Fat Intake and Stress Modify Sleep Duration Effects on Abdominal Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcome Variables
2.3. Independent Variable
2.4. Other Covariates
2.5. Statistical Methods
3. Results
3.1. General Characteristics of Study Population
3.2. Effects of Fat Intake on the Association between Sleep Duration and Abdominal Obesity
3.3. Effects of Stress on the Association between Sleep Duration and Abdominal Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tchernof, A.; Després, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.Y.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Waist circumference and not body mass index explains obesity-related health risk. Am. J. Clin. Nutr. 2004, 79, 379–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardern, C.I.; Katzmarzyk, P.T.; Janssen, I.; Ross, R. Discrimination of health risk by combined body mass index and waist circumference. Obes. Res. 2003, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- National Sleep Foundation. National Sleep Foundation Recommends New Sleep Times. Available online: https://www.sleepfoundation.org/press-release/national-sleep-foundation-recommends-new-sleep-times (accessed on 5 April 2019).
- OECD. Average Minutes Per Day Spent Sleeping in OECD Countries by Gender. Available online: https://www.statista.com/statistics/521957/time-spent-sleeping-countries (accessed on 2 August 2019).
- Wu, Y.; Zhai, L.; Zhang, D. Sleep duration and obesity among adults: A meta-analysis of prospective studies. Sleep Med. 2014, 15, 1456–1462. [Google Scholar] [CrossRef]
- Sperry, S.D.; Scully, I.D.; Gramzow, R.H.; Jorgensen, R.S. Sleep duration and waist circumference in adults: A meta-analysis. Sleep 2015, 38, 1269–1276. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef]
- Liu, T.Z.; Xu, C.; Rota, M.; Cai, H.; Zhang, C.; Shi, M.J.; Yuan, R.X.; Weng, H.; Meng, X.Y.; Kwong, J.S.; et al. Sleep duration and risk of all-cause mortality: A flexible, non-linear, meta-regression of 40 prospective cohort studies. Sleep Med. Rev. 2017, 32, 28–36. [Google Scholar] [CrossRef]
- Fatima, Y.; Doi, S.A.; Mamun, A.A. Longitudinal impact of sleep on overweight and obesity in children and adolescents: A systematic review and bias-adjusted meta-analysis. Obes. Rev. 2015, 16, 137–149. [Google Scholar] [CrossRef]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Lin, C.P.; Chen, S.W.; Wu, H.C.; Tsai, Y.H. The association between sleep duration and overweight or obesity in Taiwanese adults: A cross-sectional study. Obes. Res. Clin. Pract. 2018, 12, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Fujiwara, S.; Yamashita, H.; Ozono, R.; Monzen, Y.; Teramen, K.; Kihara, Y. Association between obesity and self-reported sleep duration variability, sleep timing, and age in the Japanese population. Obes. Res. Clin. Pract. 2018, 12, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Després, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with reduced leptin levels and increased adiposity: Results from the québec family study. Obesity 2007, 15, 253–261. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Cauter, E.V. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef]
