Comparison of the Acute Postprandial Circulating B-Vitamin and Vitamer Responses to Single Breakfast Meals in Young and Older Individuals: Preliminary Secondary Outcomes of a Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Test Meals
2.3. Study Procedures
2.4. Biochemical Measures
2.5. Analysis of B-Vitamins in Plasma Samples
2.5.1. Sample Preparation
2.5.2. Liquid Chromatography and Mass Spectrometry
2.6. Data Interpretation and Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Baseline Vitamin Status
3.3. Vitamins Present in the Meals
3.4. Vitamin Responses to Meal Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mikkelsen, K.; Apostolopoulos, V. B Vitamins and ageing. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. Subcellular Biochemistry; Harris, J., Korolchuk, V., Eds.; Springer: Singappre, 2018; Volume 90, pp. 451–470. ISBN 9789811328350. [Google Scholar]
- Calvaresi, E.; Bryan, J. B vitamins, cognition, and aging: A review. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2001, 56, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Reay, J.L.; Smith, M.A.; Riby, L.M. B vitamins and cognitive performance in older adults: Review. ISRN Nutr. 2013, 2013, 650983. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Trevisi, L.; Urch, B.; Lin, X.; Speck, M.; Coull, B.A.; Liss, G.; Thompson, A.; Wu, S.; Wilson, A.; et al. B-vitamin supplementation mitigates effects of fine particles on cardiac autonomic dysfunction and inflammation: A pilot human intervention trial. Sci. Rep. 2017, 7, 45322. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.; Mitchell, D.; Coffman, D.; Allman, R.; Locher, J.; Sawyer, P.; Jensen, G.; Hartman, T. Dietary patterns and diet quality among diverse older adults: The University of Alabama at Birmingham study of aging. J. Nutr. Health Aging 2013, 17, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Wakimoto, P.; Block, G. Dietary intake, dietary patterns, and changes with age: An epidemiological perspective. J. Gerontol. Ser. A 2001, 56, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Mekki, N.; Boirie, Y.; Partier, A.; Alexandre-Gouabau, M.-C.; Grolier, P.; Beaufrere, B.; Portugal, H.; Lairon, D.; Azais-Braesco, V. Comparison of the postprandial plasma vitamin A response in young and older adults. J. Gerontol. Ser. A 1998, 53, 133–140. [Google Scholar] [CrossRef]
- Borel, P.; Mekki, N.; Boirie, Y.; Partier, A.; Grolier, P.; Alexandre-Gouabau, M.; Beaufrere, B.; Armand, M.; Lairon, D.; Azais-Braesco, V. Postprandial chylomicron and plasma vitamin E responses in healthy older subjects compared with younger ones. Eur. J. Clin. Investig. 1997, 27, 812–821. [Google Scholar] [CrossRef]
- Coudray, C.; Feillet-Coudray, C.; Rambeau, M.; Tressol, J.C.; Gueux, E.; Mazur, A.; Rayssiguier, Y. The effect of aging on intestinal absorption and status of calcium, magnesium, zinc, and copper in rats: A stable isotope study. J. Trace Elem. Med. Biol. 2006, 20, 73–81. [Google Scholar] [CrossRef]
- Relas, H.; Gylling, H.; Rajaratnam, R.A.; Miettinen, T.A. Postprandial retinyl palmitate and squalene metabolism is age dependent. J. Gerontol. Biol. Sci. 2000, 55, 515–521. [Google Scholar] [CrossRef]
- Fukuwatari, T.; Shibata, K. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women. J. Nutr. Sci. Vitaminol. 2008, 54, 223–229. [Google Scholar] [CrossRef]
- Said, H.M.M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 2011, 437, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.; Hoey, L.; Hughes, C.F.; Ward, M.; McNulty, H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients 2016, 8, 725. [Google Scholar] [CrossRef] [PubMed]
