Controversies in Diagnosing Sarcopenia in Cirrhosis—Moving from Research to Clinical Practice
Abstract
:1. Introduction
2. What Causes Sarcopenia in Cirrhosis?
3. What Methods Are Currently Used to Diagnose Sarcopenia?
3.1. Nutritional Assessment
3.2. Anthropometry
3.3. Functional Measures
3.4. Bioelectrical Impedance
3.5. Quantitative Measures of Muscle Mass
4. Why Is Assessing Sarcopenia in Cirrhosis Important?
5. What Do We Want in a Diagnostic Test for Sarcopenia?
6. Is Sarcopenia a Binary Phenomenon?
7. Does Treating Sarcopenia Improve Outcome?
8. Where to Next in Sarcopenia Research?
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Montano-Loza, A.J.; Meza-Junco, J.; Prado, C.M.; Lieffers, J.R.; Baracos, V.E.; Bain, V.G.; Sawyer, M.B. Muscle wasting is associated with mortality in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2012, 10, 166–173. [Google Scholar] [CrossRef]
- Durand, F.; Buyse, S.; Francoz, C.; Laouenan, C.; Bruno, O.; Belghiti, J.; Moreau, R.; Vilgrain, V.; Valla, D. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J. Hepatol. 2014, 60, 1151–1157. [Google Scholar] [CrossRef]
- Bassil, N.; Alkaade, S.; Morley, J.E. The benefits and risks of testosterone replacement therapy: A review. Ther. Clin. Risk Manag. 2009, 5, 427–448. [Google Scholar]
- Wang, C.W.; Feng, S.; Covinsky, K.E.; Hayssen, H.; Zhou, L.Q.; Yeh, B.M.; Lai, J.C. A Comparison of Muscle Function, Mass, and Quality in Liver Transplant Candidates: Results from the Functional Assessment in Liver Transplantation Study. Transplantation 2016, 100, 1692–1698. [Google Scholar] [CrossRef]
- Lai, J.C.; Feng, S.; Terrault, N.A.; Lizaola, B.; Hayssen, H.; Covinsky, K. Frailty predicts waitlist mortality in liver transplant candidates. Am. J. Transplant. 2014, 14, 1870–1879. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, M.; Gow, P.J.; Grossmann, M.; Angus, P.W. Review article: Sarcopenia in cirrhosis-aetiology, implications and potential therapeutic interventions. Aliment. Pharmacol. Ther. 2016, 43, 765–777. [Google Scholar] [CrossRef]
- Bhanji, R.A.; Narayanan, P.; Moynagh, M.R.; Takahashi, N.; Angirekula, M.; Kennedy, C.C.; Mara, K.C.; Dierkhising, R.A.; Watt, K.D. Differing Impact of Sarcopenia and Frailty in Nonalcoholic Steatohepatitis and Alcoholic Liver Disease. Liver Transpl. 2019, 25, 14–24. [Google Scholar] [CrossRef]
- Hayashi, F.; Matsumoto, Y.; Momoki, C.; Yuikawa, M.; Okada, G.; Hamakawa, E.; Kawamura, E.; Hagihara, A.; Toyama, M.; Fujii, H.; et al. Physical inactivity and insufficient dietary intake are associated with the frequency of sarcopenia in patients with compensated viral liver cirrhosis. Hepatol. Res. 2013, 43, 1264–1275. [Google Scholar] [CrossRef]
- Holecek, M. Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy. Nutrition 2015, 31, 14–20. [Google Scholar] [CrossRef]
- Valdes, J.A.; Flores, S.; Fuentes, E.N.; Osorio-Fuentealba, C.; Jaimovich, E.; Molina, A. IGF-1 induces IP3-dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation. J. Cell. Physiol. 2013, 228, 1452–1463. [Google Scholar] [CrossRef]
- Sinclair, M.; Grossmann, M.; Angus, P.W.; Hoermann, R.; Hey, P.; Scodellaro, T.; Gow, P.J. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J. Gastroenterol. Hepatol. 2016, 31, 661–667. [Google Scholar] [CrossRef]
- Tsien, C.D.; McCullough, A.J.; Dasarathy, S. Late evening snack: Exploiting a period of anabolic opportunity in cirrhosis. J. Gastroenterol. Hepatol. 2012, 27, 430–441. [Google Scholar] [CrossRef]
