Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategies
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Outcome Measures
2.5. Quality Assessment of the Experiments
3. Results
3.1. Main Search
3.2. CrM and HMB Supplementation
3.3. Sports Performance Outcomes
3.4. Body Composition Outcomes
3.5. Markers of Muscle Damage and Hormone Status Outcomes
4. Discussion
4.1. Impact on Sport Performance
4.1.1. Strength Performance
4.1.2. Anaerobic Performance
4.1.3. Aerobic Performance
4.2. Impact on Body Composition
4.3. Impact on markers of Muscle Damage and Hormone Status
4.3.1. Markers of Exercise-Induced Muscle Damage
4.3.2. Anabolic/Catabolic Hormones
4.4. Strengths, Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Sport. Available online: https://www.sportaus.gov.au/__data/assets/pdf_file/0004/698557/AIS_Sports_Supplement_Framework_2019.pdf (accessed on 19 March 2019).
- Maganaris, C.N.; Maughan, R.J. Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained men. Acta Physiol. Scand. 1998, 163, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Chwalbinska-Moneta, J. Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int. J. Sport Exerc. Metab. 2003, 13, 173–183. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Felici, F.; Sacchetti, M. Effect of short-term creatine supplementation on neuromuscular function. Int. J. Sport Nutr. Exerc. Metab. 2009, 41, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Ferreira, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of creatine supplementation on body composition, strength, and sprint performance. Med. Sci. Sports Exerc. 1998, 30, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, R.L.; Vincent, W.J.; Yaspelkis, B.B. Creatine supplementation differentially affects maximal isometric strength and time to fatigue in large and small muscle groups. Int. J. Sport Nutr. 1999, 9, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Becque, M.; Lochmann, J.; Melrose, D. Effects of oral creatine supplementation on muscular strength and body composition. Phys. Fit. Perform. 2000, 32, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Warber, J.P.; Tharion, W.J.; Patton, J.F.; Champagne, C.M.; Mitotti, P.; Lieberman, H.R. The effect of creatine monohydrate supplementation on obstacle course and multiple bench press performance. J. Strength Cond. Res. 2002, 16, 500–508. [Google Scholar]
- Kutz, M.R.; Gunter, M.J. Creatine Monohydrate Supplementation on Body Weight and Percent Body Fat. J. Strength Cond. Res. 2003, 17, 817–821. [Google Scholar]
- Cooke, M.B.; Rybalka, E.; Williams, A.D.; Cribb, P.J.; Hayes, A. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2009, 6, 13. [Google Scholar] [CrossRef]
- Bassit, R.; Pinheiro, C.; Vitzel, K.; Sproesser, A.; Silveira, L.; Curi, R. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur. J. Appl. Physiol. 2010, 108, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.A.; Fox, J.; Peirce, N.; Jones, S.W.; Casey, A.; Greenhaff, P.L. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids 2016, 48, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J.; Murphy, R.; Oosterlaar, A.M.; Cameron-Smith, D.; Hargreaves, M.; Wagenmakers, A.J.M.; Snow, R. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin. Sci. 2004, 106, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saks, V.A.; Kongas, O.; Vendelin, M.; Kay, L. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Acta Physiol. Scand. 2000, 168, 635–641. [Google Scholar] [CrossRef]
