Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT)
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Dietary Supplement
2.2. Calculations
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D.; Vijay, V. Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006, 49, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [PubMed]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Kulzer, B.; Hermanns, N.; Gorges, D.; Schwarz, P.; Haak, T. Prevention of diabetes self-management program (PREDIAS): Effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care 2009, 32, 1143–1146. [Google Scholar] [CrossRef]
- Honsek, C.; Kabisch, S.; Kemper, M.; Gerbracht, C.; Arafat, A.M.; Birkenfeld, A.L.; Dambeck, U.; Osterhoff, M.A.; Weickert, M.O.; Pfeiffer, A.F.H. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: The randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018, 61, 1295–1305. [Google Scholar] [CrossRef]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef]
- Stidsen, J.V.; Henriksen, J.E.; Olsen, M.H.; Thomsen, R.W.; Nielsen, J.S.; Rungby, J.; Ulrichsen, S.P.; Berencsi, K.; Kahlert, J.A.; Friborg, S.G.; et al. Pathophysiology-based phenotyping in type 2 diabetes: A clinical classification tool. Diabetes Metab. Res. Rev. 2018, 34, e3005. [Google Scholar] [CrossRef]
- Hjorth, M.F.; Zohar, Y.; Hill, J.O.; Astrup, A. Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose. Annu. Rev. Nutr. 2018, 38, 245–272. [Google Scholar] [CrossRef]
- Hjorth, M.F.; Bray, G.A.; Zohar, Y.; Urban, L.; Miketinas, D.C.; Williamson, D.A.; Ryan, D.H.; Rood, J.; Champagne, C.M.; Sacks, F.M.; et al. Pretreatment Fasting Glucose and Insulin as Determinants of Weight Loss on Diets Varying in Macronutrients and Dietary Fibers-The POUNDS LOST Study. Nutrients 2019, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Acosta, T.; Adler, M.; Alkerwi, A.; Barengo, N.C.; Barengo, R.; Boavida, J.; Charlesworth, K.; Christov, V.; Claussen, B.; Cos, X.; et al. Take action to prevent diabetes—The IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm. Metab. Res. 2010, 42 (Suppl. 1), S37–S55. [Google Scholar]
- Wareham, N.J.; Jakes, R.W.; Rennie, K.L.; Mitchell, J.; Hennings, S.; Day, N.E. Validity and repeatability of the EPIC-Norfolk Physical Activity Questionnaire. Int. J. Epidemiol. 2002, 31, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, B.M.; Vasquez-Caicedo, A.L.; Bell, S.; Krems, C.; Brombach, C. The German nutrient database: Basis for analysis of the nutritional status of the German Population. J. Food Comp. Anal. 2008, 21, 115–118. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Belfiore, F.; Iannello, S.; Volpicelli, G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose, and FFA levels. Mol. Genet. Metab. 1998, 63, 134–141. [Google Scholar] [CrossRef]