- Balbo, M.; Leproult, R.; Van Cauter, E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int. J. Endocrinol. 2010, 2010, 759234. [Google Scholar] [CrossRef]
- George, S.A.; Khan, S.; Briggs, H.; Abelson, J.L. CRH-stimulated cortisol release and food intake in healthy, non-obese adults. Psychoneuroendocrinology 2010, 35, 607–612. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Roberts, A.L.; Chen, J.; Kelleman, M.; O’Keeffe, M.; Choudhury, A.R.; Jones, P.J.H. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am. J. Clin. Nutr. 2011, 94, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Brondel, L.; Romer, M.A.; Nougues, P.M.; Touyarou, P.; Davenne, D. Acute partial sleep deprivation increases food intake in healthy men. Am. J. Clin. Nutr. 2010, 91, 1550–1559. [Google Scholar] [CrossRef] [Green Version]
- Nedeltcheva, A.V.; Kilkus, J.M.; Imperial, J.; Kasza, K.; Schoeller, D.A.; Penev, P.D. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; McEvoy, M.; Luu, J.; Attia, J. Dietary fat and sleep duration in Chinese men and women. Int. J. Obes. 2008, 32, 1835–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; DeRoo, L.A.; Sandler, D.P. Eating patterns and nutritional characteristics associated with sleep duration. Public Health Nutr. 2011, 14, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K.; Graubard, B.I. Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005–2010. Am. J. Clin. Nutr. 2014, 100, 938–947. [Google Scholar] [CrossRef]
- Kohsaka, A.; Laposky, A.D.; Ramsey, K.M.; Estrada, C.; Joshu, C.; Kobayashi, Y.; Turek, F.W.; Bass, J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabol. 2007, 6, 414–421. [Google Scholar] [CrossRef]
- Eckel-Mahan, K.L.; Patel, V.R.; de Mateo, S.; Orozco-Solis, R.; Ceglia, N.J.; Sahar, S.; Dilag-Penilla, S.A.; Dyar, K.A.; Baldi, P.; Sassone-Corsi, P. Reprogramming of the circadian clock by nutritional challenge. Cell 2013, 155, 1464–1478. [Google Scholar] [CrossRef]
- Patel, S.R.; Malhotra, A.; White, D.P.; Gottlieb, D.J.; Hu, F.B. Association between reduced sleep and weight gain in women. Am. J. Epidemiol. 2006, 164, 947–954. [Google Scholar] [CrossRef]
- Nishiura, C.; Noguchi, J.; Hashimoto, H. Dietary patterns only partially explain the effect of short sleep duration on the incidence of obesity. Sleep 2010, 33, 753–757. [Google Scholar] [CrossRef]
- Minkel, J.; Moreta, M.; Muto, J.; Htaik, O.; Jones, C.; Basner, M.; Dinges, D. Sleep deprivation potentiates HPA axis stress reactivity in healthy adults. Health Psychol. 2014, 33, 1430–1434. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Lin, H.M.; Papaliaga, M.; Calhoun, S.; Vela-Bueno, A.; Chrousos, G.P.; Bixler, E.O. Short sleep duration and obesity: The role of emotional stress and sleep disturbances. Int. J. Obes. 2008, 32, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, H.K.; Ducharme, L.J.; Roman, P.M. Job stress and poor sleep quality: Data from an American sample of full-time workers. Soc. Sci. Med. 2007, 64, 1997–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgoifo, A.; Buwalda, B.; Roos, M.; Costoli, T.; Merati, G.; Meerlo, P. Effects