Association of Iron Status and Intake During Pregnancy with Neuropsychological Outcomes in Children Aged 7 Years: The Prospective Birth Cohort Infancia y Medio Ambiente (INMA) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Assessment of Iron Status and Iron Intake During Pregnancy
2.3. Assessment of Neuropsychological Outcomes
2.4. Potential Confounding Variables
2.5. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. SF Levels and Neuropsychological Outcomes in Children
3.3. Total Iron Intake and Neuropsychological Outcomes in Children
3.4. Association of Child Executive Functioning with SF Concentrations in the First Period of Pregnancy, and with Total Iron Intake in the Second Period of Pregnancy
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, E.L.; Sebayang, S.K.; Apriatni, M.; Adawiyah, S.R.; Hidayati, N.; Islamiyah, A.; Siddiq, S.; Harefa, B.; Lum, J.; Alcock, K.J.; et al. Maternal multiple micronutrient supplementation and other biomedical and socioenvironmental influences on children’s cognition at age 9–12 years in Indonesia: Follow-up of the SUMMIT randomised trial. Lancet Glob. Health 2017, 5, e217–e228. [Google Scholar] [CrossRef] [Green Version]
- Fararouei, M.; Robertson, C.; Whittaker, J.; Sovio, U.; Ruokonen, A.; Pouta, A.; Hartikainen, A.L.; Jarvelin, M.R.; Hyppönen, E. Maternal Hb during pregnancy and offspring’s educational achievement: A prospective cohort study over 30 years. Br. J. Nutr. 2010, 104, 1363–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozoff, B.; Smith, J.B.; Kaciroti, N.; Clark, K.M.; Guevara, S.; Jimenez, E. Functional Significance of Early-Life Iron Deficiency: Outcomes at 25 Years. J. Pediatr. 2013, 63, 1260–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Martínez, C.; Canals, J.; Aranda, N.; Ribot, B.; Escribano, J.; Arija, V. Effects of iron deficiency on neonatal behavior at different stages of pregnancy. Early Hum. Dev. 2011, 87, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Jardí, C.; Hernández-Martínez, C.; Canals, J.; Arija, V.; Bedmar, C.; Voltas, N.; Aranda, N. Influence of breastfeeding and iron status on mental and psychomotor development during the first year of life. Infant Behav. Dev. 2018, 50, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Olympio Rua, E.D.A.; Porto, M.L.; Ramos, J.P.L.; Nogueira, B.V.; Meyrelles, S.D.S.; Vasquez, E.C.; De Pereira, T.M.C. Effects of tobacco smoking during pregnancy on oxidative stress in the umbilical cord and mononuclear blood cells of neonates. J. Biomed. Sci. 2014, 21, 105. [Google Scholar] [CrossRef] [Green Version]
- Gemmel, M.; Bögi, E.; Ragan, C.; Hazlett, M.; Dubovicky, M.; van den Hove, D.L.; Oberlander, T.F.; Charlier, T.D.; Pawluski, J.L. Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome. Neurosci. Biobehav. Rev. 2018, 85, 102–116. [Google Scholar] [CrossRef]
- Green, M.J.; Kariuki, M.; Dean, K.; Laurens, K.R.; Tzoumakis, S.; Harris, F.; Carr, V.J. Childhood developmental vulnerabilities associated with early life exposure to infectious and noninfectious diseases and maternal mental illness. J. Child Psychol. Psychiatry Allied Discip. 2018, 59, 801–810. [Google Scholar] [CrossRef]
- Guxens, M.; Lubczyńska, M.J.; Muetzel, R.L.; Dalmau-Bueno, A.; Jaddoe, V.W.V.; Hoek, G.; van der Lugt, A.; Verhulst, F.C.; White, T.; Brunekreef, B.; et al. Air Pollution Exposure During Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol. Psychiatry 2018, 15, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Smarr, B.L.; Grant, A.D.; Perez, L.; Zucker, I.; Kriegsfeld, L.J. Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice. Sci. Rep. 2017, 12, 3326. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.C.; Wallin, D.J.; Tran, P.V.; Georgieff, M.K. Long-term brain and behavioral consequences of early-life iron deficiency. In Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologies; Springer: Cham, Switzerland, 2016; pp. 1–492. [Google Scholar]