- Dasarathy, S.; Merli, M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Chen, W.Y.; Lee, F.Y.; Huang, C.J.; Sheu, W.H. Activation of ubiquitin-proteasome pathway is involved in skeletal muscle wasting in a rat model with biliary cirrhosis: Potential role of TNF-alpha. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E493–E501. [Google Scholar] [CrossRef]
- Eslamparast, T.; Vandermeer, B.; Raman, M.; Gramlich, L.; Den Heyer, V.; Belland, D.; Ma, M.; Tandon, P. Are Predictive Energy Expenditure Equations Accurate in Cirrhosis? Nutrients 2019, 11, 334. [Google Scholar] [CrossRef]
- Ciocirlan, M.; Cazan, A.R.; Barbu, M.; Manuc, M.; Diculescu, M.; Ciocirlan, M. Subjective Global Assessment and Handgrip Strength as Predictive Factors in Patients with Liver Cirrhosis. Gastroenterol Res. Pract. 2017. [Google Scholar] [CrossRef]
- Moctezuma-Velazquez, C.; Ebadi, M.; Bhanji, R.A.; Stirnimann, G.; Tandon, P.; Montano-Loza, A.J. Limited performance of subjective global assessment compared to computed tomography-determined sarcopenia in predicting adverse clinical outcomes in patients with cirrhosis. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Giusto, M.; Lattanzi, B.; Albanese, C.; Galtieri, A.; Farcomeni, A.; Giannelli, V.; Lucidi, C.; Di Martino, M.; Catalano, C.; Merli, M. Sarcopenia in liver cirrhosis: The role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur. J. Gastroenterol. Hepatol. 2015, 27, 328–334. [Google Scholar] [CrossRef]
- Alberino, F.; Gatta, A.; Amodio, P.; Merkel, C.; Di Pascoli, L.; Boffo, G.; Caregaro, L. Nutrition and survival in patients with liver cirrhosis. Nutrition 2001, 17, 445–450. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; Shimizu, M. Reduced handgrip strength is predictive of poor survival among patients with liver cirrhosis: A sex-stratified analysis. Hepatol. Res. 2019. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Watanabe, S.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, A.; Moriwaki, H.; Shimizu, M. Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol. Res. 2017, 47, 1359–1367. [Google Scholar] [CrossRef]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip Strength Adds More Prognostic Value to the Model for End-Stage Liver Disease Score Than Imaging-Based Measures of Muscle Mass in Men With Cirrhosis. Liver Transpl. 2019, 25, 1480–1487. [Google Scholar] [CrossRef]
- Lai, J.C.; Dodge, J.L.; Sen, S.; Covinsky, K.; Feng, S. Functional decline in patients with cirrhosis awaiting liver transplantation: Results from the functional assessment in liver transplantation (FrAILT) study. Hepatology 2016, 63, 574–580. [Google Scholar] [CrossRef]
- Wang, C.W.; Covinsky, K.E.; Feng, S.; Hayssen, H.; Segev, D.L.; Lai, J.C. Functional impairment in older liver transplantation candidates: From the functional assessment in liver transplantation study. Liver Transplant. 2015, 21, 1465–1470. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.C.; Covinsky, K.E.; Dodge, J.L.; Boscardin, W.J.; Segev, D.L.; Roberts, J.P.; Feng, S. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology 2017, 66, 564–574. [Google Scholar] [CrossRef]
- Carey, E.J.; Steidley, D.E.; Aqel, B.A.; Byrne, T.J.; Mekeel, K.L.; Rakela, J.; Vargas, H.E.; Douglas, D.D. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transplant. 2010, 16, 1373–1378. [Google Scholar] [CrossRef]
