Diet-Related Factors, Physical Activity, and Weight Status in Polish Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Diet-Related Factors
2.2.1. Frequency of Food Eating
2.2.2. Dietary Restrictions
2.2.3. Other Eating Habits
2.3. Physical Activity and Sedentary Behaviors
2.4. Socio-Demographic Characteristics
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Lifestyle Characteristics
3.3. Logistic Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Obesity and Overweight. 2018. Available online: http://www.who. int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 October 2018).
- WHO. Noncommunicable Diseases (NCD) Country Profiles. 2018. Available online: http://www.who.int/nmh/countries/pol_en.pdf?ua=1 (accessed on 12 October 2018).
- Jiang, L.; Tian, W.; Wang, Y.; Rong, J.; Bao, C.; Liu, Y.; Zhao, Y.; Wang, C. Body mass index and susceptibility to knee osteoarthritis: A systematic review and meta-analysis. Jt. Bone Spine 2012, 79, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Rong, J.; Wang, Y.; Hu, F.; Bao, C.; Li, X.; Zhao, Y. The relationship between body mass index and hip osteoarthritis: A systematic review and meta-analysis. Jt. Bone Spine 2011, 78, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Gębski, J.; Jezewska-Zychowicz, M.; Guzek, D.; Świątkowska, M.; Stangierska, D.; Plichta, M. The Associations between Dietary Patterns and Short Sleep Duration in Polish Adults (LifeStyle Study). Int. J. Environ. Res. Public Health 2018, 15, 2497. [Google Scholar] [CrossRef] [PubMed]
- Beliefs and Eating Habits Questionnaire. Behavioral Conditions of Nutrition Team, Committee of Human Nutrition Science. Polish Academy of Science: Warsaw, 2014. Available online: http://www.knozc.pan.pl/ (accessed on 20 September 2017).
- Allès, B.; Samieri, C.; Lorrain, S.; Jutand, M.-A.; Carmichael, P.-H.; Shatenstein, B.; Gaudreau, P.; Payette, H.; Laurin, D.; Barberger-Gateau, P. Nutrient patterns and their food sources in older persons from France and Quebec: Dietary and lifestyle characteristics. Nutrients 2016, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Jezewska-Zychowicz, M.; Gębski, J.; Guzek, D.; Świątkowska, M.; Stangierska, D.; Plichta, M.; Wasilewska, M. The Associations between Dietary Patterns and Sedentary Behaviors in Polish Adults (LifeStyle Study). Nutrients 2018, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.Y.; Lim, K.K.; Lim, K.H.; Teh, C.H.; Kee, C.C.; Cheong, S.M.; Khoo, Y.Y.; Baharudin, A.; Ling, M.Y.; Omar, M.A. Physical activity and overweight/obesity among Malaysian adults: Findings from the 2015 National Health and morbidity survey (NHMS). BMC Public Health 2017, 17, 733. [Google Scholar] [CrossRef]
- Yu, C.; Shi, Z.; Lv, J.; Du, H.; Qi, L.; Guo, Y.; Bian, Z.; Chang, L.; Tang, X.; Jiang, Q. Major dietary patterns in relation to general and central obesity among Chinese adults. Nutrients 2015, 7, 5834–5849. [Google Scholar] [CrossRef]
- Pereira, R.A.; Duffey, K.J.; Sichieri, R.; Popkin, B.M. Sources of excessive saturated fat, trans fat and sugar consumption in Brazil: An analysis of the first Brazilian nationwide individual dietary survey. Public Health Nutr. 2014, 17, 113–121. [Google Scholar] [CrossRef]
- Nurwanti, E.; Uddin, M.; Chang, J.-S.; Hadi, H.; Syed-Abdul, S.; Su, E.; Nursetyo, A.; Masud, J.; Bai, C.-H. Roles of sedentary behaviors and unhealthy foods in increasing the obesity risk in adult men and women: A cross-sectional national study. Nutrients 2018, 10, 704. [Google Scholar] [CrossRef]