- Iglesias, L.; Canals, J.; Arija, V. Effects of prenatal iron status on child neurodevelopment and behavior: A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1604–1614. [Google Scholar] [CrossRef] [PubMed]
- Lukowski, A.F.; Koss, M.; Burden, M.J.; Jonides, J.; Nelson, C.A.; Kaciroti, N.; Jimenez, E.; Lozoff, B. Iron deficiency in infancy and neurocognitive functioning at 19 years: Evidence of long-term deficits in executive function and recognition memory. Nutr. Neurosci. 2010, 13, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Villamor, E.; Rifas-Shiman, S.L.; Gillman, M.W.; Oken, E. Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatr. Perinat. Epidemiol. 2012, 26, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucó, G.; Fernandez-Ballart, J.; Arija, V.; Canals, J. Effect of B1-, B6- and iron intake during pregnancy on neonatal behavior. Int. J. Vitam. Nutr. Res. 2005, 75, 320–326. [Google Scholar] [CrossRef]
- Tran, T.D.; Tran, T.; Simpson, J.A.; Tran, H.T.; Nguyen, T.T.; Hanieh, S.; Dwyer, T.; Biggs, B.A.; Fisher, J. Infant motor development in rural Vietnam and intrauterine exposures to anemia, iron deficiency and common mental disorders: A prospective community-based study. BMC Pregnancy Childbirth 2014, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Mireku, M.O.; Davidson, L.L.; Koura, G.K.; Ouedraogo, S.; Boivin, M.J.; Xiong, X.; Accrombessi, M.M.K.; Massougbodji, A.; Cot, M.; Bodeau-Livinec, F. Prenatal Hemoglobin Levels and Early Cognitive and Motor Functions of One-Year-Old Children. Pediatrics 2015, 136, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Berglund, S.K.; Torres-Espínola, F.J.; García-Valdés, L.; Segura, M.T.; Martínez-Zaldívar, C.; Padilla, C.; Rueda, R.; Pérez García, M.; McArdle, H.J.; Campoy, C. The impacts of maternal iron deficiency and being overweight during pregnancy on neurodevelopment of the offspring. Br. J. Nutr. 2017, 118, 533–540. [Google Scholar] [CrossRef]
- Naeye, R.L.; Peters, E.C. Antenatal hypoxia and low IQ values. Am. J. Dis. Child. 1987, 141, 50–54. [Google Scholar]
- Tran, T.D.; Biggs, B.A.; Tran, T.; Simpson, J.A.; Hanieh, S.; Dwyer, T.; Fisher, J. Impact on Infants’ Cognitive Development of Antenatal Exposure to Iron Deficiency Disorder and Common Mental Disorders. PLoS ONE 2013, 8, e74876. [Google Scholar] [CrossRef] [Green Version]
- Siddappa, A.M.; Georgieff, M.K.; Wewerka, S.; Worwa, C.; Nelson, C.A.; Deregnier, R.A. Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr. Res. 2004, 55, 1034–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, F.; Mai, X.; Zhan, J.; Xu, L.; Zhao, Z.; Georgieff, M.; Shao, J.; Lozoff, B. Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age. J. Pediatr. 2015, 167, 1226–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBoer, T.; Wewerka, S.; Bauer, P.J.; Georgieff, M.K.; Nelson, C.A. Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev. Med. Child Neurol. 2005, 47, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Lozoff, B.; Jimenez, E.; Hagen, J.; Mollen, E.; Wolf, A.W. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 2000, 105, e51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algarín, C.; Peirano, P.; Garrido, M.; Pizarro, F.; Lozoff, B. Iron deficiency anemia in infancy: Long-lasting effects on auditory and visual system functioning. Pediatr. Res. 2003, 53, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, T.; Goldenberg, R.L.; Hou, J.; Johnston, K.E.; Cliver, S.P.; Ramey, S.L.; Nelson, K.G. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002, 140, 165–170. [Google Scholar] [CrossRef]