- Belarmino, G.; Gonzalez, M.C.; Torrinhas, R.S.; Sala, P.; Andraus, W.; D’Albuquerque, L.A.C.; Pereira, R.M.R.; Caparbo, V.F.; Ravacci, G.R.; Damiani, L.; et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World J. Hepatol. 2017, 9, 401–408. [Google Scholar] [CrossRef]
- Carey, E.J.; Lai, J.C.; Sonnenday, C.; Tapper, E.B.; Tandon, P.; Duarte-Rojo, A.; Dunn, M.A.; Tsien, C.; Kallwitz, E.R.; Ng, V.; et al. A North American Expert Opinion Statement on Sarcopenia in Liver Transplantation. Hepatology 2019. [Google Scholar] [CrossRef]
- Hari, A.; Berzigotti, A.; Stabuc, B.; Caglevic, N. Muscle psoas indices measured by ultrasound in cirrhosis–Preliminary evaluation of sarcopenia assessment and prediction of liver decompensation and mortality. Dig. Liver Dis. 2019. [Google Scholar] [CrossRef]
- Carey, E.J.; Lai, J.C.; Wang, C.W.; Dasarathy, S.; Lobach, I.; Montano-Loza, A.J.; Dunn, M.A. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transplant. 2017, 23, 625–633. [Google Scholar] [CrossRef]
- Gu, D.H.; Kim, M.Y.; Seo, Y.S.; Kim, S.G.; Lee, H.A.; Kim, T.H.; Jung, Y.K.; Kandemir, A.; Kim, J.H.; An, H.; et al. Clinical usefulness of psoas muscle thickness for the diagnosis of sarcopenia in patients with liver cirrhosis. Clin. Mol. Hepatol. 2018, 24, 319–330. [Google Scholar] [CrossRef]
- Golse, N.; Bucur, P.O.; Ciacio, O.; Pittau, G.; Sa Cunha, A.; Adam, R.; Castaing, D.; Antonini, T.; Coilly, A.; Samuel, D.; et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transplant. 2017, 23, 143–154. [Google Scholar] [CrossRef]
- Ebadi, M.; Wang, C.W.; Lai, J.C.; Dasarathy, S.; Kappus, M.R.; Dunn, M.A.; Carey, E.J.; Montano-Loza, A.J. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J. Cachexia Sarcopenia Muscle 2018, 9, 1053–1062. [Google Scholar] [CrossRef]
- Messina, C.; Maffi, G.; Vitale, J.A.; Ulivieri, F.M.; Guglielmi, G.; Sconfienza, L.M. Diagnostic imaging of osteoporosis and sarcopenia: A narrative review. Quant. Imaging Med. Surg. 2018, 8, 86–99. [Google Scholar] [CrossRef]
- Hinton, B.J.; Fan, B.; Ng, B.K.; Shepherd, J.A. Dual energy X-ray absorptiometry body composition reference values of limbs and trunk from NHANES 1999-2004 with additional visualization methods. PLoS ONE 2017, 12, e0174180. [Google Scholar] [CrossRef]
- Belarmino, G.; Gonzalez, M.C.; Sala, P.; Torrinhas, R.S.; Andraus, W.; D’Albuquerque, L.A.C.; Pereira, R.M.R.; Caparbo, V.F.; Ferrioli, E.; Pfrimer, K.; et al. Diagnosing Sarcopenia in Male Patients with Cirrhosis by Dual-Energy X-ray Absorptiometry Estimates of Appendicular Skeletal Muscle Mass. JPEN J. Parenter. Enter. Nutr. 2018, 42, 24–36. [Google Scholar]
- Hind, K.; Oldroyd, B.; Truscott, J.G. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults. Eur. J. Clin. Nutr. 2011, 65, 140–142. [Google Scholar] [CrossRef]
- Sinclair, M.; Grossmann, M.; Hoermann, R.; Angus, P.W.; Gow, P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J. Hepatol. 2016, 65, 906–913. [Google Scholar] [CrossRef]
- Sinclair, M.; Hoermann, R.; Peterson, A.; Testro, A.; Angus, P.W.; Hey, P.; Chapman, B.; Gow, P.J. Use of Dual X-ray Absorptiometry in men with advanced cirrhosis to predict sarcopenia-associated mortality risk. Liver Int. 2019, 39, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Praktiknjo, M.; Book, M.; Luetkens, J.; Pohlmann, A.; Meyer, C.; Thomas, D.; Jansen, C.; Feist, A.; Chang, J.; Grimm, J.; et al. Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology 2018, 67, 1014–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? JPEN J. Parenter. Enter. Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvares-da-Silva, M.R.; Reverbel da Silveira, T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition 2005, 21, 113–117. [Google Scholar] [CrossRef]