- Ferroli, C.E.; Trumbo, P.R. Bioavailability of vitamin B-6 in young and older men. Am. J. Clin. Nutr. 1994, 60, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Milan, A.M.; D’Souza, R.F.; Pundir, S.; Pileggi, C.A.; Thorstensen, E.B.; Barnett, M.P.; Markworth, J.; Cameron-Smith, D.; Mitchell, C.J. Older adults have delayed amino acid absorption after a high protein mixed breakfast meal. J. Nutr. Health Aging 2015, 19, 839–845. [Google Scholar] [CrossRef]
- Kant, A.K.; Moser-Veillon, P.B.; Reynolds, R.D. Effect of age on changes in plasma, erythrocyte, and urinary B-6 vitamers after an oral vitamin B-6 load. Am. J. Clin. Nutr. 1988, 48, 1284–1290. [Google Scholar] [CrossRef]
- Blacher, J.; Czernichow, S.; Raphaël, M.; Roussel, C.; Chadefaux-Vekemans, B.; Morineau, G.; Giraudier, S.; Tibi, A.; Henry, O.; Vayssiè, M.; et al. Very low oral doses of vitamin B-12 increase serum concentrations in elderly subjects with food-bound vitamin B-12 malabsorption. J. Nutr. 2007, 137, 373–378. [Google Scholar] [CrossRef]
- Kozyraki, R.; Cases, O. Vitamin B12 absorption: Mammalian physiology and acquired and inherited disorders. Biochimie 2013, 95, 1002–1007. [Google Scholar] [CrossRef]
- Krishnan, S.; Newman, J.W.; Hembrooke, T.A.; Keim, N.L. Variation in metabolic responses to meal challenges differing in glycemic index in healthy women: Is it meaningful? Nutr. Metab. 2012, 9, 1–10. [Google Scholar] [CrossRef]
- Pingali, A.; Trumbo, P. Relative bioavailability of B-6 vitamers from cooked ground beef in humans. Nutr. Res. 1995, 15, 659–668. [Google Scholar] [CrossRef]
- Kalman, D.S.; Lou, L.; Schwartz, H.I.; Feldman, S.; Krieger, D.R. A pilot trial comparing the availability of vitamins C, B6, and B12 from a vitamin-fortified water and food source in humans. Int. J. Food Sci. Nutr. 2009, 60, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Wood, R.J. Plasma changes in micronutrients following a multivitamin and mineral supplement in healthy adults. J. Am. Coll. Nutr. 2003, 22, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Meisser Redeuil, K.; Longet, K.; Bénet, S.; Munari, C.; Campos-Giménez, E. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A 2015, 1422, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Udhayabanu, T.; Manole, A.; Rajeshwari, M.; Varalakshmi, P.; Houlden, H.; Ashokkumar, B. Clinical medicine riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J. Clin. Med. 2017, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Albersen, M.; Bosma, M.; Knoers, N.V.V.A.M.; De Ruiter, B.H.B.; Ne, E.; Diekman, F.; De Ruijter, J.; Visser, W.F.; De Koning, T.J.; Verhoeven-Duif, N.M. The intestine plays a substantial role in human vitamin B6 metabolism: A Caco-2 cell model. PLoS ONE 2013, 8, e54113. [Google Scholar] [CrossRef] [PubMed]
- Milan, A.M. The Impact of Age on the Postprandial Metabolomic and Inflammatory Responses to a Breakfast Meal. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2015. [Google Scholar]
- Milan, A.M.; Pundir, S.; Pileggi, C.A.; Markworth, J.F.; Lewandowski, P.A.; Cameron-Smith, D. Comparisons of the postprandial inflammatory and endotoxaemic responses to mixed meals in young and older ndividuals: A randomised trial. Nutrients 2017, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Abuaysheh, S.; Sia, C.L.; Korzeniewski, K.; Chaudhuri, A.; Fernandez-Real, J.M.; Dandona, P. Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 2009, 32, 2281–2287. [Google Scholar] [CrossRef]
- Darmon, N.; Darmon, M.; Maillot, M.; Drewnowski, A. A nutrient density standard for vegetables and fruits: Nutrients per calorie and nutrients per unit cost. J. Am. Diet. Assoc. 2005, 105, 1881–1887. [Google Scholar] [CrossRef]
- Drewnowski, A. Concept of a nutritious food: Toward a nutrient density score. Am. J. Clin. Nutr. 2005, 82, 721–732. [Google Scholar] [CrossRef]