of sleep deprivation on cardiac autonomic and pituitary-adrenocortical stress reactivity in rats. Psychoneuroendocrinology 2006, 31, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Dallman, M.F.; Pecoraro, N.; Akana, S.F.; La Fleur, S.E.; Gomez, F.; Houshyar, H.; Bell, M.E.; Bhatnagar, S.; Laugero, K.D.; Manalo, S. Chronic stress and obesity: A new view of “comfort food”. Proc. Natl Acad. Sci. USA 2003, 100, 11696–11701. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.E.; Czarnecka, M.; Kitlinska, J.B.; Tilan, J.U.; Kvetansk, R.; Zukowska, Z. Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci. 2008, 1148, 232–237. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabets Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Corraini, P.; Olsen, M.; Pedersen, L.; Dekkers, O.; Vandenbroucke, J. Effect modification, interaction and mediation: An overview of theoretical insights for clinical investigators. Clin. Epidemiol. 2017, 9, 331–338. [Google Scholar] [CrossRef]
- Jager, K.J.; Zoccali, C.; MacLeod, A.; Dekker, F.W. Confounding: What it is and how to deal with it. Kidney Int. 2008, 73, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Greene. Econometric Analysis, 7th ed.; Prentice Hall: Englewood Cliff, NJ, USA, 2012. [Google Scholar]
- MacKinnon, D.P.; Krull, J.L.; Lockwood, C.M. Equivalence of the mediation, confounding and suppression effect. Prev. Sci. 2000, 1, 173–181. [Google Scholar] [CrossRef]
Sleep Duration (Hours/Day) | p-Value b | |||||
---|---|---|---|---|---|---|
≤5 | 6 | 7 | 8 | ≥9 | ||
n = 13,686 | 1355 | 2983 | 4189 | 3523 | 1636 | |
Gender | <0.001 | |||||
Men (%) | 38.7 | 43.1 | 42.6 | 41.2 | 35.3 | |
Women (%) | 61.3 | 56.9 | 57.4 | 58.8 | 64.7 | |
Age (years) | 51.2 ± 15.8 | 45.8 ± 14.0 | 44.6 ± 13.9 | 43.7 ± 14.5 | 42.7 ± 16.5 | <0.001 |
Current smoker (%) | 0.056 | |||||
Yes | 21.8 | 19.3 | 18.1 | 18.7 | 18.7 | |
No | 78.2 | 80.7 | 81.9 | 81.3 | 81.3 | |
Drinking (%) | <0.001 | |||||
Never or rarely | 57.6 | 51.9 | 53.1 | 52.7 | 54.9 | |
2–4/month | 19.4 | 26.4 | 26.3 | 25.2 | 23.4 | |
≥2/week | 23.0 | 21.8 | 20.6 | 22.1 | 21.8 | |
Physical activity (MET, hours/day) | 4.5 ± 7.7 | 4.2 ± 6.0 | 3.8 ± 5.4 | 3.6 ± 5.2 | 3.3 ± 5.4 | <0.001 |
Family history of chronic disease (%) | 54.8 | 57.2 | 60.7 | 58.6 | 52.9 | <0.001 |
Stress level (%) | <0.001 | |||||
Rarely | 14.2 | 12.7 | 13.8 | 14.3 | 16.9 | |
Slightly | 50.7 | 59.4 | 61.9 | 60.9 | 55.6 | |
Moderately | 26.1 | 23.6 | 20.9 | 21.3 | 22.4 | |
Highly | 8.9 | 4.2 | 3.4 | 3.6 | 5.0 | |
Household income (%) | <0.001 | |||||
≤Middle-upper income | 73.3 | 66.3 | 64.0 | 66.3 | 72.5 | |
Highest income | 26.7 | 33.7 | 36.1 | 33.7 | 27.5 | |
Living area | <0.001 | |||||
Urban | 80.7 | 83.3 | 85.2 | 83.3 | 78.6 | |
Rural | 19.3 | 16.7 | 14.8 | 16.8 | 21.4 | |
Education (%) | <0.001 | |||||
≤Middle school graduate | 38.8 | 19.5 | 16.4 | 17.5 | 22.2 | |
High school graduate | 32.4 | 37.6 | 36.6 | 35.6 | 35.9 | |
≥College graduate | 28.8 | 42.9 | 47.0 | 46.9 | 41.9 | |
Nutrient intake | ||||||
Calorie intake (kcal/day) | 1923.9 ± 853.7 | 2051.5 ± 845.1 | 2015.2 ± 788.8 | 2044.1 ± 799.7 | 1931.6 ± 787.4 | <0.001 |