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310–314. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Nishimura, K.; Ohnishi, S.; Imai, K.; Suetsugu, A.; Takai, K.; Masahito, S.; Hisataka, M. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015, 31, 193–199. [Google Scholar] [CrossRef]
- Hernandez-Socorro, C.R.; Saavedra, P.; Lopez-Fernandez, J.C.; Ruiz-Santana, S. Assessment of Muscle Wasting in Long-Stay ICU Patients Using a New Ultrasound Protocol. Nutrients 2018, 10, 1849. [Google Scholar] [CrossRef]
- Tandon, P.; Low, G.; Mourtzakis, M.; Zenith, L.; Myers, R.P.; Abraldes, J.G.; Shaheen, A.A.; Qamar, H.; Mansoor, N.; Carbonneau, M.; et al. A Model to Identify Sarcopenia in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1473–1480. [Google Scholar] [CrossRef]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A.J. The accuracy and precision of DXA for assessing body composition in team sport athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef]
- Praktiknjo, M.; Clees, C.; Pigliacelli, A.; Fischer, S.; Jansen, C.; Lehmann, J.; Pohlmann, A.; Lattanzi, B.; Krabbe, V.K.; Strassburg, C.P.; et al. Sarcopenia Is Associated With Development of Acute-on-Chronic Liver Failure in Decompensated Liver Cirrhosis Receiving Transjugular Intrahepatic Portosystemic Shunt. Clin. Transl. Gastroenterol. 2019, 10, e00025. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Kim, D.; Han, S.; Chon, Y.E.; Lee, Y.B.; Kim, M.N.; Lee, J.H.; Park, H.; Rim, K.S.; Hwang, S.G. Sarcopenia Predicts Prognosis in Patients with Newly Diagnosed Hepatocellular Carcinoma, Independent of Tumor Stage and Liver Function. Cancer Res. Treat. 2018, 50, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, G.; Gigante, E.; Iavarone, M.; Begini, P.; Sangiovanni, A.; Iannicelli, E.; Biondetti, P.; Pellicelli, A.M.; Miglioresi, L.; Marchetti, P.; et al. Sarcopenia is associated with reduced survival in patients with advanced hepatocellular carcinoma undergoing sorafenib treatment. United Eur. Gastroenterol. J. 2018, 6, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, M.; Poltavskiy, E.; Dodge, J.L.; Lai, J.C. Frailty is independently associated with increased hospitalisation days in patients on the liver transplant waitlist. World J. Gastroenterol. 2017, 23, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Englesbe, M.J.; Patel, S.P.; He, K.; Lynch, R.J.; Schaubel, D.E.; Harbaugh, C.; Holcombe, S.A.; Segev, D.L.; Wang, S.C.; Sonnenday, C.J.; et al. Sarcopenia and mortality after liver transplantation. J. Am. Coll. Surg. 2010, 211, 271–278. [Google Scholar] [CrossRef] [PubMed]
- DiMartini, A.; Cruz, R.J., Jr.; Dew, M.A.; Myaskovsky, L.; Goodpaster, B.; Fox, K.; Kim, K.H.; Fontes, P. Muscle mass predicts outcomes following liver transplantation. Liver Transplant. 2013, 19, 1172–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montano-Loza, A.J. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transplant. 2014, 20, 640–648. [Google Scholar] [CrossRef]
- Valero, V., III; Amini, N.; Spolverato, G.; Weiss, M.J.; Hirose, K.; Dagher, N.N.; Wolfgang, C.L.; Cameron, A.A.; Philosophe, B.; Kamel, I.R.; et al. Sarcopenia adversely impacts postoperative complications following resection or transplantation in patients with primary liver tumors. J. Gastrointest. Surg. 2015, 19, 272–281. [Google Scholar] [CrossRef]