- Veena, S.R.; Gale, C.R.; Krishnaveni, G.V.; Kehoe, S.H.; Srinivasan, K.; Fall, C.H. Association between maternal nutritional status in pregnancy and offspring cognitive function during childhood and adolescence; a systematic review. BMC Pregnancy Childbirth 2016, 16, 220. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, C.; Polson, R.; van Woerden, H.C.; Wilson, P. The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring: A systematic review and meta-analysis. BMC Pediatr. 2018, 4, 150. [Google Scholar] [CrossRef]
- Yang, L.; Ren, A.G.; Liu, J.M.; Ye, R.W.; Hong, S.X.; Zheng, J.C. Influence of hemoglobin level during early gestation on the development of cognition of pre-school children. Zhonghua Liu Xing Bing Xue Za Zhi 2010, 31, 1353–1358. [Google Scholar]
- Lozoff, B.; Castillo, M.; Clark, K.M.; Smith, J.B. Iron-fortified vs low-iron infant formula: Developmental outcome at 10 years. Arch. Pediatr. Adolesc. Med. 2012, 166, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Aranda, N.; Hernández-Martínez, C.; Arija, V.; Ribot, B.; Canals, J. Haemoconcentration risk at the end of pregnancy: Effects on neonatal behaviour. Public Health Nutr. 2017, 20, 1405–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tofail, F.; Persson, L.Å.; El Arifeen, S.; Hamadani, J.D.; Mehrin, F.; Ridout, D.; Ekström, E.C.; Huda, S.N.; Grantham-McGregor, S.M. Effects of prenatal food and micronutrient supplementation on infant development: A randomized trial from the Maternal and Infant Nutrition Interventions, Matlab (MINIMat) study. Am. J. Clin. Nutr. 2008, 87, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Yan, H.; Zeng, L.; Cheng, Y.; Liang, W.; Dang, S.; Wang, Q.; Tsuji, I. Effects of Maternal Multimicronutrient Supplementation on the Mental Development of Infants in Rural Western China: Follow-up Evaluation of a Double-Blind, Randomized, Controlled Trial. Pediatrics 2009, 123, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Horta, B.L.; de Mola, C.L.; Quevedo, L.; Pinheiro, R.T.; Gigante, D.P.; Gonçalves, H.; Barros, F.C. Association between breast-feeding and intelligence, educational attainment, and income at 30 years of age: A prospective birth cohort study from Brazil. Lancet Glob. Health 2015, 3, e199–e205. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Martínez, C.; Arija, V.; Escribano, J.; Canals, J. A longitudinal study on the effects ofmaternal smoking and secondhand smoke exposure duringpregnancy on neonatal neurobehavior. Early Hum. Dev. 2012, 88, 403–408. [Google Scholar] [CrossRef]
- Roigé-Castellví, J.; Murphy, M.; Hernández-Martínez, C.; Solé-Navais, P.; Caballé, P.; Fernández-Ballart, J.; Ballesteros, M.; Ballesteros, M.; Canals, J. The Effect of Prenatal Smoke Exposure on Child Neuropsychological Function: A Prospective Mother-Child Cohort Study. J. Reprod. Infant Psychol. 2019, in press. [Google Scholar]
- Gascon, M.; Guxens, M.; Vrijheid, M.; Torrent, M.; Ibarluzea, J.; Fano, E.; Llop, S.; Ballester, F.; Fernández, M.F.; Tardón, A.; et al. The INMA—INfancia y Medio Ambiente—(Environment and Childhood) project: More than 10 years contributing to environmental and neuropsychological research. Int. J. Hyg. Environ. Health 2017, 220, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Guxens, M.; Ballester, F.; Espada, M.; Fernández, M.F.; Grimalt, J.O.; Ibarluzea, J.; Olea, N.; Rebagliato, M.; Tardón, A.; Torrent, M.; et al. Cohort profile: The INMA-INfancia y Medio Ambiente-(environment and childhood) project. Int. J. Epidemiol. 2012, 41, 930–940. [Google Scholar] [CrossRef] [Green Version]