- Aloulou, I.; Brun, J.F.; Mercier, J. Evaluation of insulin sensitivity and glucose effectiveness during a standardized breakfast test: Comparison with the minimal model analysis of an intravenous glucose tolerance test. Metabolism 2006, 55, 676–690. [Google Scholar] [CrossRef]
- Cederholm, J.; Wibell, L. Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res. Clin. Pract. 1990, 10, 167–175. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Miyake, T.; Hirooka, M.; Yoshida, O.; Furukawa, S.; Kumagi, T.; Koizumi, M.; Yamamoto, S.; Kuroda, T.; Arimitsu, E.; Takeshita, E.; et al. Differences in the risk of fatty liver for onset of impaired fasting glucose according to baseline plasma glucose levels. J. Gastroenterol. 2017, 52, 237–244. [Google Scholar] [CrossRef]
- Ozhan, B.; Ersoy, B.; Kiremitci, S.; Ozkol, M.; Taneli, F. Insulin sensitivity indices: Fasting versus glucose-stimulated ındices in pediatric non-alcoholic fatty liver disease. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3450–3458. [Google Scholar] [PubMed]
- Rückert, I.M.; Heier, M.; Rathmann, W.; Baumeister, S.E.; Döring, A.; Meisinger, C. Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population: The KORA-F4-study. PLoS ONE 2011, 6, e22932. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Mohlig, M.; Koebnick, C.; Holst, J.J.; Namsolleck, P.; Ristow, M.; Osterhoff, M.; Rochlitz, H.; Rudovich, N.; Spranger, J.; et al. Impact of cereal fibre on glucose-regulating factors. Diabetologia 2005, 48, 2343–2353. [Google Scholar] [CrossRef] [PubMed]
- Bodinham, C.L.; Al-Mana, N.M.; Smith, L.; Robertson, M.D. Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption. Br. J. Nutr. 2013, 110, 1429–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjorth, M.F.; Christensen, L.; Kjølbæk, L.; Larsen, L.H.; Roager, H.M.; Kiilerich, P.; Kristiansen, K.; Astrup, A. Pretreatment Prevotella-to-Bacteroides ratio and markers of glucose metabolism as prognostic markers for dietary weight loss maintenance. Eur. J. Clin Nutr. 2019. [Google Scholar] [CrossRef]
- Hattersley, J.G.; Pfeiffer, A.F.; Roden, M.; Petzke, K.J.; Hoffmann, D.; Rudovich, N.N.; Randeva, H.S.; Vatish, M.; Osterhoff, M.; Goegebakan, Ö.; et al. Modulation of amino acid metabolic signatures by supplemented isoenergetic diets differing in protein and cereal fibre content. J. Clin. Endocrinol. Metab. 2014, 99, E2599–E2609. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.C.; Rhee, E.J.; Lee, W.Y.; Park, S.E.; Park, C.Y.; Oh, K.W.; Park, S.W.; Kim, S.W. Combined effect of nonalcoholic fatty liver disease and impaired fasting glucose on the development of type 2 diabetes: A 4-year retrospective longitudinal study. Diabetes Care 2011, 34, 727–729. [Google Scholar] [CrossRef]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Frost, G.S. A Randomised Crossover Trial: The Effect of Inulin on Glucose Homeostasis in Subtypes of Prediabetes. Ann. Nutr. Metab. 2016, 68, 26–34. [Google Scholar] [CrossRef]