- Montano-Loza, A.J.; Duarte-Rojo, A.; Meza-Junco, J.; Baracos, V.E.; Sawyer, M.B.; Pang, J.X.; Beaumont, C.; Esfandiari, N.; Myers, R.P. Inclusion of Sarcopenia Within MELD (MELD-Sarcopenia) and the Prediction of Mortality in Patients with Cirrhosis. Clin. Transl. Gastroenterol. 2015, 6, e102. [Google Scholar] [CrossRef]
- Tandon, P.; Mourtzakis, M.; Low, G.; Zenith, L.; Ney, M.; Carbonneau, M.; Alaboudy, A.; Mann, S.; Esfandiari, N.; Ma, M. Comparing the Variability Between Measurements for Sarcopenia Using Magnetic Resonance Imaging and Computed Tomography Imaging. Am. J. Transplant. 2016, 16, 2766–2767. [Google Scholar] [CrossRef] [Green Version]
- Tsien, C.; Shah, S.N.; McCullough, A.J.; Dasarathy, S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur. J. Gastroenterol. Hepatol. 2013, 25, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.S.; Ignatoski, K.M.; Daignault, S.; Lindland, C.; Doherty, M.; Gauger, P.G.; Hammer, G.D.; Wang, S.C.; Doherty, G.M.; University of Michigan Analytical Morphomics Group. Worsening central sarcopenia and increasing intra-abdominal fat correlate with decreased survival in patients with adrenocortical carcinoma. World J. Surg. 2012, 36, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Rongey, C.; Shen, H.; Hamilton, N.; Backus, L.I.; Asch, S.M.; Knight, S. Impact of rural residence and health system structure on quality of liver care. PLoS ONE 2013, 8, e84826. [Google Scholar] [CrossRef] [PubMed]
- Mettler, F.A., Jr.; Huda, W.; Yoshizumi, T.T.; Mahesh, M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 2008, 248, 254–263. [Google Scholar] [CrossRef]
- Maxwell, S.; Fox, R.; McRobbie, D.; Bulsara, M.; Doust, J.; O’Leary, P.; Slavotinek, J.; Stubbs, J.; Moorin, R. How have advances in CT dosimetry software impacted estimates of CT radiation dose and cancer incidence? A comparison of CT dosimetry software: Implications for past and future research. PLoS ONE 2019, 14, e0217816. [Google Scholar] [CrossRef]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Daphnee, D.; John, S.; Vaidya, A.; Khakhar, A.; Bhuvaneshwari, S.; Ramamurthy, A. Hand grip Strength: A reliable, reproducible, cost-effective tool to assess the nutritional status and outcomes of cirrhotics awaiting liver transplant. Clin. Nutr. ESPEN 2017, 19, 49–53. [Google Scholar] [CrossRef]
- van Vugt, J.L.A.; Alferink, L.J.M.; Buettner, S.; Gaspersz, M.P.; Bot, D.; Darwish Murad, S.; Feshtali, S.; van Ooijen, P.M.A.; Polak, W.G.; Porte, R.J.; et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: A competing risk analysis in a national cohort. J. Hepatol. 2018, 68, 707–714. [Google Scholar] [CrossRef]
- Trivedi, H.D.; Tapper, E.B. Interventions to improve physical function and prevent adverse events in cirrhosis. Gastroenterol. Rep. 2018, 6, 13–20. [Google Scholar] [CrossRef]
- Maharshi, S.; Sharma, B.C.; Sachdeva, S.; Srivastava, S.; Sharma, P. Efficacy of Nutritional Therapy for Patients with Cirrhosis and Minimal Hepatic Encephalopathy in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2016, 14, 454–460. [Google Scholar] [CrossRef]