- Chilibeck, P.; Kaviani, M.; Candow, D.; Zello, G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J. Sport Med. 2017, 8, 213–226. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Jeszka, J. The efficacy of a β-hydroxy-β-methylbutyrate supplementation on physical capacity, body composition and biochemical markers in elite rowers: A randomised, double-blind, placebo-controlled crossover study. J. Int. Soc. Sports Nutr. 2015, 12, 31. [Google Scholar] [CrossRef]
- Vukovich, M.D.; Dreifort, G.D. Effect of beta-hydroxy beta-methylbutyrate on the onset of blood lactate accumulation and VO2 peak in endurance-trained cyclists. J. Strength Cond. Res. 2001, 15, 491–497. [Google Scholar]
- Durkalec-Michalski, K.; Jeszka, J.; Podgórski, T. The effect of a 12-week beta-hydroxy-beta-methylbutyrate (HMB) supplementation on highly-trained combat sports athletes: A randomised, double-blind, placebo-controlled crossover study. Nutrients 2017, 9, 753. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Suzuki, K. Effects of β-hydroxy-β-methylbutyrate-free acid supplementation on strength, power and hormonal adaptations following resistance training. Nutrients 2017, 9, 1316. [Google Scholar] [CrossRef]
- Meckel, Y.; Cooper, D.M.; Eliakim, A.; Nemet, D. The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: A prospective randomized, double-blind, placebo-controlled study. Eur. J. Appl. Physiol. 2011, 111, 2261–2269. [Google Scholar]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Andersen, J.C.; Wilson, S.M.C.; Stout, J.R.; Duncan, N.; Fuller, J.C.; Baier, S.M.; Naimo, M.A.; et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: A randomized, double-blind, placebo-controlled study. Eur. J. Appl. Physiol. 2014, 114, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.; Watson, P.; Rowlands, D. Effects of nine weeks of b-hydroxy-b-methylbutyrate supplementation on strength and body composition in resistance trained men. J. Strength Cond. Res. 2009, 23, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Jeszka, J. The effect of β-hydroxy-β-methylbutyrate on aerobic capacity and body composition in trained athletes. J. Strength Cond. Res. 2016, 30, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.; Gill, P.; Fernandes Filho, J.; Fernandes, L. Effects of 12-weeks of supplementation with β-hydroxy-β-methylbutyrate-Ca (HMB-Ca) on athletic performance. J. Exerc. Physiol. 2015, 18, 84–94. [Google Scholar]
- Wilson, J.M.; Fitschen, P.J.; Campbell, B.; Wilson, G.J.; Zanchi, N.; Taylor, L.; Wilborn, C.; Kalman, D.S.; Stout, J.R.; Hoffman, J.R.; et al. International Society of Sports Nutrition Position Stand: Beta-hydroxy-beta-methylbutyrate (HMB). J. Int. Soc. Sports Nutr. 2013, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Di Camillo, B.; Eduati, F.; Nair, S.K.; Avogaro, A.; Toffolo, G.M. Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells. BMC Cell Biol. 2014, 15, 1–9. [Google Scholar] [CrossRef]
- Pinheiro, C.; Gerlinger-Romero, F.; Guimarães-Ferreira, L.; de Souza, A.J.; Vitzel, K.; Nachbar, R.; Nunes, M.; Curi, R. Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle. Eur. J. Appl. Physiol. 2012, 112, 2531–2537. [Google Scholar] [CrossRef]
- He, X.; Duan, Y.; Yao, K.; Li, F.; Hou, Y.; Wu, G.; Yin, Y. β-Hydroxy-β-methylbutyrate, mitochondrial biogenesis, and skeletal muscle health. Amino Acids 2016, 48, 653–664. [Google Scholar] [CrossRef]
- Park, B.S.; Henning, P.C.; Grant, S.C.; Lee, W.J.; Lee, S.R.; Arjmandi, B.H.; Kim, J.S. HMB attenuates muscle loss during sustained energy deficit induced by calorie restriction and endurance exercise. Metabolism 2013, 62, 1718–1729. [Google Scholar] [CrossRef]
- Vatani, D.S.; Faraji, H.; Soori, R.; Mogharnasi, M. The effects of creatine supplementation on performance and hormonal response in amateur swimmers. Sci. Sport 2011, 26, 272–277. [Google Scholar] [CrossRef]