- Schüler, R.; Osterhoff, M.A.; Frahnow, T.; Seltmann, A.C.; Busjahn, A.; Kabisch, S.; Xu, L.; Mosig, A.S.; Spranger, J.; Möhlig, M.; et al. High-Saturated-Fat Diet Increases Circulating Angiotensin-Converting Enzyme, Which Is Enhanced by the rs4343 Polymorphism Defining Persons at Risk of Nutrient-Dependent Increases of Blood Pressure. J. Am. Heart Assoc. 2017, 6, e004465. [Google Scholar] [CrossRef]
- Krebs, M.; Roden, M. Molecular mechanisms of lipid-induced insulin resistance in muscle, liver and vasculature. Diabetes Obes. Metab. 2005, 7, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Schüler, R.; Seebeck, N.; Osterhoff, M.A.; Witte, V.; Flöel, A.; Busjahn, A.; Jais, A.; Brüning, J.C.; Frahnow, T.; Kabisch, S.; et al. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Mol. Metab. 2018, 11, 129–136. [Google Scholar] [CrossRef] [PubMed]
- El-Agroudy, N.N.; Kurzbach, A.; Rodionov, R.N.; O’Sullivan, J.; Roden, M.; Birkenfeld, A.L.; Pesta, D.H. Are Lifestyle Therapies Effective for NAFLD Treatment? Trends Endocrinol. Metab. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
NFG Fibre | NFG Placebo | |
---|---|---|
Sex w/m | 24/8 (75% female) | 16/16 (50% female) * |
Age (years) | 61.3 ± 9.5 | 60.3 ± 10.5 |
BMI (kg/m²) | 31.3 ± 5.7 | 32.1 ± 5.3 |
Weight (kg) | 84.7 ± 17.8 | 89.4 ± 17.0 |
Waist circumference (cm) | 100.7 ± 15.4 | 105.2 ± 12.2 |
Hip circumference (cm) | 111.8 ± 12.8 | 111.8 ± 12.8 |
Waist-to-hip-ratio (WHR) | 0.90 ± 0.08 | 0.94 ± 0.10 |
BIA – Body fat (%) | 36.8 ± 7.4 | 36.8 ± 7.8 |
RR syst. (mmHg) | 142 ± 19 | 141 ± 13 |
Fasting glucose (mg/dl) | 81.7 ± 6.4 | 82.8 ± 5.5 |
2-h glucose (mg/dl) | 153.4 ± 13.3 | 156.3 ± 15.1 |
HbA1c (%) | 5.5 ± 0.4 | 5.5 ± 0.3 |
Fasting Insulin (mU/l) | 8.0 ± 4.7 | 8.7 ± 3.5 |
Fasting C-Peptide (µg/l) | 1.4 ± 0.5 | 1.4 ± 0.5 |
HOMA-IR | 2.0 ± 1.3 | 2.2 ± 0.9 |
QUICKI | 0.36 ± 0.04 | 0.35 ± 0.03 |
ISIffa | 0.87 ± 0.34 | 0.83 ± 0.24 |
Belfiore | 0.68 ± 0.27 | 0.69 ± 0.27 |
HICc-peptide (mU/µg) | 4.8 ± 1.8 | 4.8 ± 1.4 |
HDL cholesterol (mmol/l) | 1.3 ± 0.3 | 1.3 ± 0.3 |
LDL cholesterol (mmol/l) | 3.8 ± 0.8 | 3.5 ± 0.6 |
CRP (mg/l) | 3.6 ± 5.4 | 3.1 ± 3.2 |
Leukocyte count (Gpt/l) | 5.61 ± 1.72 | 4.96 ± 0.91 |
Uric acid (µmol/l) | 320 ± 58 | 347 ± 79 |
GGT (U/l) | 32 ± 42 | 37 ± 36 |
Fatty liver index (FLI) | 62 ± 29 | 68 ± 29 |
IFG Fibre | IFG Placebo | |
---|---|---|
Sex | 24 / 11 (69% female) | 20 / 17 (54% female) |
Age (years) | 58.9 ± 9.1 | 59.7 ± 8.1 |
BMI (kg/m²) | 32.2 ± 4.6 | 34.5 ± 7.4 |
Weight (kg) | 90.3 ± 12.7 | 97.9 ± 23.1 |
Waist circumference (cm) | 104.0 ± 9.4 | 108.2 ± 16.4 |
Hip circumference (cm) | 111.3 ± 10.1 | 116.8 ± 14.0 |
Waist-to-hip-ratio (WHR) | 0.94 ± 0.08 | 0.93 ± 0.09 |
BIA – Body fat (%) | 37.0 ± 9.2 | 34.8 ± 8.4 |
RR syst. (mmHg) | 137 ± 16 | 142 ± 19 |
Fasting glucose (mg/dl) | 97.7 ± 6.6 | 99.0 ± 6.4 |
2-h glucose (mg/dl) | 161.8 ± 18.0 | 165.5 ± 20.8 |