- Les, I.; Doval, E.; Garcia-Martinez, R.; Planas, M.; Cardenas, G.; Gomez, P.; Flavia, M.; Jacas, C.; Mínguez, B.; Vergara, M.; et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: A randomized study. Am. J. Gastroenterol. 2011, 106, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Plank, L.D.; Gane, E.J.; Peng, S.; Muthu, C.; Mathur, S.; Gillanders, L.; McIlroy, K.; Donaghy, A.J.; McCall, J.L. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: A randomized 12-month trial. Hepatology 2008, 48, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Zenith, L.; Meena, N.; Ramadi, A.; Yavari, M.; Harvey, A.; Carbonneau, M.; Ma, M.; Abraldes, J.G.; Paterson, I.; Haykowsky, M.J.; et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2014, 12, 1920–1926. [Google Scholar] [CrossRef] [PubMed]
- Roman, E.; Garcia-Galceran, C.; Torrades, T.; Herrera, S.; Marin, A.; Donate, M.; Alvarado-Tapias, E.; Malouf, J.; Nácher, L.; Serra-Grima, R.; et al. Effects of an Exercise Programme on Functional Capacity, Body Composition and Risk of Falls in Patients with Cirrhosis: A Randomized Clinical Trial. PLoS ONE 2016, 11, e0151652. [Google Scholar] [CrossRef] [PubMed]
- Aamann, L.; Dam, G.; Rinnov, A.R.; Vilstrup, H.; Gluud, L.L. Physical exercise for people with cirrhosis. Cochrane Database Syst. Rev. 2018, 12. [Google Scholar] [CrossRef]
Mode of Diagnosis | Defined Cut-Off for Sarcopenia in Cirrhosis | Correlation with Pre-Transplant Mortality | Pros | Cons | Suitability for Serial Measurement | Future Research Needs |
---|---|---|---|---|---|---|
Subjective global assessment (SGA) Class A, B or C | A = well nourished B = mild-moderately malnourished C = severely malnourished | Mortality was higher in SGA class C (47%) as compared to SGA A (3.1%) in a cohort of 100 cirrhotics [18] Mortality was higher in SGA C patients (HR 9.4 (0, 26.2), p = 0.01) in a cohort of 315 patients awaiting liver transplant, however this lost significance on multivariable analysis [19] | Cheap Non-invasive, safe No specialised equipment or software required | Subjective components Requires a trained dietician to administer Little differentiation between degrees of malnutrition | High | Validation in a broader cohort of patients with cirrhosis is required to determine independent prognostic value |
Mid-arm muscle circumference (MAMC) (cm) | <10th percentile for age and gender [20] | Sarcopenia as defined by MAMC was associated with reduced survival at 6, 12 and 24 months in 212 hospitalized cirrhotics (p < 0.001) [21] | Safe Readily available Inexpensive Rapid Not affected by oedema | Not well validated Cannot differentiate fat mass from muscle mass or fluid retention | High | Needs further studies in broader cohorts of patients, and to ensure no confounding from fluid retention |
Handgrip strength (HGS) (kg) | Men: <30 kg Women: <15 kg [22] OR Men: <26 kg Women: <18 kg [23] | HGS was associated with mortality in men (HR 0.96, p < 0.01) and women (HR 0.91, p = 0.02) in a cohort of 563 patients with cirrhosis [22] Each 1 kg increase in HGS reduced mortality by 6% in a cohort of 145 men assessed for liver transplant [24], and each 1 kg reduction in HGS in an individual while awaiting liver transplant increased mortality by 11% in a cohort of 309 transplant candidates [25] | Simple Rapid Inexpensive Reproducible | May be affected by patient effort, hepatic encephalopathy and musculoskeletal comorbidities | High | Consensus on measurement protocol requirement (e.g., dominant vs. non-dominant hand) Further validation investigation variation/natural fluctuation over time required |