- Milan, A.M.; Nuora, A.; Pundir, S.; Pileggi, C.A.; Markworth, J.F.; Linderborg, K.M.; Cameron-Smith, D. Older adults have an altered chylomicron response to a high-fat meal. Br. J. Nutr. 2016, 115, 791–799. [Google Scholar] [CrossRef]
- Dainty, J.R.; Bullock, N.R.; Hart, D.J.; Hewson, A.T.; Turner, R.; Finglas, P.M.; Powers, H.J. Quantification of the bioavailability of riboflavin from foods by use of stable-isotope labels and kinetic modeling. Am. J. Clin. Nutr. 2007, 85, 1557–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.R.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.M. Factors in aging that effect the bioavailability of nutrients. In Bioavailability of Nutrients and Other Bioactive Components from Dietary Supplements; American Society for Nutritional Sciences: Rockville, MD, USA, 2001; pp. 1359–1361. [Google Scholar]
- Soenen, S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. The ageing gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Haboubi, N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging 2010, 5, 207–2016. [Google Scholar] [PubMed] [Green Version]
- Parnell, W.; Wilson, N.; Thomson, C.; Mackay, S.; Stefanogiannis, N. A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey; University of Otago; Ministry of Health: Wellington, New Zealand, 2011; p. 360. ISBN 978-0-478-37348-6.
- Ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.G.A.; Luiking, Y.C.; De Groot, L.C.P.G.M. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef]
- Anderson, J.J.B.; Suchindran, C.M.; Roggenkamp, K.J. Micronutrient intakes in two US populations of older adults: Lipid research clinics program prevalence study findings. J. Nutr. Health Aging 2009, 13, 595–600. [Google Scholar] [CrossRef]
- Mensink, G.B.M.; Fletcher, R.; Gurinovic, M.; Huybrechts, I.; Lafay, L.; Serra-Majem, L.; Szponar, L.; Tetens, I.; Verkaik-Kloosterman, J.; Baka, A.; et al. Mapping low intake of micronutrients across Europe ILSI Europe. Br. J. Nutr. 2013, 110, 755–773. [Google Scholar] [CrossRef] [Green Version]
- Day, J.L.; Johansen, K.; Ganda, O.P.; Soeldner, J.S.; Gleason, R.E.; Midgley, W. Factors Governing Insulin and Glucagon Responses During Normal Meals. Clin. Endocrinol. 1978, 9, 443–454. [Google Scholar] [CrossRef]
- Sweeney, M.R.; Mcpartlin, J.; Weir, D.G.; Daly, L.; Scott, J.M. Postprandial serum folic acid response to multiple doses of folic acid in fortified bread. Br. J. Nutr. 2006, 95, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.J.; Vishwanathan, R.; Rasmusen, H.M.; Lang, J.C. Bioavailability of AREDS1 micronutrients from softgel capsules and tablets: A pilot study. Mol. Vis. 2014, 20, 1228–1242. [Google Scholar]
- Calbet, J.A.L.; MacLean, D.A. Role of caloric content on gastric emptying in humans. J. Physiol. 1997, 498, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Sivertsen, M. Relation between dietary fat and energy and micronutrient intakes. Arch. Dis. Child. 1997, 76, 416–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, H.; Gallier, S. Processing of food structures in the gastrointestinal tract and physiological responses. In Food Structures, Digestion and Health; Elsevier: Amsterdam, The Netherlands, 2014; pp. 51–81. ISBN 9780124046108. [Google Scholar]
- Golbach, J.L.; Ricke, S.C.; O′bryan, C.A.; Crandall, P.G. Riboflavin in nutrition, food processing, and analysis—A review. J. Food Res. 2014, 3, 23. [Google Scholar] [CrossRef]
- Zempleni, J.; Galloway, J.R.; McCormick, D.B. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am. J. Clin. Nutr. 1996, 63, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian National Health and Medical Research Council (NHMRC). Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; New Zealand Ministry of Health (MoH): Thorndon, New Zealand, 2006; pp. 58–98.