- Charreire, H.; Kesse-Guyot, E.; Bertrais, S.; Simon, C.; Chaix, B.; Weber, C.; Touvier, M.; Galan, P.; Hercberg, S.; Oppert, J.-M. Associations between dietary patterns, physical activity (leisure-time and occupational) and television viewing in middle-aged French adults. Br. J. Nutr. 2011, 105, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Jans, M.P.; Proper, K.I.; Hildebrandt, V.H. Sedentary behavior in Dutch workers: Differences between occupations and business sectors. Am. J. Prev. Med. 2007, 33, 450–454. [Google Scholar] [CrossRef] [PubMed]
- de Rezende, L.F.M.; Lopes, M.R.; Rey-López, J.P.; Matsudo, V.K.R.; do Carmo Luiz, O. Sedentary behavior and health outcomes: An overview of systematic reviews. PLoS ONE 2014, 9, e105620. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Gómez-Abellán, P. Timing of food intake and obesity: A novel association. Physiol. Behav. 2014, 134, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Vadiveloo, M.K.; Parekh, N. Dietary variety: An overlooked strategy for obesity and chronic disease control. Am. J. Prev. Med. 2015, 49, 974–979. [Google Scholar] [CrossRef]
- Mazidi, M.; Kengne, A.P.; Vatanparast, H. Association of dietary patterns of American adults with bone mineral density and fracture. Public Health Nutr. 2018, 21, 2417–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27, 255–262. [Google Scholar] [CrossRef]
- Bes-Rastrollo, M.; Basterra-Gortari, F.J.; Sanchez-Villegas, A.; Marti, A.; Martínez, J.A.; Martínez-González, M.A. A prospective study of eating away-from-home meals and weight gain in a Mediterranean population: The SUN (Seguimiento Universidad de Navarra) cohort. Public Health Nutr. 2010, 13, 1356–1363. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E. Eating Frequency Is Positively Associated with Overweight and Central Obesity in US Adults–3. J. Nutr. 2015, 145, 2715–2724. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Kilani, H.; Al-Hazzaa, H.; Waly, M.I.; Musaiger, A. Lifestyle Habits: Diet, physical activity and sleep duration among Omani adolescents. Sultan Qaboos Univ. Med. J. 2013, 13, 510. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Wannamethee, S.G.; Whincup, P.H. Validity of questionnaire-based assessment of sedentary behaviour and physical activity in a population-based cohort of older men; comparisons with objectively measured physical activity data. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, M.; Pearson, N.; Foster, P.J.; Biddle, S.J.H. Sedentary behaviour and diet across the lifespan: An updated systematic review. Br. J. Sports Med. 2015, 49, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Galinski, G.; Lonnie, M.; Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Jezewska-Zychowicz, M.; Babicz-Zielinska, E. Self-Reported Dietary Restrictions and Dietary Patterns in Polish Girls: A Short Research Report (GEBaHealth Study). Nutrients 2016, 8, 796. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Schreiber-Gregory, D.N.; Jackson, H.M. Multicollinearity: What is it, why Should We Care, and How can it be Controlled? Available online: https://support.sas.com/resources/papers/proceedings17/1404-2017.pdf (accessed on 10 December 2018).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Kanter, R.; Caballero, B. Global gender disparities in obesity: A review. Adv. Nutr. 2012, 3, 491–498. [Google Scholar] [CrossRef]
- Cutler, D.M.; Gruber, J.; Hartman, R.S.; Landrum, M.B.; Newhouse, J.P.; Rosenthal, M.B. The economic impacts of the tobacco settlement. J. Policy Anal. Manag. J. Assoc. Public Policy Anal. Manag. 2002, 21, 1–19. [Google Scholar] [CrossRef]