- Vioque, J.; Navarrete-Muñoz, E.M.; Gimenez-Monzó, D.; García-De-La-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, J.K.C.; Haytowitz, D.B.; Pehrsson, P.R.; Roseland, J.; Exler, J.; Khan, M.; Nickle, M.; Nguyen, Q.A.; Patterson, K.; Showell, B. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 27 Documentation and User Guide. U.S. Dep. Agric. Agric. Res. Serv. Beltsv. Hum. Nutr. Res. Cent. Nutr. Data Lab. 2013, 2, 1–136. [Google Scholar]
- Palma, I.; Farran, A.; Cervera, P. Tablas de composición de alimentos por medidas caseras de consumo habitual en España. Rev. Esp. Nutr. Hum. Diet. 2008, 12, 85. [Google Scholar] [CrossRef]
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron status in pregnant women and women of reproductive age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655S–1662S. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forns, J.; Esnaola, M.; López-Vicente, M.; Suades-González, E.; Álvarez-Pedrerol, M.; Júlvez, J.; Grellier, J.; Sebastián-Gallés, N.; Sunyer, J. The N-back test and the attentional network task as measures of child neuropsychological development in epidemiological studies. Neuropsychol 2014, 28, 519–529. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Reitan, R.M. Trail Making Test Results for Normal and Brain-Damaged Children; Percept Mot Skills; SAGE Publications Inc.: Thousand Oaks, CA, USA, 1971; Volume 33, pp. 575–581. [Google Scholar]
- Fernández-Barrés, S.; Romaguera, D.; Valvi, D.; Martínez, D.; Vioque, J.; Navarrete-Muñoz, E.M.; Amiano, P.; Gonzalez-Palacios, S.; Guxens, M.; Pereda, E.; et al. Mediterranean dietary pattern in pregnant women and offspring risk of overweight and abdominal obesity in early childhood: The INMA birth cohort study. Pediatr. Obes. 2016, 11, 491–499. [Google Scholar] [CrossRef]
- Goni, F.; Lopez, R.; Etxeandia, A.; Millan, E.; Amiano, P. High throughput method for the determination of organochlorine pesticides and polychlorinated biphenyls in human serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 15–21. [Google Scholar] [CrossRef]
- Vizcaino, E.; Grimalt, J.O.; Lopez-Espinosa, M.-J.; Llop, S.; Rebagliato, M.; Ballester, F. Maternal origin and other determinants of cord serum organochlorine compound concentrations in infants from the general population. Environ. Sci. Technol. 2010, 44, 6488–6495. [Google Scholar] [CrossRef] [Green Version]
- Vandevijvere, S.; Amsalkhir, S.; Van Oyen, H.; Egli, I.; Ines, E.; Moreno-Reyes, R. Iron status and its determinants in a nationally representative sample of pregnant women. J. Acad. Nutr. Diet. 2013, 113, 659–666. [Google Scholar] [CrossRef]
- Hess, S.Y.; Zimmermann, M.B.; Brogli, S.; Hurrell, R.F. A national survey of iron and folate status in pregnant women in Switzerland. Int. J. Vitam. Nutr. Res. 2001, 71, 268–273. [Google Scholar] [CrossRef]
- Bergmann, R.L.; Gravens-Müller, L.; Hertwig, K.; Hinkel, J.; Andres, B.; Bergmann, K.E.; Dudenhausen, J.W. Iron deficiency is prevalent in a sample of pregnant women at delivery in Germany. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 102, 155–160. [Google Scholar] [CrossRef]
- Milman, N. Iron and pregnancy—A delicate balance. Ann. Hematol. 2006, 85, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Tkac, I.; Townsend, E.L.; Gruetter, R.; Georgieff, M.K. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J. Nutr. 2003, 133, 3215–3221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional influences on brain development. Acta Paediatr. Int. J. Paediatr. 2018, 107, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Cusick, S.; Georgieff, M.; Rao, R. Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients 2018, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Brannon, P.M.; Taylor, C.L. Iron supplementation during pregnancy and infancy: Uncertainties and implications for research and policy. Nutrients 2017, 9, 1327. [Google Scholar] [CrossRef] [Green Version]