- Smithline, H.A.; Donnino, M.; Greenblatt, D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol. 2012, 12, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Ying, S.; Lu, C.; Yang, J.; Ding, L.; Wen, A.; Zhu, Y. Pharmacokinetics of Single-Dose and Multi-Dose of Lovastatin/Niacin ER Tablet in Healthy Volunteers. Chromatogr. Res. Int. 2012, 2012, 437075. [Google Scholar] [CrossRef]
- Edwards, P.; Liu, P.K.S.; Rose, G.A. Liquid chromatographic studies of vitamin B6 metabolism in man. Clin. Chim. Acta 1990, 190, 67–80. [Google Scholar] [CrossRef]
- Lee, D.C.; Chu, J.; Satz, W.; Silbergleit, M.D.R. Low plasma thiamine levels in elder patients admitted through the emergency department. Acad. Emerg. Med. 2000, 7, 1156–1159. [Google Scholar] [CrossRef]
- Hoey, L.; McNulty, H.; Strain, J.J. Studies of biomarker responses to intervention with riboflavin: A systematic review. Am. J. Clin. Nutr. 2009, 89, 1960–1980. [Google Scholar] [CrossRef]
- Doshi, S.N.; McDowell, I.F.W.; Moat, S.J.; Payne, N.; Durrant, H.J.; Lewis, M.J.; Goodfellow, J. Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 2002, 105, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Hartvig, P.; Lindner, K.J.; Bjurling, P.; Långström, B.; Tedroff, J. Pyridoxine effect on synthesis rate of serotonin in the monkey brain measured with positron emission tomography. J. Neural Transm. 1995, 102, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Haskell, C.F.; Scholey, A.B.; Jackson, P.A.; Elliott, J.M.; Defeyter, M.A.; Greer, J.; Robertson, B.C.; Buchanan, T.; Tiplady, B.; Kennedy, D.O. Cognitive and mood effects in healthy children during 12 weeks’ supplementation with multi-vitamin/minerals. Br. J. Nutr. 2008, 100, 1086–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholey, A.; Bauer, I.; Neale, C.; Savage, K.; Camfield, D.; White, D.; Maggini, S.; Pipingas, A.; Stough, C.; Hughes, M. Acute effects of different multivitamin mineral preparations with and without guaraná on mood, cognitive performance and functional brain activation. Nutrients 2013, 5, 3589–3604. [Google Scholar] [CrossRef] [PubMed]
- Hustad, S.; Mckinley, M.C.; Mcnulty, H.; Schneede, J.; Strain, J.J.; Scott, J.M.; Ueland, P.M. Riboflavin, Flavin Mononucleotide, and Flavin Adenine Dinucleotide in Human Plasma and Erythrocytes at Baseline and after Low-Dose Riboflavin Supplementation. Clin. Chem. 2002, 9, 1571–1577. [Google Scholar]
- Powers, H.J.; Hill, M.H.; Mushtaq, S.; Dainty, J.R.; Majsak-Newman, G.; Williams, E.A. Correcting a marginal riboflavin deficiency improves hematologic status in young women in the United Kingdom (RIBOFEM) 1–3. Am. J. Clin. Nutr. 2011, 93, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Smidt, L.J.; Cremin, F.M.; Grivetti, L.E.; Clifford, A.J. Influence of Thiamin Supplementation on the Health and General Well-being of an Elderly Irish Population With Marginal Thiamin Deficiency. J. Gerontol. 1991, 46, 16–22. [Google Scholar] [CrossRef]