- Penney, T.L.; Kirk, S.F.L. The health at every size paradigm and obesity: Missing empirical evidence may help push the reframing obesity debate forward. Am. J. Public Health 2015, 105, e38–e42. [Google Scholar] [CrossRef]
- Eikey, E.V.; Reddy, M.C.; Booth, K.M.; Kvasny, L.; Blair, J.L.; Li, V.; Poole, E.S. Desire to be underweight: Exploratory study on a weight loss app community and user perceptions of the impact on disordered eating behaviors. JMIR mHealth uHealth 2017, 5, e150. [Google Scholar] [CrossRef]
- Jung, S.Y.; Vitolins, M.Z.; Fenton, J.; Frazier-Wood, A.C.; Hursting, S.D.; Chang, S. Risk profiles for weight gain among postmenopausal women: A classification and regression tree analysis approach. PLoS ONE 2015, 10, e0121430. [Google Scholar] [CrossRef]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Schrijvers, J.K.; McNaughton, S.A.; Beck, K.L.; Kruger, R. Exploring the dietary patterns of young New Zealand women and associations with BMI and body fat. Nutrients 2016, 8, 450. [Google Scholar] [CrossRef] [PubMed]
- Vanhonacker, F.; Van Loo, E.J.; Gellynck, X.; Verbeke, W. Flemish consumer attitudes towards more sustainable food choices. Appetite 2013, 62, 7–16. [Google Scholar] [CrossRef]
- Verbeke, W.; Pérez-Cueto, F.J.A.; de Barcellos, M.D.; Krystallis, A.; Grunert, K.G. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci. 2010, 84, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.W.; Gupta, R.; Monnier, A. The interactive effect of cultural symbols and human values on taste evaluation. J. Consum. Res. 2008, 35, 294–308. [Google Scholar] [CrossRef]
- Vang, A.; Singh, P.N.; Lee, J.W.; Haddad, E.H.; Brinegar, C.H. Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: Findings from Adventist Health Studies. Ann. Nutr. Metab. 2008, 52, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Dave, J.M.; An, L.C.; Jeffery, R.W.; Ahluwalia, J.S. Relationship of attitudes toward fast food and frequency of fast-food intake in adults. Obesity 2009, 17, 1164–1170. [Google Scholar] [CrossRef]
- Kaiser, K.A.; Brown, A.W.; Bohan Brown, M.M.; Shikany, J.M.; Mattes, R.D.; Allison, D.B. Increased fruit and vegetable intake has no discernible effect on weight loss: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 567–576. [Google Scholar] [CrossRef]
- Price, M.; Higgs, S.; Lee, M. Self-reported eating traits: Underlying components of food responsivity and dietary restriction are positively related to BMI. Appetite 2015, 95, 203–210. [Google Scholar] [CrossRef]
- Bogaert, A.F.; McCreary, D. Self-reported height and masculine sex roles. Sex Roles 2011, 65, 548–556. [Google Scholar] [CrossRef]
- Hebden, L.; O’Leary, F.; Rangan, A.; Singgih Lie, E.; Hirani, V.; Allman-Farinelli, M. Fruit consumption and adiposity status in adults: A systematic review of current evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Sartin, K.M.; Friesen, C.A.; Khubchandani, J. Relationship between Fruit and Vegetable Intake, Hypertension, and Body Mass Index: An Assessment of BRFSS Data. J. Acad. Nutr. Diet. 2015, 115, A90. [Google Scholar] [CrossRef]
- van Strien, T.; Herman, C.P.; Verheijden, M.W. Dietary restraint and body mass change. A 3-year follow up study in a representative Dutch sample. Appetite 2014, 76, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Shah, K.; Waters, D.L.; Sinacore, D.R.; Qualls, C.; Villareal, D.T. Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am. J. Clin. Nutr. 2014, 100, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forslund, H.B.; Lindroos, A.K.; Sjöström, L.; Lissner, L. Meal patterns and obesity in Swedish women–a simple instrument describing usual meal types, frequency and temporal distribution. Eur. J. Clin. Nutr. 2002, 56, 740. