park, K. Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus. Nutrients 2019, 11, 31. https://doi.org/10.3390/nu11010031
Jeon J, Jang J, Park K. Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus. Nutrients. 2019; 11(1):31. https://doi.org/10.3390/nu11010031
Chicago/Turabian StyleJeon, Jimin, Jiyoung Jang, and Kyong Park. 2019. "Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus" Nutrients 11, no. 1: 31. https://doi.org/10.3390/nu11010031
APA StyleJeon, J., Jang, J., & Park, K. (2019). Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus. Nutrients, 11(1), 31. https://doi.org/10.3390/nu11010031