- Georgieff, M.K. Long-term brain and behavioral consequences of early iron deficiency. Nutr. Rev. 2011, 69 (Suppl. 1), s43–s48. [Google Scholar] [CrossRef] [Green Version]
- DeRegnier, R.A.; Nelson, C.A.; Thomas, K.M.; Wewerka, S.; Georgieff, M.K. Neurophysiologic evaluation of auditory recognition memory in healthy newborn infants and infants of diabetic mothers. J. Pediatr. 2000, 137, 777–784. [Google Scholar] [CrossRef]
- Golub, M.S.; Hogrefe, G.E.; Germann, S.L.; Capitanio, J.P.; Lozoff, B. Behavioral consequences of developmental iron deficiency in infant rhesus monkeys. Neurotoxicol. Teratol. 2005, 28, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Arija, V.; Fargas, F.; March, G.; Abajo, S.; Basora, J.; Canals, J.; Ribot, B.; Aparicio, E.; Serrat, N.; Hernández-Martínez, C.; et al. Adapting iron dose supplementation in pregnancy for greater effectiveness on mother and child health: Protocol of the ECLIPSES randomized clinical trial. BMC Pregnancy Childbirth 2014, 18, 33. [Google Scholar] [CrossRef] [Green Version]
- Antonides, A.; Schoonderwoerd, A.C.; Scholz, G.; Berg, B.M.; Nordquist, R.E.; van der Staay, F.J. Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive holeboard task in piglets. Front. Behav. Neurosci. 2015, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggins, T.; Miller, N.C.; Bauer, P.J.; Georgieff, M.K.; Nelson, C.A. Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev. Neuropsychol. 2009, 34, 762–779. [Google Scholar] [CrossRef] [PubMed]
- Clardy, S.L.; Wang, X.; Zhao, W.; Liu, W.; Chase, G.A.; Beard, J.L.; True, F.B.; Connor, J.R. Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J. Neural Transm. 2006, 71, 173–196. [Google Scholar] [CrossRef] [PubMed]
- Greminger, A.R.; Lee, D.L.; Shrager, P.; Mayer-Pröschel, M. Gestational iron deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J. Nutr. 2014, 144, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Unger, E.L.; Bianco, L.E.; Jones, B.C.; Allen, R.P.; Earley, C.J. Low brain iron effects and reversibility on striatal dopamine dynamics. Exp. Neurol. 2014, 261, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Nichols, E.A.; Kao, Y.C.; Verfaellie, M.; Gabrieli, J.D.E. Working memory and long-term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus 2006, 16, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Rytych, J.L.; Elmore, M.R.P.; Burton, M.D.; Conrad, M.S.; Donovan, S.M.; Dilger, R.N.; Johnson, R.W. Early life iron deficiency impairs spatial cognition in neonatal piglets. J. Nutr. 2012, 142, 2050–2506. [Google Scholar] [CrossRef] [Green Version]
- Mudd, A.A.T.; Fil, J.E.J.; Knight, L.L.C.; Lam, F.; Liang, Z.P.; Dilger, R.N.R. Early-Life Iron Deficiency Reduces Brain Iron Content and Alters Brain Tissue Composition Despite Iron Repletion: A Neuroimaging Assessment. Nutrients 2018, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Lien, Y.C.; Condon, D.E.; Georgieff, M.K.; Simmons, R.A.; Tran, P.V. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients 2019, 1, 1191. [Google Scholar] [CrossRef] [Green Version]
- Tirapu Ustárroz, J.; Molina, A.G.; Lago, M.R.; Ardila, A.A. Neuropsicología de la Corteza Prefrontal y las Funciones Ejecutivas; Viguera: Barcelona, Spain, 2012. [Google Scholar]
- Thatcher, R.W. Cyclic cortical reorganization during early childhood. Brain Cogn. 1992, 20, 24–50. [Google Scholar] [CrossRef]