Short physical performance battery (SPPB) Score out of 12 | Frail is defined as a score ≤9 | Frailty is associated with increased waitlist mortality (HR 2.36, p = 0.01) only in patients >65 years of age [26] | Simple Safe Minimal training required to administer | Potential confounding by musculoskeletal complaints or other comorbidities | High | Needs further studies in broader cohorts of cirrhotics |
Liver Frailty Index score (range 0 to 7) (based on gender, HGS, balance and chair stands) | Frail: ≥4.5 [27] | c-index for mortality for the MELDNa-Frailty index was 0.82 versus 0.80 for the MELDNa score alone in a cohort of 536 cirrhotics, suggesting improved prognostic value using the Frailty index [27] | Safe Inexpensive Readily available | May be affected by patient effort, hepatic encephalopathy and musculoskeletal comorbidities | High | Needs external validation in other cohorts |
6-min walk test (6MWT) (metres) | <250 m [28] | Mortality was reduced by 52% for every 100 m increase in the baseline 6MWT in a study of 121 cirrhotics listed for transplant. Distance walked inversely associated with mortality (HR 0.48, p = 0.001) [28] | Simple, no specific training or equipment to administer Functional test Cheap | May be affected by patient effort, hepatic encephalopathy and musculoskeletal comorbidities | High | Larger cohort studies to validate in broader cohorts of cirrhotics |
Bioelectrical impedance (BIA) Appendicular skeletal muscle index (ASMI—kg/m2) Or Phase angle (degrees) | ASMI Men: <7.0 kg/m2 Women: <5.7 kg/m2 [23] Phase angle <4.9 degrees | Phase angle <4.9 degrees was associated with increased mortality in 134 men with cirrhosis independent of MELD score [29] | Portable bedside test Non-invasive No radiation Inexpensive Rapid | Questionable accuracy as results affected by fluid retention, body mass index, and activity level [30] | High | Validation required in broader populations of cirrhotics Need to ascertain the degree of confounding by ascites |
Ultrasound Quadriceps muscle diameter (cm) Muscle psoas index (psoas muscle diameter to height ratio) | Not defined | Psoas to height ratio was significantly associated with mortality in a cohort of 75 patients with decompensated cirrhosis (HR 0.825 (95% CI 0.701–0.973)) [31] | Rapid Inexpensive Non-invasive No radiation | Potential inter-operator variability Need further data on reproducibility | High | Requires validation in larger cohorts |
Skeletal muscle index (height-adjusted muscle area) at the 3rd lumbar vertebrae using Computerized Tomography (CT) scan (CT L3 SMI—cm2/m2) | Men: <52.4 cm2/m2 Women: <38.5 cm2/m2 [2] Men: <50 cm2/m2 Women: <39 cm2/m2 [32] | Presence of sarcopenia was associated with mortality on multivariable analysis in 112 patients assessed for liver transplant (HR 2.21, p = 0.008) [2] A continuous inverse association was observed between SMI and mortality in 396 patients assessed for liver transplant (HR 0.95, p < 0.001) [32] | Able to accurately define muscle, visceral and subcutaneous fat Can assess muscle quality as well as quantity Not influenced by ascites Well-validated as a predictor of mortality | Expensive (scan and software) Radiation exposure May not be widely available (requires software) No clearly defined protocol for reproducibility No data on serial measurements | Low-moderate | Protocol to ensure standardization between patients and centers Data on serial measurements Validation of suggested cut-offs in broader cirrhotic populations |