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, L.D. Less frequent eating predicts greater BMI and waist circumference in female adolescents. Am. J. Clin. Nutr. 2012, 95, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumin, R.; Anderson, S.E. Television, home-cooked meals, and family meal frequency: Associations with adult obesity. J. Acad. Nutr. Diet. 2017, 117, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.D.; Cyr, M.-J.; Doucet, E. Increased meal frequency does not promote greater weight loss in subjects who were prescribed an 8-week equi-energetic energy-restricted diet. Br. J. Nutr. 2010, 103, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Orfanos, P.; Naska, A.; Rodrigues, S.; Lopes, C.; Freisling, H.; Rohrmann, S.; Sieri, S.; Elmadfa, I.; Lachat, C.; Gedrich, K. Eating at restaurants, at work or at home. Is there a difference? A study among adults of 11 European countries in the context of the HECTOR* project. Eur. J. Clin. Nutr. 2017, 71, 407. [Google Scholar] [CrossRef]
- Naska, A.; Orfanos, P.; Trichopoulou, A.; May, A.M.; Overvad, K.; Jakobsen, M.U.; Tjønneland, A.; Halkjær, J.; Fagherazzi, G.; Clavel-Chapelon, F. Eating out, weight and weight gain. A cross-sectional and prospective analysis in the context of the EPIC-PANACEA study. Int. J. Obes. 2011, 35, 416. [Google Scholar] [CrossRef]
- Hampl, J.S.; Heaton, C.L.B.; Taylor, C.A. Snacking patterns influence energy and nutrient intakes but not body mass index. J. Hum. Nutr. Diet. 2003, 16, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Schoeller, D.A.; Walsh, M.C.; McWilliams, C. Frequency of eating out at both fast-food and sit-down restaurants was associated with high body mass index in non-large metropolitan communities in midwest. Am. J. Health Promot. 2018, 32, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.K.; Chang, V.W. Weight status and restaurant availability: A multilevel analysis. Am. J. Prev. Med. 2008, 34, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, I.N.; Sichieri, R. Eating out of home and obesity: A Brazilian nationwide survey. Public Health Nutr. 2009, 12, 2037–2043. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.M.; DeClercq, V.; Cui, Y.; Forbes, C.; Grandy, S.; Keats, M.; Parker, L.; Sweeney, E.; Dummer, T.J.B. Fruit and vegetable intake and body adiposity among populations in Eastern Canada: The Atlantic Partnership for Tomorrow’s Health Study. BMJ Open 2018, 8, e018060. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, I.; Stewart, A.W.; Hancox, R.J.; Beasley, R.; Murphy, R.; Mitchell, E.A.; Group, I.P.T.S. Fast-food consumption and body mass index in children and adolescents: An international cross-sectional study. BMJ Open 2014, 4, e005813. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, A.L.; Daviglus, M.L.; Bouchard, C.; Carnethon, M.; Lewis, C.E.; Schreiner, P.J.; Liu, K.; Sidney, S. Maintaining a high physical activity level over 20 years and weight gain. JAMA 2010, 304, 2603–2610. [Google Scholar] [CrossRef]
- Abu-Omar, K.; Rütten, A. Relation of leisure time, occupational, domestic, and commuting physical activity to health indicators in Europe. Prev. Med. 2008, 47, 319–323. [Google Scholar] [CrossRef]
- Rosiek, A.; Maciejewska, N.F.; Leksowski, K.; Rosiek-Kryszewska, A.; Leksowski, Ł. Effect of television on obesity and excess of weight and consequences of health. Int. J. Environ. Res. Public Health 2015, 12, 9408–9426. [Google Scholar] [CrossRef]
- Burton, N.W.; Brown, W.; Dobson, A. Accuracy of body mass index estimated from self-reported height and weight in mid-aged Australian women. Aust. N. Z. J. Public Health 2010, 34, 620–623. [Google Scholar] [CrossRef]