- Petrill, S.A.; Lipton, P.A.; Hewitt, J.K.; Plomin, R.; Cherny, S.S.; Corley, R.; DeFries, J.C. Genetic and environmental contributions to general cognitive ability through the first 16 years of life. Dev. Psychol. 2004, 40, 805–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014, 20, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Cortese, S.; Azoulay, R.; Castellanos, F.X.; Chalard, F.; Lecendreux, M.; Chechin, D.; Delorme, R.; Sebag, G.; Sbarbati, A.; Mouren, M.C.; et al. Brain iron levels in attention-deficit/hyperactivity disorder: A pilot MRI study. World J. Biol. Psychiatry 2012, 13, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Lozoff, B.; Beard, J.; Connor, J.; Felt, B.; Georgieff, M.; Schallert, T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006, 64, S34–S43. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Casal, M.N.; Peña-Rosas, J.P.; Urrechaga, E.; Escanero, J.F.; Huo, J.; Martinez, R.X.; Lopez-Perez, L. Performance and comparability of laboratory methods for measuring ferritin concentrations in human serum or plasma: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0196576. [Google Scholar] [CrossRef]
General Characteristics | All Cohorts | Guipuzkoa | Sabadell | Valencia | p |
---|---|---|---|---|---|
(n = 2032) | (n = 618) | (n = 634) | (n = 780) | ||
Maternal age, years, Mean (SD) 1 | 30.33 (4.4) | 31.37 (3.7) | 30.23 (4.5) | 29.61 (4.6) | <0.001 |
Maternal pre-pregnancy BMI, kg/m2, Mean (SD)1 | 23.52 (4.3) | 23.03 (3.7) | 23.71 (4.5) | 23.75 (4.6) | 0.003 |
Mode of delivery, Eutocic vs. Dystocic, n (%) 2 | 1171 (62.3) | 394 (70.1) | 395 (67.3) | 382 (52.2) | <0.001 |
Parity ≥ 1 vs. 0, n (%) 2 | 909 (44.8) | 287 (46.4) | 280 (44.3) | 342 (43.8) | 0.600 |
Ethnic group | |||||
Caucasian vs. other, n (%) 2 | 1946 (95.9) | 603 (98.0) | 613 (96.7) | 730 (93.5) | <0.001 |
Maternal marital status | |||||
Lives with father’s child vs. other situations, n (%) 2 | 1998 (98.3) | 615 (99.5) | 624 (98.4) | 759 (97.3) | 0.006 |
Maternal educational level, n (%) 2 | |||||
Primary or no education | 531 (26.2) | 82 (13.3) | 183 (29.0) | 266 (34.1) | <0.001 |
Secondary | 830 (40.9) | 227 (36.9) | 267 (42.2) | 336 (43.1) | |
University | 667 (32.9) | 307 (49.8) | 182 (28.8) | 178 (22.8) | |
Social Class, n (%) 2 | |||||
High | 392 (19.8) | 151 (24.8) | 135 (22.6) | 106 (13.7) | <0.001 |
Medium | 338 (17.1) | 80 (13.2) | 107 (17.9) | 151 (19.5) | |
Low | 1248 (63.0) | 377 (62.0) | 356 (59.5) | 515 (66.5) | |
Smoking, yes vs. no, n (%) 2 | |||||
1st period * | 354 (18.4) | 73 (12.5) | 91 (15.3) | 190 (25.5) | <0.001 |
2nd period * | 326 (16.9) | 66 (11.3) | 85 (14.3) | 175 (23.5) | <0.001 |
Alcohol intake, g/day, Mean (SD) 3 | |||||
1st period * | 0.33 (1.2) | 0.18 (0.7) | 0.33 (1.3) | 0.41 (1.5) | 0.003 |
2nd period * | 0.33 (1.2) | 0.23 (0.7) | 0.36 (1.2) | 0.39 (1.3) | 0.025 |
Breastfeeding, months, Mean (SD) 1 | 25.8 (19.8) | 28.9 (20.6) | 25.9 (19.2) | 19.5 (19.8) | <0.001 |
Maternal IQ, Mean (SD) 1 | 10.1 (3.0) | 9.8 (2.7) | 10.6 (2.9) | 9.8 (3.3) | <0.001 |
General Characteristics | Serum Ferritin Levels (μg/L) 1st Period of Pregnancy | Total Iron Intake (mg/day) 2nd Period of Pregnancy | ||||||
---|---|---|---|---|---|---|---|---|
<12.0 | 12.0–60.0 | >60 | p | <14.5 | 14.5–30.0 | >30.0 | p | |
Maternal age, years Mean (SD) 1 | 30.8 (4.4) | 30.3 (4.4) | 30.3 (4.1) | 0.287 | 30.3 (4.1) | 30.4 (4.2) | 30.4 (4.5) | 0.803 |
Maternal pre-pregnancy BMI, kg/m2, Mean (SD) 1 | 23.0 (3.7) | 23.5 (4.4) | 24.0 (4.1) | 0.23 | 23.8 (4.4) | 23.3 (4.1) | 23.5 (4.3) | 0.081 |
Mode of delivery, Eutocic vs. Dystocic, n (%) 2 | 170 (70.2) | 807 (63.1) | 128 (55.2) | 0.003 | 400 (64.6) | 376 (61.3) | 376 (60.6) | 0.305 |
Ethnic group, Caucasian vs. other, n (%) 2 | 252 (96.9) | 1307 (96.4) | 238 (98.4) | 0.403 | 616 (96.7) | 618 (96.4) | 609 (95.3) | 0.932 |
Maternal educational level, n (%) 2 | ||||||||
Primary or no education | 63 (24.2) | 347 (25.6) | 75 (29.9) | 0.349 | 140 (21.9) | 167 (26.1) | 179 (28.1) | 0.008 |
Secondary | 102 (39.2) | 561 (41.4) | 90 (35.9) | 262 (40.9) | 247 (38.7) | 275 (43.1) | ||