- Arazi, H.; Rahmaninia, F.; Hosseini, K.; Asadi, A. Effects of short term creatine supplementation and resistance exercises on resting hormonal and cardiovascular responses. Sci. Sport 2015, 30, 105–109. [Google Scholar] [CrossRef]
- Wilson, G.J.; Wilson, J.M.; Manninen, A.H. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review. Nutr. Metab. 2008, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.; Nuri, R.; Banitalebi, E.; Sciences, S. The effect of short–term combination of HMB (beta-hydroxy-beta-methylbutyrate) and creatine supplementation on anaerobic performance and muscle injury markers in soccer players. Braz. J. Biomotricity 2009, 3, 366–375. [Google Scholar]
- Jówko, E.; Ostaszewski, P.; Jank, M.; Sacharuk, J.; Zieniewicz, A.; Wilczak, J.; Nissen, S. Creatine and β-hydroxy-β-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition 2001, 17, 558–566. [Google Scholar] [CrossRef]
- Zajac, A.; Waskiewicz, Z.; Poprzecki, S.; Cholewa, J. Effects of creatine and HMß supplementation on anaerobic power and body composition in basketball players. J. Hum. Kinet. 2003, 10, 95–108. [Google Scholar]
- Crowe, M.J.; O’Connor, D.M.; Lukins, J.E. The effects of β-hydroxy-β-methylbutyrate (HMB) and HMB/creatine supplementation on indices of health in highly trained athletes. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 184–197. [Google Scholar] [CrossRef]
- O’Connor, D.M.; Crowe, M.J. Effects of beta-hydroxy-beta-methylbutyrate and creatine monohydrate supplementation on the aerobic and anaerobic capacity of highly trained athletes. J. Sports Med. Phys. Fitness 2003, 43, 64–68. [Google Scholar]
- O’Connor, D.M.; Crowe, M.J. Effects of six weeks of beta-hydroxy-beta-methylbutyrate (HMB) and HMB/creatine supplementation on strength, power, and anthropometry of highly trained athletes. J. Strength Cond. Res. 2007, 21, 419–423. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Academia and clinic annals of internal medicin preferred reporting items for systematic reviews and meta-analyses. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar]
- Chulvi-Medrano, I.; Picon-Martinez, M.; Garcia-Jaen, M.; Manuel Cortell-Tormo, J.; Alakhdar, Y.; Laurentino, G. Neuromuscular adaptations after blood flow restriction training combined with nutritional supplementation: A preliminary study. Montenegrin J. Sport Sci. Med. 2019, 8, 37–42. [Google Scholar] [CrossRef]
- Miramonti, A.; Stout, J.; Fukuda, D.; Robinson, E.; Wang, R.; La Monica, M.; Hoffman, J. The effects off four weeks of high intensity interval training and β-hydroxy-β-methylbutyric free acid on the onset of neuromuscular fatigue. J. Strength Cond. Res. 2015, 30, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sport Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Spurway, N.; MacLaren, D. The Physiology of Training: Advances in Sport and Exercise Science Series; Elsevier Health Sciences: Philadelphia, PA, USA, 2006. [Google Scholar]
- Williams, C.; Rollo, I. Carbohydrate nutrition and team sport performance. Sport.Med. 2015, 45, 13–22. [Google Scholar] [CrossRef]
- Phillips, S.M.; Tipton, K.D.; Ferrando, A.A.; Wolfe, R.R. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am. J. Physiol. 1999, 276, E118–E124. [Google Scholar] [CrossRef] [Green Version]
- Córdova Martínez, A.; Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Seco Calvo, J.; Caballero García, A. Effect of magnesium supplementation on muscular damage markers in basketball players during a full season. Magnes. Res. 2017, 30, 61–70. [Google Scholar] [CrossRef]