CT psoas muscle thickness adjusted for height (TPMT/height—mm/m) Psoas muscle area (PMA—mm2) | TPMT/height Men: <17.3 mm/m Women: <10.5 mm/m [33] PMA: Men: <1561 mm2 Women: <1464 mm2 [34] | Mortality risk was increased by 15% for each 1 unit decrease in TPMT/height in 376 patients assessed for liver transplant [3] PMA in the sarcopenic range was associated with reduced 12-month survival (59% vs. 94%, p < 0.001) in 256 patients with cirrhosis [34] Height-adjusted PMA was associated with mortality in women (HR 0.58, p = 0.002) but not men (HR 0.85, p = 0.09) in a cohort of 353 cirrhotics assessed for liver transplant [35] | Psoas muscle easily identifiable on CT scan No need for specific software to analyse scan Not influenced by ascites | Cost of scan Radiation exposure Less mortality data as compared to L3 SMI | Low-moderate | Further studies to establish correlation with mortality Data on serial measurements |
Dual energy X-ray absorptiometry (DEXA) appendicular lean mass—height adjusted (APLM kg/m2) | Men: <7.26 kg/m2 Women: <5.45 kg/m2 [36] Men:<6.57 kg/m2 Women: <4.61 kg/m2 [37] | Muscle mass as measured by APLM was inversely correlated with mortality on multivariable analysis in a cohort of 144 men with cirrhosis (HR 0.44, p = 0.029) [38] | Highly precise and reproducible (coefficient of variation 0.5%) [39] Minimal radiation exposure Inexpensive Validated serial measures in clinical trial in cirrhosis [40] | Access issues Oedema may falsely elevated lower limb lean mass measure No data on mortality association in female cirrhotics | Moderate | Larger cohort studies required to assess impact of APLM on mortality, particularly in women |
DEXA upper limb lean mass—height-adjusted (kg/m2) | Men: <1.6 kg/m2 [41] | Inverse association found between upper limb lean muscle and mortality in 420 men with cirrhosis (HR 0.27; 95% C.I 0.11–0.66; p = 0.004) [41] | Highly reproducible Low radiation exposure Inexpensive Less likely to be affected by oedema | Access issues No studies in female cirrhotics Evidence from single study of cirrhotics only | Moderate | Needs external validation in other cohorts of cirrhosis, particularly in women |
Magnetic resonance imaging (MRI) Fat-free muscle area (FFMA: mm2) at the level of the superior mesenteric artery [42] | Men: FFMA <3197 mm2 Women: FFMA <2895 mm2 | FFMA was an independent predictor of survival in 116 patients with cirrhosis undergoing TIPS stent placement (HR 0.92, p = 0.001) | No radiation exposure Can provide information on muscle quality (fat infiltration) as well as quantity | Expensive Access issues No clear protocols Few studies examining use in liver disease | Low-moderate | Needs further validation in patients with cirrhosis |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinclair, M. Controversies in Diagnosing Sarcopenia in Cirrhosis—Moving from Research to Clinical Practice. Nutrients 2019, 11, 2454. https://doi.org/10.3390/nu11102454
Sinclair M. Controversies in Diagnosing Sarcopenia in Cirrhosis—Moving from Research to Clinical Practice. Nutrients. 2019; 11(10):2454. https://doi.org/10.3390/nu11102454
Chicago/Turabian StyleSinclair, Marie. 2019. "Controversies in Diagnosing Sarcopenia in Cirrhosis—Moving from Research to Clinical Practice" Nutrients 11, no. 10: 2454. https://doi.org/10.3390/nu11102454
APA StyleSinclair, M. (2019). Controversies in Diagnosing Sarcopenia in Cirrhosis—Moving from Research to Clinical Practice. Nutrients, 11(10), 2454. https://doi.org/10.3390/nu11102454