- Bhurosy, T.; Jeewon, R. Pitfalls of using body mass index (BMI) in assessment of obesity risk. Curr. Res. Nutr. Food Sci. J. 2013, 1, 71–76. [Google Scholar] [CrossRef]
- Kurina, L.M.; McClintock, M.K.; Chen, J.-H.; Waite, L.J.; Thisted, R.A.; Lauderdale, D.S. Sleep duration and all-cause mortality: A critical review of measurement and associations. Ann. Epidemiol. 2013, 23, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Kowalkowska, J.; Slowinska, M.A.; Slowinski, D.; Dlugosz, A.; Niedzwiedzka, E.; Wadolowska, L. Comparison of a full food-frequency questionnaire with the three-day unweighted food records in young Polish adult women: Implications for dietary assessment. Nutrients 2013, 5, 2747–2776. [Google Scholar] [CrossRef] [PubMed]
- Schroder, K.E.E. Effects of fruit consumption on body mass index and weight loss in a sample of overweight and obese dieters enrolled in a weight-loss intervention trial. Nutrition 2010, 26, 727–734. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Sample | 18.5 kg/m2 ≤ BMI < 25 kg/m2 | BMI ≥ 25 kg/m2 | p | ||||
---|---|---|---|---|---|---|---|---|
N = 972 | 100% | N = 484 | 100% | N = 488 | 100% | |||
Gender * | Female | 499 | 51.3 | 305 | 63.0 | 194 | 39.8 | <0.0001 |
Male | 473 | 48.7 | 179 | 37.0 | 294 | 60.2 | ||
Education * | Secondary and lower | 388 | 39.9 | 156 | 32.2 | 232 | 47.5 | <0.0001 |
Higher | 584 | 60.1 | 328 | 67.8 | 256 | 52.5 | ||
Place of residence | City ≤ 50 000 residents | 195 | 20.1 | 88 | 18.2 | 107 | 21.9 | 0.3004 |
City > 50 000 residents | 521 | 53.6 | 269 | 55.6 | 252 | 51.7 | ||
Rural area | 256 | 26.3 | 127 | 26.2 | 129 | 26.4 | ||
Age * | 21–34 years | 346 | 35.6 | 227 | 46.9 | 119 | 24.4 | <0.0001 |
35–44 years | 228 | 23.5 | 116 | 24.0 | 112 | 23.0 | ||
45–54 years | 131 | 13.5 | 49 | 10.1 | 82 | 16.8 | ||
55–65 years | 267 | 27.4 | 92 | 19.0 | 175 | 35.8 | ||
Age (years) ** | Mean; standard deviation | 42.1; 13.1 | 38.6; 12.5 | 45.6; 12.8 | <0.0001 | |||
Height (cm) ** | Mean; standard deviation | 171.7; 9.1 | 170.7; 8.8 | 172.7; 9.4 | 0.0007 | |||
Weight (kg) ** | Mean; standard deviation | 75.4; 15.4 | 65.0; 9.1 | 85.7; 13.4 | <0.0001 | |||
BMI (kg/m2) ** | Mean; standard deviation | 25.5; 4.3 | 22.3; 1.8 | 28.7; 3.5 | <0.0001 |
Variables | Total Sample | 18.5 kg/m2 ≤ BMI < 25 kg/m2 | BMI ≥ 25 kg/m2 | p | |||
---|---|---|---|---|---|---|---|
N | % | N | % | N | % | ||
Total sample | 972 | 100.0 | 484 | 100.0 | 488 | 100.0 | |
Restriction in quantity of consumed food | 416 | 42.8 | 181 | 37.4 | 235 | 48.2 | 0.0007 |
Restriction in sugar and sweets | 469 | 48.3 | 216 | 44.6 | 253 | 51.8 | 0.0244 |
Restriction in products like bread, potato, rice | 129 | 13.3 | 57 | 11.8 | 72 | 14.8 | 0.1713 |
Restriction in meat and meat products | 119 | 12.2 | 68 | 14.0 | 51 | 10.5 | 0.0870 |
Restriction in dairy products | 67 | 6.9 | 38 | 7.9 | 29 | 5.9 | 0.2402 |
Restriction in animal and vegetable fats | 245 | 25.2 | 120 | 24.8 | 125 | 25.6 | 0.7681 |
Restriction in meat and cured meats | 212 | 21.8 | 95 | 19.6 | 117 | 24.0 | 0.1008 |
Restriction in fish | 17 | 1.7 | 11 | 2.3 | 6 | 1.2 | 0.2148 |
Restriction in food containing gluten and/or lactose | 54 | 5.6 | 24 | 5.0 | 30 | 6.1 | 0.4185 |
Number of meals a day: | |||||||
3 meals or less | 405 | 41.7 | 201 | 41.5 | 204 | 41.8 | |
4 meals | 370 | 38.1 | 190 | 39.3 | 180 | 36.9 | 0.6407 |
5 meals and more | 197 | 20.3 | 93 | 19.2 | 104 | 21.3 | |
Snacking at least once a day | 304 | 31.3 | 155 | 32.0 | 149 | 30.5 | 0.9482 |
Frequency of eating outside the home at least once a week | 225 | 23.2 | 101 | 20.9 | 124 | 25.4 | 0.0688 |