- Martin, D.T.; McLean, B.; Trewin, C.; Lee, H.; Victor, J.; Hahn, A.G. Physiological characteristics of nationally competitive female road cyclists and demands of competition. Sport Med. 2001, 31, 469–477. [Google Scholar] [CrossRef]
- Nissen, S.L.; Sharp, R.L. Effect of dietary supplements on lean mass and strength gains with resistance exercise: A meta-analysis. J. Appl. Physiol. 2003, 94, 651–659. [Google Scholar] [CrossRef]
- Kornasio, R.; Riederer, I.; Butler-Browne, G.; Mouly, V.; Uni, Z.; Halevy, O. β-hydroxy-β-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta Mol. Cell Res. 2009, 1793, 755–763. [Google Scholar] [CrossRef]
- Smith, H.J.; Mukerji, P.; Tisdale, M.J. Attenuation of proteasome-induced proteolysis in skeletal muscle by β-hydroxy-β-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005, 65, 277–283. [Google Scholar] [PubMed]
- Dehoux, M.; Van Beneden, R.; Pasko, N.; Lause, P.; Verniers, J.; Underwood, L.; Ketelslegers, J.M.; Thissen, J.P. Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 2004, 145, 4806–4812. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Sanborn, K.; Smith, L.; O’Bryant, H.; Hoke, T.; Utter, A.; Johnson, R.; Boros, R.; Hruby, J.; Pierce, K.; et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int. J. Sport Nutr. 1999, 9, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Deminice, R.; Rosa, F.T.; Pfrimer, K.; Ferrioli, E.; Jordao, A.A.; Freitas, E. Creatine Supplementation Increases Total Body Water in Soccer Players: A Deuterium Oxide Dilution Study. Int. J. Sports Med. 2016, 37, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.E.; Arnold, B.L.; Weltman, A.L.; Perrin, D.H.; Mistry, D.; Kahler, D.M.; Kraemer, W.; Volek, J. Creatine Supplementation Increases Total Body Water Without Altering Fluid Distribution. J. Athl. Train. 2003, 38, 44–50. [Google Scholar] [PubMed]
- Gleeson, M. Biochemical and immunological markers of over-training. J. Sport Sci. Med. 2002, 1, 31–41. [Google Scholar]
- Oliver, J.; Joubert, D.; Martin, S.; Crouse, S. Oral creatine supplementation’s decrease of blood lactate during exhaustive, incremental cycling. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 252–258. [Google Scholar] [CrossRef]
- Knitter, A.E.; Panton, L.; Rathmacher, J.A.; Petersen, A.; Sharp, R. Effects of β-hydroxy-β-methylbutyrate on muscle damage after a prolonged run. J. Appl. Physiol. 2000, 89, 1340–1344. [Google Scholar] [CrossRef]
- Nissen, S.; Sharp, R.; Ray, J.; Rathmacher, J.A.; Rice, D.; Fuller, J.C.; Connelly, A.S.; Abumrad, N. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J. Appl. Physiol. 1996, 81, 2095–2104. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Zourdos, M.; Urdampilleta, A.; Calleja-González, J.; Seco, J.; Córdova, A. Relationship of long-term macronutrients intake on anabolic-catabolic hormones in female elite volleyball players. Nutr. Hosp. 2017, 34, 1155–1162. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Givan, A.H.; Graybeal, A.J.; Villarreal, M.I.; Cross, A.G. β-Hydroxy β-methylbutyrate free acid alters cortisol responses, but not myofibrillar proteolysis, during a 24-h fast. Br. J. Nutr. 2018, 119, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Pakarinen, A.; Alén, M.; Komi, P.V. Serum hormones during prolonged training of neuromuscular performance. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 53, 287–293. [Google Scholar] [CrossRef] [PubMed]
Author/s | Population | Intervention | Outcomes | Effects | ||
---|---|---|---|---|---|---|
CrM+HMB Vs CON/PLG | CrM+HMB Vs CrMG | CrM+HMB Vs HMBG | ||||