- Alaei Shahmiri, F.; Soares, M.J.; Zhao, Y.; Sherriff, J. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: A randomized, double-blind cross-over trial. Eur. J. Nutr. 2013, 52, 1821–1824. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Hanger, H.C.; Elmslie, J.; George, P.M.; Sainsbury, R. The response to treatment of subclinical thiamine deficiency in the elderly. Am. J. Clin. Nutr. 1997, 66, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Liu, K.; Chen, S.; Yu, H.; An, Y.; Wang, Y.; Zhang, X.; Wang, Y.; Qin, Z.; Xiao, R. Dietary Intake of Riboflavin and Unsaturated Fatty Acid Can Improve the Multi-Domain Cognitive Function in Middle-Aged and Elderly Populations: A 2-Year Prospective Cohort Study. Front. Aging Neurosci. 2019, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
Thiamine (mg) | Riboflavin (mg) | Niacin E (mg) | Vitamin B6 (mg) | Pantothenic Acid (mg) | |
---|---|---|---|---|---|
ND meal items | |||||
Peach (154 g) | 0.02 | 0.03 | 1.14 | 0.12 | 0.31 |
Mixed grain bread (42 g) | 0.06 | 0.06 | 0.93 | 0.01 | n.d. |
Peanut butter (22 g) | 0.00 | 0.03 | 4.61 | 0.01 | n.d. |
Oats, toasted, rolled (45 g) | 0.14 | 0.05 | 1.15 | 0.18 | n.d. |
Cow milk, 0.1% fat (300 mL) | 0.06 | 0.94 | 2.71 | 0.09 | n.d. |
Cottage cheese, light, 1% fat (150 g) | 0.06 | 0.18 | 3.90 | 0.11 | n.d. |
Total | 0.34 | 1.28 | 14.45 | 0.52 | 0.31 |
ED meal items | |||||
Cheese, sliced, reduced fat (8.4 g) | 0.00 | 0.11 | 1.02 | 0.00 | 0.10 |
Muffin (100 g) | 0.34 | 0.08 | 4.20 | 0.11 | 0.30 |
Breakfast sausage (110 g) | 0.55 | 0.10 | 3.63 | 0.14 | 0.53 |
Potato, hash brown (150 g) | 0.48 | 0.05 | 3.90 | 0.09 | 0.71 |
Egg, fried (110 g) | 0.14 | 0.45 | 4.40 | 0.17 | 1.98 |
Total | 1.51 | 0.79 | 17.15 | 0.51 | 3.62 |
Measures | ND | ED | ||
---|---|---|---|---|
Older | Younger | Older | Younger | |
LDL (mmol/L) | 3.1 ± 0.2 | 2.5 ± 0.2 | 3.0 ± 0.2 | 2.4 ± 0.20 ** |
HDL (mmol/L) | 1.8 ± 0.1 | 1.3 ± 0.0 | 1.8 ± 0.1 | 1.4 ± 0.1 *** |
Cholesterol (mmol/L) | 5.1 ± 0.2 | 4.0 ± 0.2 | 5.0 ± 0.2 | 4.0 ± 0.2 *** |
TAG (mmol/L) | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 | 0.8 ± 0.1 |
Glucose (mmol/L) | 5.2 ± 0.2 | 5.1 ± 0.1 | 5.2 ± 0.2 | 5.1 ± 0.1 |
Insulin (mmol/L) | 8.7 ± 1.4 | 9.5 ± 1.3 | 8.7 ± 1.9 | 9.0 ± 1.0 |
HOMA-IR | 2.1 ± 0.4 | 2.2 ± 0.4 | 1.7 ± 0.3 | 2.0 ± 0.2 |
ND | ED | |||
---|---|---|---|---|
Older | Younger | Older | Younger | |
Thiamine | 2.1 ± 0.2 | 1.45 ± 0.4 | 1.8 ± 0.3 | 1.4 ± 0.3 |
Riboflavin | 18.7 ± 2.9 * | 10.31 ± 1.9 | 18.8 ± 4.4 * | 8.9 ± 1.06 |
FMN | 9.9 ± 1.7 | 14.08 ± 1.5 | 9.4 ± 1.6 | 12.5 ± 1.6 |
Nicotinic acid | 4.0 ± 0.6 * | 2.25 ± 0.4 | 4.8 ± 0.3 *** | 2.74 ± 0.5 |
Nicotinamide | 164.9 ± 24.7 | 172.62 ± 50.0 | 133.0 ± 14.8 | 118.96 ± 14.2 |