Frequency of ordering meals at least 1–3 times a month | 318 | 32.7 | 147 | 30.4 | 171 | 35.0 | 0.0836 |
Watching TV at least once a day | 672 | 69.1 | 365 | 75.4 | 307 | 62.9 | 0.0001 |
Using the Internet at least once a day | 897 | 92.3 | 459 | 94.8 | 438 | 89.8 | 0.0375 |
Reading books, newspapers at least once a day | 383 | 39.4 | 190 | 39.3 | 193 | 39.5 | 0.7639 |
Sleep duration at weekdays at least 7 hours | 684 | 70.4 | 331 | 68.4 | 353 | 72.3 | 0.1111 |
Sleep duration at weekend days at least 7 hours | 843 | 86.7 | 424 | 87.6 | 419 | 85.9 | 0.6866 |
Physical activity during work/school time | |||||||
Low | 498 | 51.2 | 239 | 49.4 | 259 | 53.1 | |
Moderate | 381 | 39.2 | 195 | 40.3 | 186 | 38.1 | 0.4662 |
High | 93 | 9.6 | 50 | 10.3 | 43 | 8.8 | |
Physical activity during leisure time | |||||||
Low | 347 | 35.7 | 152 | 31.4 | 195 | 40.0 | |
Moderate | 461 | 47.4 | 236 | 48.8 | 225 | 46.1 | 0.0056 |
High | 164 | 16.9 | 96 | 19.8 | 68 | 13.9 |
Categories | Model | |
---|---|---|
χ2 Wald’s | p | |
Gender | 49.63 | <0.0001 |
Age | 46.69 | <0.0001 |
Restriction in quantity of food consumed | 21.58 | <0.0001 |
Physical activity at leisure time | 11.89 | 0.0030 |
‘Meat & meat products’ DP | 10.11 | 0.0060 |
Education | 9.25 | 0.0098 |
Numbers of meals a day | 8.55 | 0.0140 |
‘Fruit & vegetable’ DP | 6.20 | 0.0450 |
Parameter | Level of Variable | Model | ||||
---|---|---|---|---|---|---|
β | OR | 95% Cl | p | |||
Intercept | −1.604 | <0.001 | ||||
Gender | Male (ref) | 0 | 1 | - | - | |
Female | −1.063 | 0.35 | 0.26 | 0.46 | <0.001 | |
Age (years) | 0.040 | 1.04 | 1.03 | 1.05 | <0.001 | |
Restriction in quantity of consumed food | Yes (ref.) | 0 | 1 | - | - | |
No | 0.694 | 2.00 | 1.49 | 2.68 | <0.001 | |
Physical activity during leisure time | Low (ref.) | 0 | 1 | - | - | |
Moderate | −0.350 | 0.71 | 0.52 | 0.96 | 0.027 | |
High | −0.724 | 0.49 | 0.32 | 0.74 | 0.001 | |
‘Meat & meat products’ DP | Bottom tertile (ref.) | 0 | 1 | - | - | |
Middle tertile | 0.415 | 1.51 | 1.08 | 2.13 | 0.017 | |
Upper tertile | 0.535 | 1.71 | 1.21 | 2.42 | 0.003 | |
Education | Higher (ref.) | 0 | 1 | - | - | |
Secondary | 0.461 | 1.59 | 1.18 | 2.13 | 0.002 | |
Lower than secondary | 0.146 | 1.16 | 0.25 | 5.40 | 0.852 | |
Numbers of meals a day | 3 meals and less (ref.) | 0 | 1 | - | - | |
4 meals | 0.132 | 1.14 | 0.83 | 1.57 | 0.414 | |
5 meals and more | 0.578 | 1.78 | 1.21 | 2.64 | 0.004 | |
‘Fruit & vegetable’ DP | Bottom tertile (ref.) | 0 | 1 | - | - | |
Middle tertile | −0.102 | 0.90 | 0.64 | 1.27 | 0.557 | |
Upper tertile | −0.439 | 0.65 | 0.45 | 0.93 | 0.017 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jezewska-Zychowicz, M.; Gębski, J.; Plichta, M.; Guzek, D.; Kosicka-Gębska, M. Diet-Related Factors, Physical Activity, and Weight Status in Polish Adults. Nutrients 2019, 11, 2532. https://doi.org/10.3390/nu11102532
Jezewska-Zychowicz M, Gębski J, Plichta M, Guzek D, Kosicka-Gębska M. Diet-Related Factors, Physical Activity, and Weight Status in Polish Adults. Nutrients. 2019; 11(10):2532. https://doi.org/10.3390/nu11102532
Chicago/Turabian StyleJezewska-Zychowicz, Marzena, Jerzy Gębski, Marta Plichta, Dominika Guzek, and Małgorzata Kosicka-Gębska. 2019. "Diet-Related Factors, Physical Activity, and Weight Status in Polish Adults" Nutrients 11, no. 10: 2532. https://doi.org/10.3390/nu11102532
APA StyleJezewska-Zychowicz, M., Gębski, J., Plichta, M., Guzek, D., & Kosicka-Gębska, M. (2019). Diet-Related Factors, Physical Activity, and Weight Status in Polish Adults. Nutrients, 11(10), 2532. https://doi.org/10.3390/nu11102532