HbA1c (%) | 5.7 ± 0.4 | 5.7 ± 0.4 |
Fasting Insulin (mU/l) | 9.9 ± 4.2 | 10.8 ± 6.5 |
Fasting C-Peptide (µg/l) | 1.9 ± 0.8 | 1.8 ± 0.8 |
HOMA-IR | 2.7 ± 1.2 | 3.1 ± 2.1 |
QUICKI | 0.33 ± 0.02 | 0.34 ± 0.04 |
ISIffa | 0.85 ± 0.24 | 0.81 ± 0.34 |
Belfiore | 0.63 ± 0.27 | 0.64 ± 0.31 |
HICc-peptide (mU/µg) | 5.0 ± 1.6 | 5.2 ± 2.4 |
HDL cholesterol (mmol/l) | 1.2 ± 0.2 | 1.2 ± 0.3 |
LDL cholesterol (mmol/l) | 3.7 ± 1.0 | 3.5 ± 0.8 |
CRP (mg/l) | 5.2 ± 4.1 | 3.1 ± 4.0 |
Leukocyte count (Gpt/l) | 5.87 ± 1.29 | 5.82 ± 1.63 |
Uric acid (µmol/l) | 358 ± 84 | 351 ± 85 |
GGT (U/l) | 37 ± 26 | 29 ± 22 |
Fatty liver index (FLI) | 74 ± 21 | 71 ± 27 |
NFG Fibre (Baseline) | NFG Placebo (Baseline) | IFG Fibre (Baseline) | IFG Placebo (Baseline) | NFG Fibre (12 Months) | NFG Placebo (12 Months) | IFG Fibre (12 Months) | IFG Placebo (12 Months) | |
---|---|---|---|---|---|---|---|---|
Food intake | ||||||||
Total energy intake (kcal/day) | 1970 ± 386 | 2054 ± 626 | 2118 ± 532 | 1969 ± 541 | 1698 ± 414 * | 1888 ± 469 * | 1772 ± 360 * | 1933 ± 607 * |
Fat intake (g/day) | 75 ± 22 | 78 ± 26 | 85 ± 26 | 79 ± 31 | 64 ± 24 * | 70 ± 26 * | 66 ± 21* | 73 ± 32 * |
Protein intake (g/day) | 78 ± 18 | 82 ± 23 | 85 ± 26 | 84 ± 22 | 66 ± 17 ** | 81 ± 21 | 75 ± 21 | 81 ± 23 |
Carbohydrate intake (g/day) | 226 ± 52 | 231 ± 82 | 227 ± 63 | 214 ± 57 | 205 ± 45 | 216 ± 47 | 201 ± 44 | 220 ± 63 |
Total dietary fibre intake (g/day) | 23 ± 6 | 25 ± 9 | 23 ± 8 | 22 ± 5 | 23 ± 6 | 24 ± 10 | 22 ± 8 | 24 ± 8 |
Insoluble | 15 ± 4 | 16 ± 6 | 15 ± 5 | 15 ± 4 | 15 ± 5 | 16 ± 5 | 14 ± 5 | 15 ± 5 |
Soluble | 7 ± 2 | 8 ± 3 | 7 ± 2 | 7 ± 2 | 7 ± 2 | 8 ± 3 | 7 ± 2 | 7 ± 2 |
Alcohol (g/day) | 8 ± 16 | 11 ± 15 | 12 ± 15 | 6 ± 12 | 3 ± 4 * | 7 ± 8 * | 8 ± 10 * | 7 ± 13 |
Physical activity | ||||||||
Steps per day | 7052 ± 2924 | 6045 ± 2472 | 6382 ± 3063 | 6482 ± 2711 | 7775 ± 3348 | 5805 ± 2601 | 7185 ± 3215 | 7538 ± 3795 |
Energy expenditure by steps | 499 ± 218 | 400 ± 160 | 415 ± 243 | 461 ± 278 | 534 ± 247 | 381 ± 188 | 435 ± 160 | 508 ± 239 |
NFG Fibre | NFG Placebo | IFG Fibre | IFG Placebo | NFG: Fibre vs. Placebo | IFG: Fibre vs. Placebo | Placebo: NFG vs. IFG | Fibre: NFG vs. IFG | |
---|---|---|---|---|---|---|---|---|
Weight (kg) | −3.2 ± 5.3 ** | −3.1 ± 5.5 ** | −2.2 ± 3.8 *** | −3.1 ± 5.9 ** | n.s. | n.s. | n.s. | n.s. |
Waist circumference (cm) | −2.9 ± 5.8 ** | −3.5 ± 7.4 * | −2.9 ± 4.5 *** | −3.1 ± 6.0 ** | n.s. | n.s. | n.s. | n.s. |
Hip circumference (cm) | −3.2 ± 4.0 *** | −1.3 ± 4.3 | −1.5 ± 4.7 | −3.8 ± 5.9 ** | n.s. | n.s. | n.s. | n.s. |
WHR | 0.00 ± 0.04 | −0.02 ± 0.05 * | −0.01 ± 0.04 | 0.00 ± 0.05 | n.s. | n.s. | n.s. | n.s. |
BIA – Body fat (%) | −0.4 ± 5.1 | −2.2 ± 5.8 | −0.6 ± 4.3 | −0.2 ± 3.1 | n.s. | n.s. | n.s. | n.s. |
RR syst. (mmHg) | −7 ± 16 * | −2 ± 15 | 2 ± 16 | −2 ± 19 | n.s. | n.s. | n.s. | n.s. |