Nicotinuric acid | 254.9 ± 49.9 | 229.46 ± 48.6 | 254.9 ± 52.3 | 330.72 ± 92.5 |
Pantothenic acid | 115.1 ± 18.8 | 72.4 ± 13.8 | 111.9 ± 20.6 | 78.89 ± 12.5 |
Pyridoxal | 12.8 ± 1.9 | 12.8 ± 2.7 | 11.0 ± 1.6 | 13.16 ± 3.5 |
Pyridoxamine | 0.4 ± 0.1 | 0.6 ± 0.2 | 0.5 ± 0.1 | 0.36 ± 0.1 |
PLP | 5.12 ± 1.6 | 6.9 ± 0.9 | 2.9 ± 1.1 | 9 ± 3.1 |
4-Pyridoxic acid | 19.8 ± 3.2 | 16.5 ± 2.6 | 20.6 ± 4.2 | 18.7 ± 3.6 |
ND | ED | |||
---|---|---|---|---|
Older | Younger | Older | Younger | |
Thiamine | 69 ± 47 | 57 ± 66 | 105 ± 45 | 163 ± 28 |
Riboflavin | 675 ± 360 | 851 ± 265 * | −578 ± 399 | 365 ± 101 |
FMN | −592 ± 261 | −662 ± 363 | −329 ± 317 | −712 ± 180 |
Nicotinic acid | 235 ± 169 | 138 ± 90 | −136 ± 89 | 18 ± 109 |
Nicotinamide | −17,118 ± 5803 | −7163 ± 5198 | −9675 ± 3303 | −5192 ± 4469 |
Nicotinuric acid | −20,585 ± 5638 | −12,810 ± 4719 | −14,155 ± 3724 | −13,423 ± 5421 |
Pantothenic acid | −9935 ± 4219 | −6585 ± 2384 | −7156 ± 5081 | −4391 ± 1729 |
Pyridoxal | −626 ± 2726 | −31 ± 331 | 11 ± 142 | 564 ± 172 *,# |
Pyridoxamine | 24 ± 22 | 6 ± 29 | −7 ± 18 | 38 ± 20 |
PLP | −490 ± 424 | −702 ± 134 | 37 ± 119 | −1177 ± 670 |
4-Pyridoxic acid | −1885 ± 379 | −1726 ± 517 | −1897 ± 769 | −1058 ± 213 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Gillies, N.; Pundir, S.; Pileggi, C.A.; Markworth, J.F.; Thorstensen, E.B.; Cameron-Smith, D.; Milan, A.M. Comparison of the Acute Postprandial Circulating B-Vitamin and Vitamer Responses to Single Breakfast Meals in Young and Older Individuals: Preliminary Secondary Outcomes of a Randomized Controlled Trial. Nutrients 2019, 11, 2893. https://doi.org/10.3390/nu11122893
Sharma P, Gillies N, Pundir S, Pileggi CA, Markworth JF, Thorstensen EB, Cameron-Smith D, Milan AM. Comparison of the Acute Postprandial Circulating B-Vitamin and Vitamer Responses to Single Breakfast Meals in Young and Older Individuals: Preliminary Secondary Outcomes of a Randomized Controlled Trial. Nutrients. 2019; 11(12):2893. https://doi.org/10.3390/nu11122893
Chicago/Turabian StyleSharma, Pankaja, Nicola Gillies, Shikha Pundir, Chantal A. Pileggi, James F. Markworth, Eric B. Thorstensen, David Cameron-Smith, and Amber M. Milan. 2019. "Comparison of the Acute Postprandial Circulating B-Vitamin and Vitamer Responses to Single Breakfast Meals in Young and Older Individuals: Preliminary Secondary Outcomes of a Randomized Controlled Trial" Nutrients 11, no. 12: 2893. https://doi.org/10.3390/nu11122893
APA StyleSharma, P., Gillies, N., Pundir, S., Pileggi, C. A., Markworth, J. F., Thorstensen, E. B., Cameron-Smith, D., & Milan, A. M. (2019). Comparison of the Acute Postprandial Circulating B-Vitamin and Vitamer Responses to Single Breakfast Meals in Young and Older Individuals: Preliminary Secondary Outcomes of a Randomized Controlled Trial. Nutrients, 11(12), 2893. https://doi.org/10.3390/nu11122893