Calorie intake from carbohydrate (%) | 64.7 ± 14.3 | 62.4 ± 13.4 | 62.5 ± 13.1 | 62.1 ± 13.3 | 62.2 ± 14.0 | <0.001 |
Calorie intake from protein (%) | 13.5 ± 4.1 | 14.1 ± 3.9 | 14.3 ± 4.2 | 14.3 ± 4.2 | 14.4 ± 4.1 | <0.001 |
Calorie intake from fat (%) | 17.7 ± 9.2 | 19.8 ± 8.9 | 20.4 ± 8.8 | 20.6 ± 9.2 | 20.7 ± 9.7 | <0.001 |
Sleep Duration (Hours/Day) | p-Trend a | ||||||
---|---|---|---|---|---|---|---|
n | ≤5 | 6 | 7 | 8 | ≥9 | ||
Aggregated Logit | |||||||
Model 1 | 13,686 | Ref | 0.88 (0.76–1.03) | 0.72 ‡ (0.62–0.84) | 0.74 ‡ (0.64–0.86) | 0.65 ‡ (0.54–0.77) | <0.001 |
Model 2 | 13,686 | Ref | 0.88 (0.75–1.02) | 0.72 ‡ (0.62–0.84) | 0.74 ‡ (0.64–0.86) | 0.65 ‡ (0.54–0.78) | <0.001 |
Model 3 | 13,686 | Ref | 0.88 (0.75–1.02) | 0.72 ‡ (0.62–0.84) | 0.74 ‡ (0.64–0.86) | 0.65 ‡ (0.54–0.78) | <0.001 |
Stratified over proportion of calorie intake from fat b | |||||||
Quartile 1 (9.8%) | 3422 | Ref | 1.05 (0.81–1.37) | 0.90 (0.70–1.17) | 0.86 (0.66–1.13) | 0.68 § (0.49–0.94) | 0.007 |
Quartile 2 (16.4%) | 3421 | Ref | 0.74 § (0.55–1.00) | 0.53 ‡ (0.40–0.72) | 0.68 § (0.51–0.92) | 0.50 ‡ (0.34–0.73) | 0.001 |
Quartile 3 (22.4%) | 3422 | Ref | 0.78 (0.56–1.09) | 0.74 (0.54–1.02) | 0.59 † (0.42–0.82) | 0.59 † (0.40–0.87) | 0.001 |
Quartile 4 (30.8%) | 3421 | Ref | 0.89 (0.63–1.27) | 0.69 § (0.49–0.98) | 0.82 (0.58–1.16) | 0.84 (0.57–1.24) | 0.406 |
Sleep Duration (Hours/Day) | p-Trend a | ||||||
---|---|---|---|---|---|---|---|
n | ≤5 | 6 | 7 | 8 | ≥9 | ||
Aggregated Logit | |||||||
Model 1 | 13,686 | Ref | 0.88 (0.76–1.03) | 0.72 ‡ (0.62–0.84) | 0.74 ‡ (0.64–0.86) | 0.65 ‡ (0.54–0.77) | <0.001 |
Model 2 | 13,686 | Ref | 0.88 (0.75–1.02) | 0.72 ‡ (0.62–0.84) | 0.74 ‡ (0.64–0.86) | 0.65 ‡ (0.54–0.78) | <0.001 |
Model 3 | 13,686 | Ref | 0.90 (0.77–1.04) | 0.74 ‡ (0.64–0.86) | 0.76 ‡ (0.65–0.88) | 0.66 ‡ (0.55–0.79) | <0.001 |
Stratified over self-reported stress level b | |||||||
Rarely | 1933 | Ref | 1.15 (0.77–1.71) | 0.72 (0.48–1.07) | 0.86 (0.58–1.28) | 0.77 (0.49–1.20) | 0.063 |
Slightly | 8108 | Ref | 0.86 (0.70–1.07) | 0.73 † (0.60–0.90) | 0.70 † (0.57–0.86) | 0.65 † (0.50–0.83) | <0.001 |
Moderately | 3048 | Ref | 0.81 (0.60–1.10) | 0.65 † (0.48–0.88) | 0.76 (0.56–1.04) | 0.51 ‡ (0.35–0.74) | 0.002 |
Highly | 597 | Ref | 0.71 (0.39–1.30) | 1.09 (0.62–1.91) | 0.98 (0.54–1.77) | 1.04 (0.54–2.00) | 0.606 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.; Kwock, C.K. Fat Intake and Stress Modify Sleep Duration Effects on Abdominal Obesity. Nutrients 2019, 11, 2535. https://doi.org/10.3390/nu11102535
Chung S, Kwock CK. Fat Intake and Stress Modify Sleep Duration Effects on Abdominal Obesity. Nutrients. 2019; 11(10):2535. https://doi.org/10.3390/nu11102535
Chicago/Turabian StyleChung, Sangwon, and Chang Keun Kwock. 2019. "Fat Intake and Stress Modify Sleep Duration Effects on Abdominal Obesity" Nutrients 11, no. 10: 2535. https://doi.org/10.3390/nu11102535
APA StyleChung, S., & Kwock, C. K. (2019). Fat Intake and Stress Modify Sleep Duration Effects on Abdominal Obesity. Nutrients, 11(10), 2535. https://doi.org/10.3390/nu11102535