Fasting glucose (mg/dl) | 4.3 ± 9.8 * | 2.7 ± 7.7 | −7.6 ± 8.8 *** | −4.7 ± 7.6 ** | n.s. | n.s. | † < 0.001 | † < 0.001 |
2-h glucose (mg/dl) | −9.5 ± 24.1 * | −11.6 ± 23.8 ** | −12.7 ± 33.3 ** | 1.8 ± 34.9 | n.s. | † < 0.05 | † < 0.05 | n.s. |
HbA1c (%) | 0.1 ± 0.5 | −0.0 ± 0.4 | −0.1 ± 0.4 | 0.2 ± 0.6 * | n.s. | † < 0.01 | † < 0.05 | n.s. |
Fasting Insulin (mU/l) | −1.2 ± 3.2 | −0.4 ± 4.3 | −1.8 ± 3.6 ** | 1.8 ± 5.2 * | n.s. | n.s. | n.s. | n.s. |
Fasting C-Peptide (µg/l) | 0.1 ± 1.0 | 0.4 ± 1.3 | 0.1 ± 1.4 | 0.4 ± 1.6 | n.s. | n.s. | n.s. | n.s. |
HOMA-IR | −0.3 ± 0.9 | −0.1 ± 1.2 | −0.6 ± 1.2 ** | −0.6 ± 1.5 * | n.s. | n.s. | n.s. | n.s. |
QUICKI | 0.00 ± 0.03 | 0.01 ± 0.03 * | 0.01 ± 0.02 ** | 0.01 ± 0.03 * | n.s. | n.s. | n.s. | n.s. |
ISIffa | 0.10 ± 0.27 * | 0.10 ± 0.25 * | 0.04 ± 0.28 | 0.09 ± 0.38 | n.s. | n.s. | n.s. | n.s. |
Belfiore | 0.12 ± 0.30 * | 0.11 ± 0.27 * | 0.14 ± 0.27 ** | 0.16 ± 0.24 ** | n.s. | n.s. | n.s. | n.s. |
HICc-peptide (mU/µg) | 1.0 ± 2.2 * | 1.2 ± 2.3 ** | 1.3 ± 2.6 ** | 1.9 ± 2.5 *** | n.s. | n.s. | n.s. | n.s. |
HDL cholesterol (mmol/l) | −0.0 ± 0.2 | −0.0 ± 0.2 | 0.0 ± 0.1 | 0.0 ± 0.3 | n.s. | n.s. | n.s. | n.s. |
LDL cholesterol (mmol/l) | −0.1 ± 0.5 | −0.1 ± 0.8 | −0.1 ± 1.0 | −0.2 ± 0.9 | n.s. | n.s. | n.s. | n.s. |
CRP (mg/l) | −0.5 ± 4.2 | −0.6 ± 2.6 | −1.8 ± 3.3 ** | −0.5 ± 2.8 | n.s. | n.s. | n.s. | n.s. |
Leukocyte count (Gpt/l) | −0.33 ± 1.41 | 0.19 ± 1.03 | −0.65 ± 1.14 * | −0.07 ± 1.04 | n.s. | n.s. | n.s. | n.s. |
Uric acid (µmol/l) | −7 ± 43 | −11 ± 61 | −14 ± 69 | −6 ± 55 | n.s. | n.s. | n.s. | n.s. |
GGT (U/l) | −8 ± 40 | −4 ± 20 | −5 ± 14 | 6 ± 24 | n.s. | † < 0.05 | n.s. | n.s. |
Fatty liver index (FLI) | −8 ± 17 * | −7 ± 13 ** | −5 ± 12 * | −2 ± 13 | n.s. | n.s. | n.s. | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabisch, S.; Meyer, N.M.T.; Honsek, C.; Gerbracht, C.; Dambeck, U.; Kemper, M.; Osterhoff, M.A.; Birkenfeld, A.L.; Arafat, A.M.; Hjorth, M.F.; et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019, 11, 2385. https://doi.org/10.3390/nu11102385
Kabisch S, Meyer NMT, Honsek C, Gerbracht C, Dambeck U, Kemper M, Osterhoff MA, Birkenfeld AL, Arafat AM, Hjorth MF, et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients. 2019; 11(10):2385. https://doi.org/10.3390/nu11102385
Chicago/Turabian StyleKabisch, Stefan, Nina M. T. Meyer, Caroline Honsek, Christiana Gerbracht, Ulrike Dambeck, Margrit Kemper, Martin A. Osterhoff, Andreas L. Birkenfeld, Ayman M. Arafat, Mads F. Hjorth, and et al. 2019. "Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT)" Nutrients 11, no. 10: 2385. https://doi.org/10.3390/nu11102385
APA StyleKabisch, S., Meyer, N. M. T., Honsek, C., Gerbracht, C., Dambeck, U., Kemper, M., Osterhoff, M. A., Birkenfeld, A. L., Arafat, A. M., Hjorth, M. F., Weickert, M. O., & Pfeiffer, A. F. H. (2019). Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients, 11(10), 2385. https://doi.org/10.3390/nu11102385