University | 95 (36.5) | 446 (32.9) | 86 (34.3) | 238 (37.2) | 225 (35.2) | 184 (28.8) | ||
Maternal Social Class, n (%) 2 | ||||||||
High | 56(21.5) | 283 (20.8) | 59 (23.5) | 0.909 | 148 (23.1) | 139 (21.7) | 126 (19.7) | 0.025 |
Medium | 74 (28.4) | 377 (27.7) | 68 (27.1) | 197 (30.8) | 167 (26.1) | 162 (25.3) | ||
Low | 131 (50.2) | 699 (51.1) | 124 (49.4) | 295 (46.1) | 335 (52.3) | 352 (55.0) | ||
Mediterranean diet, score, Mean (SD) 1 | ||||||||
1st period * | 7.1 (2.4) | 7.0 (2.4) | 6.9 (2.4) | 0.248 | 7.1 (2.4) | 7.0 (2.4) | 6.9 (2.4) | 0.248 |
Smoking, yes vs. no, n (%) 2 | ||||||||
1st period * | 29 (11.6) | 244 (18.8) | 52 (21.9) | 0.007 | 121 (19.0) | 112 (17.5) | 120 (18.8) | 0.757 |
2nd period * | 26 (10.4) | 224 (17.2) | 49 (20.7) | 0.007 | 107 (16.8) | 106 (16.6) | 113 (17.7) | 0.854 |
Alcohol intake, g/day, Mean (SD) 3 | ||||||||
1st period * | 0.2 (0.7) | 0.3 (1.1) | 0.5 (1.6) | 0.022 | 0.3 (1.1) | 0.3 (1.2) | 0.4 (1.3) | 0.532 |
2nd period * | 0.3 (0.8) | 0.3 (1.2) | 0.4 (1.2) | 0.372 | 0.3 (1.2) | 0.4 (1.1) | 0.4 (1.2) | 0.812 |
Iron Characteristics and other Parameters | ||||||||
Hemoglobin, g/L, Mean (SD) 1 | ||||||||
1st period * | 128.5 (9.0) | 128.9 (9.1) | 129.1 (9.0) | 0.760 | 128.2 (9.2) | 129.2 (8.2) | 129.2 (8.3) | 0.085 |
2nd period * | 11.8 (1.2) | 11.8 (1.1) | 11.8 (1.1) | 0.968 | 11.7 (1.1) | 11.9 (1.1) | 11.9 (1.1) | 0.022 |
Anemia, n (%) 2 | ||||||||
1st period * | 4 (1.7) | 37 (3.1) | 4 (1.8) | 0.362 | 26 (4.6) | 10 (1.7) | 8 (1.4) | 0.001 |
2nd period * | 69 (30.0) | 348 (28.0) | 66 (28.8) | 0.824 | 183 (31.3) | 153 (25.7) | 163 (26.8) | 0.078 |
Iron deficiency (ID), n (%)2 | ||||||||
1st period * | 261 (100.0) | 0 (0.0) | 0 (0.0) | <0.001 | 90 (14.7) | 76 (12.7) | 82 (14.2) | 0.590 |
Iron deficiency anemia (IDA), n (%) 2 | ||||||||
1st period * | 4 (1.7) | 0 (0.0) | 0 (0.0) | <0.001 | 3 (0.5) | 0 (0.0) | 1 (0.2) | 0.214 |
Iron supplementation, n (%) 2 | ||||||||
2nd period * | 124 (48.1) | 694 (53.0) | 129 (53.3) | 0.329 | 63 (10.4) | 347 (56.5) | 637 (99.7) | <0.001 |
CRP, mg/L Mean (SD) 3 | ||||||||
1st period * | 0.6 (0.7) | 0.6 (0.7) | 0.9 (1.6) | 0.003 | 0.6 (0.7) | 0.6 (0.7) | 0.6 (0.7) | 0.375 |
PCBs, n (%) 2 <110.9 vs. >110.9 ng/g lipid | ||||||||
1st period * | 54.9 (139) | 50.2 (646) | 49.3 (113) | 0.351 | 53.3 (327) | 48.4 (288) | 45.6 (264) | 0.027 |
DDE, n (%)2 <123.0 vs. >123.0 ng/g lipid | ||||||||
1st period* | 54.2 (137) | 51.6 (663) | 54,4 (104) | 0.135 | 53.3 (327) | 53.4 (318) | 43.5 (252) | 0.001 |
Child’s Characteristics | ||||||||
Gender of the child, Male, n (%) 2 | 124 (49.8) | 671 (51.2) | 123 (51.7) | 0.901 | 327 (51.7) | 314 (49.6) | 329 (51.9) | 0.669 |
Standard birth weight, grams, Mean (SD) 1 | 3376.7 (406.4) | 3327.4 (399.8) | 3327.9 (393.6) | 0.203 | 3331.6 (381.4) | 3342.2 (414.7) | 3335.3 (408.0) | 0.894 |
Standard birth height, cm, Mean (SD) 1 | 49.9 (1.7) | 49.8 (1.7) | 49.8 (1.9) | 0.688 | 49.7 (1.8) | 49.8 (1.8) | 50.1 (1.8) | <0.001 |
Standard birth head circumference, cm, Mean (SD) 1 | 34.51 (1.2) | 34.43 (1.3) | 34.44 (1.8) | 0.744 | 34.44 (1.2) | 34.52 (1.2) | 34.35 (1.2) | 0.065 |
Breastfeeding, months, Mean (SD)1 | 28.1 (20.1) | 25.6 (20.0) | 27.2 (20.0) | 0.152 | 26.2 (20.1) | 26.7 (20.3) | 24.9 (20.0) | 0.278 |
Age at neuropsychological examination, years, Mean (SD)2 | 7.3 (0.6) | 7.4 (0.5) | 7.4 (0.5) | 0.334 | 7.3 (0.6) | 7.4 (0.5) | 7.5 (0.4) | 0.001 |
Groups of SF (μg /L) | p | Posthoc Analyses | |||
---|---|---|---|---|---|
<12.0 a Median (IQR) | 12.0–60.0 b Median (IQR) | ≥60.0 c Median (IQR) | |||
N-Back Test | |||||
d’ numbers 1-back | 3.4 (3.3–3.6) | 3.4 (3.4–3.5) | 3.5 (3.4–3.6) | 0.744 | |
d’ numbers 2-back | 1.6 (1.4–1.8) | 1.9 (1.8–1.9) | 1.9 (1.7–2.1) | 0.037 | 0.029 ab |