Faramarzi et al., (2009) [35] | 24 soccer players (21.6 ± 0.1 years) | Randomized, placebo- controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 days |
|
| No data shown |
|
Jówko et al., (2001) [36] | 40 healthy males (21.0 ± 2.1 years) | Randomized, double-blind, placebo-controlled CrM: 20 g/day (first 1 week) + 10 g/day (2 weeks) HMB: 3 g/day Duration: 3 weeks |
|
|
|
|
O’Connor & Crowe (2003) [39] | 27 male elite rugby players (18–32 years) | Controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 weeks |
|
| No data shown |
|
O’Connor & Crowe (2007) [40] | 30 male elite rugby players (24.9 ± 1.5 years) | Controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 weeks |
|
| No data shown |
|
Zajac et al., (2003) [37] | 52 well trained basketball players (25.6 ± 5.6 years) | Randomized, placebo- controlled CrM: 15 g/day (first 5 days) + 5 g/day (rest of the days) HMB: 3 g/day Duration: 30 days |
|
|
|
|
Author/s | Population | Intervention | Outcomes | Effects | ||
---|---|---|---|---|---|---|
CrM+HMB Vs CON/PLG | CrM+HMB Vs CrMG | CrM+HMB Vs HMBG | ||||
Jówko et al., (2001) [36] | 40 healthy males (21.0 ± 2.1 years) | Randomized, double-blind, placebo-controlled CrM: 20 g/day (first 1 week) + 10 g/day (2 weeks) HMB: 3 g/day Duration: 3 weeks |
|
|
|
|
O’Connor & Crowe (2007) [40] | 30 male elite rugby players (24.9 ± 1.5 years) | Controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 weeks |
|
| No data showed |
|
Zajac et al., (2003) [37] | 52 well trained basketball players (25.6 ± 5.6 years) | Randomized, placebo- controlled CrM: 15 g/day (first 5 days) + 5 g/day (rest of the days) HMB: 3 g/day Duration: 30 days |
|
|
|
|
Author/s | Population | Intervention | Outcomes | Effects | ||
---|---|---|---|---|---|---|
CrM+HMB Vs CON/PLG | CrM+HMB Vs CrM | CrM+HMB Vs HMBG | ||||
Crowe et al., (2003) [38] | 28 male elite rugby players (24.9 ± 0.7 years) | Controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 weeks |
|
|
|
|
Faramarzi et al., (2009) [35] | 24 soccer players (21.6 ± 0.1 years) | Randomized, placebo- controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 days |
|
|
|
|
Jówko et al., (2001) [36] | 40 healthy males (21.0 ± 2.1 years) | Randomized, double-blind, placebo-controlled CrM: 20 g/day (first 1 week) + 10 g/day (2 weeks) HMB: 3 g/day Duration: 3 weeks |
|
|
|
|
O’Connor & Crowe (2003) [39] | 27 male elite rugby players (18–32 years) | Controlled CrM: 3 g/day HMB: 3 g/day Duration: 6 weeks |
|
|
|
|
Zajac et al., (2003) [37] | 52 well trained basketball players (25.6 ± 5.6 years) | Randomized, placebo- controlled CrM: 15 g/day (first 5 days) + 5 g/day (rest of the days) HMB: 3 g/day Duration: 30 days |
|
|
|
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Landa, J.; Calleja-González, J.; León-Guereño, P.; Caballero-García, A.; Córdova, A.; Mielgo-Ayuso, J. Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients 2019, 11, 2528. https://doi.org/10.3390/nu11102528
Fernández-Landa J, Calleja-González J, León-Guereño P, Caballero-García A, Córdova A, Mielgo-Ayuso J. Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients. 2019; 11(10):2528. https://doi.org/10.3390/nu11102528
Chicago/Turabian StyleFernández-Landa, Julen, Julio Calleja-González, Patxi León-Guereño, Alberto Caballero-García, Alfredo Córdova, and Juan Mielgo-Ayuso. 2019. "Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review" Nutrients 11, no. 10: 2528. https://doi.org/10.3390/nu11102528
APA StyleFernández-Landa, J., Calleja-González, J., León-Guereño, P., Caballero-García, A., Córdova, A., & Mielgo-Ayuso, J. (2019). Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients, 11(10), 2528. https://doi.org/10.3390/nu11102528