d’ numbers 3-back | 1.0 (0.86–1.17) | 1.1 (1.0–1.1) | 1.1 (1.0–1.3) | 0.691 | |
Attention Network Test | |||||
Omission errors | 4.9 (3.5–6.2) | 4.8 (4.3–5.3) | 5.0 (3.8–6.1) | 0.963 | |
HRT-SE | 317.4 (306.2–328.8) | 316.0 (310.8–321.3) | 316.1 (303.5–328.8) | 0.979 | |
Trail Making Test | |||||
Response time TMT A | 78.8 (70.9–86.7) | 71.5 (69.3–73.7) | 72.1 (68.1–76.1) | 0.050 | 0.041 ab |
Response time TMT B | 77.9 (71.5–84.3) | 73.9 (71.7–76.2) | 74.0 (69.0–79.1) | 0.413 |
Tertiles of Total Iron Intake (mg/day) | p | Posthoc Analyses | |||
---|---|---|---|---|---|
0.0–14.5 a | 14.5–30.0 b | >30.0 c | |||
Median (IQR) | Median (IQR) | Median (IQR) | |||
N-Back Test | |||||
d’ numbers 1-back | 3.4 (3.3–3.5) | 3.5 (3.4–3.6) | 3.4 (3.3–3.5) | 0.587 | |
d’ numbers 2-back | 1.7 (1.6–1.8) | 2.0 (1.8– 2.07) | 1.8 (1.7–1.9) | 0.045 | 0.014 ab |
d’ numbers 3-back | 0.9 (0.9–1.0) | 1.1 (1.0–1.2) | 1.1 (1.0–1.2) | 0.131 | |
Attention Network Test | |||||
Omission errors | 4.5 (3.9–5.1) | 4.7 (3.9–5.6) | 5.5 (4.7–6.2) | 0.022 | 0.045 ab 0.029 ab |
HRT- SE | 315.8 (308.8–322.8) | 312.1 (304.5–319.8) | 321.4 (313.3–320.8) | 0.146 | |
Trail Making Test | |||||
Response time TMT A | 70.3 (67.4–73.3) | 75.2 (71.6–78.9) | 72.0 (67.9–76.0) | 0.014 | 0.004 ab |
Response time TMT B | 73.2 (70.3–76.1) | 75.4 (72.0–78.7) | 74.6 (69.7–79.4) | 0.467 |
N-Back Test | B (95%CI) | p | Trail Making Test A | B (95%CI) | p |
d’ numbers 2- back | Response time in seconds | ||||
SF (<12 µg/L vs. 12–60 µg/L) | 0.4 (0.1–0.7) | 0.011 | SF (<12 µg/L vs. 12–60 µg/L) | −7.9 (−14.5–−1.4) | 0.017 |
SF (<12 µg/L vs. >60 µg/L) | 0.5 (0.1–0.8) | 0.013 | SF (<12 µg/L vs. >60 µg/L) | −6.9 (−15.4–1.7) | 0.114 |
N-Back Test d’ numbers 2- back | N-Back Test d’ numbers 3- back | ||||
Total iron intake (T1 vs. T2) | 0.3 (0.1–0.5) | 0.014 | Total iron intake (T1 vs. T2) | 0.1 (−0.1–0.3) | 0.189 |
Total iron intake (T2 vs. T3) | 0.3 (0.1–0.5) | 0.016 | Total iron intake (T2 vs. T3) | 0.2 (0.1–0.4) | 0.024 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arija, V.; Hernández-Martínez, C.; Tous, M.; Canals, J.; Guxens, M.; Fernández-Barrés, S.; Ibarluzea, J.; Babarro, I.; Soler-Blasco, R.; Llop, S.; et al. Association of Iron Status and Intake During Pregnancy with Neuropsychological Outcomes in Children Aged 7 Years: The Prospective Birth Cohort Infancia y Medio Ambiente (INMA) Study. Nutrients 2019, 11, 2999. https://doi.org/10.3390/nu11122999
Arija V, Hernández-Martínez C, Tous M, Canals J, Guxens M, Fernández-Barrés S, Ibarluzea J, Babarro I, Soler-Blasco R, Llop S, et al. Association of Iron Status and Intake During Pregnancy with Neuropsychological Outcomes in Children Aged 7 Years: The Prospective Birth Cohort Infancia y Medio Ambiente (INMA) Study. Nutrients. 2019; 11(12):2999. https://doi.org/10.3390/nu11122999
Chicago/Turabian StyleArija, Victoria, Carmen Hernández-Martínez, Mónica Tous, Josefa Canals, Mónica Guxens, Silvia Fernández-Barrés, Jesús Ibarluzea, Izaro Babarro, Raquel Soler-Blasco, Sabrina Llop, and et al. 2019. "Association of Iron Status and Intake During Pregnancy with Neuropsychological Outcomes in Children Aged 7 Years: The Prospective Birth Cohort Infancia y Medio Ambiente (INMA) Study" Nutrients 11, no. 12: 2999. https://doi.org/10.3390/nu11122999
APA StyleArija, V., Hernández-Martínez, C., Tous, M., Canals, J., Guxens, M., Fernández-Barrés, S., Ibarluzea, J., Babarro, I., Soler-Blasco, R., Llop, S., Vioque, J., Sunyer, J., & Julvez, J. (2019). Association of Iron Status and Intake During Pregnancy with Neuropsychological Outcomes in Children Aged 7 Years: The Prospective Birth Cohort Infancia y Medio Ambiente (INMA) Study. Nutrients, 11(12), 2999. https://doi.org/10.3390/nu11122999