Soil Zinc Is Associated with Serum Zinc But Not with Linear Growth of Children in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Data Collection and Analysis
2.2.1. Collection, Processing and Analysis of Biochemical Samples
2.2.2. Demographic and Socioeconomic Characteristics
2.2.3. Anthropometric Data
2.2.4. Collection and Analysis of Soil Zinc
2.3. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Correlations among Soil Zinc, Serum Zinc, Inflammation and Children’s Growth
3.3. Associations among Soil Zinc, Serum Zinc and Child Growth
3.3.1. The Association between Soil Zinc and Serum Zinc
3.3.2. The Association between Soil zinc and Child Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E. Zinc deficiency, infectious disease and mortality in the developing world. J. Nutr. 2003, 133, 1485s–1489s. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.R.; Hurley, L.S. Thymidine kinase and DNA polymerase activity in normal and zinc deficient developing rat embryos. Exp. Biol. Med. 1978, 159, 39–43. [Google Scholar] [CrossRef]
- Terhune, M.; Sandstead, H. Decreased RNA polymerase activity in mammalian zinc deficiency. Science 1972, 177, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.F. Zinc in Human Biology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Supasai, S.; Aimo, L.; Adamo, A.M.; Mackenzie, G.G.; Oteiza, P.I. Zinc deficiency affects the stat1/3 signaling pathways in part through redox-mediated mechanisms. Redox Biol. 2017, 11, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Andrews, K.G.; Sudfeld, C.R.; Fink, G.; McCoy, D.C.; Peet, E.; Sania, A.; Fawzi, M.C.S.; Ezzati, M.; Fawzi, W.W. Risk factors for childhood stunting in 137 developing countries: A comparative risk assessment analysis at global, regional and country levels. PLoS Med. 2016, 13, e1002164. [Google Scholar] [CrossRef] [PubMed]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Imdad, A.; Bhutta, Z.A. Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries: A meta-analysis of studies for input to the lives saved tool. BMC Public Health 2011, 11, S22. [Google Scholar] [CrossRef]
- Mayo-Wilson, E.; Junior, J.A.; Imdad, A.; Dean, S.; Chan, X.H.; Chan, E.S.; Jaswal, A.; Bhutta, Z.A. Zinc supplementation for preventing mortality, morbidity and growth failure in children aged 6 months to 12 years of age. Cochrane Database Syst. Rev. 2014, CD009384. [Google Scholar] [CrossRef]
- Ramakrishnan, U.; Nguyen, P.; Martorell, R. Effects of micronutrients on growth of children under 5 y of age: Meta-analyses of single and multiple nutrient interventions. Am. J. Clin. Nutr. 2009, 89, 191–203. [Google Scholar] [CrossRef]
- Umeta, M.; West, C.E.; Haidar, J.; Deurenberg, P.; Hautvast, J.G. Zinc supplementation and stunted infants in ethiopia: A Randomised controlled trial. Lancet 2000, 355, 2021–2026. [Google Scholar] [CrossRef]
- Hafebo, A.S.; Wuehler, S.; Gibbs, M.; Moges, T.; Tesfaye, B.; Kebede, A.; Assefa, T.; Zerfu, D.; Wedajo, B.; Abera, A. Overview of the ethiopian national food consumption survey (nfcs): Implications for fortification programs. Eur. J. Nutr. Food Saf. 2015, 5, 961–962. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Zinc in Soils and Crop Nutrition; International Zinc Association Brussels: Brussels, Belgium, 2004. [Google Scholar]
- Das, S.; Green, A. Zinc in crops and human health. In Biofortification of Food Crops; Springer: Berlin/Heidelberg, Germany, 2016; pp. 31–40. [Google Scholar]
- Joy, E.J.M.; Stein, A.J.; Young, S.D.; Ander, E.L.; Watts, M.J.; Broadley, M.R. Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 2015, 389, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated soil fertility management in Sub-Saharan Africa: Unravelling local adaptation. Soil 2015, 1, 491. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Swaminathan, M. Hunger in Africa: The link between unhealthy people and unhealthy soils. Lancet 2005, 365, 442–444. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liu, Y.M.; Zhang, W.; Chen, X.P.; Zou, C.Q. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 2017, 9, 465. [Google Scholar]
- De Valença, A.; Bake, A.; Brouwer, I.; Giller, K. Agronomic biofortification of crops to fight hidden hunger in sub-saharan africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, Y.; Rashid, A.; Ram, H.; Savasli, E.; Arisoy, R.; Ortiz-Monasterio, I.; Simunji, S.; Wang, Z.; Sohu, V. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 2012, 361, 119–130. [Google Scholar] [CrossRef]
- Wang, J.; Mao, H.; Zhao, H.; Huang, D.; Wang, Z. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in loess plateau, china. Field Crop. Res. 2012, 135, 89–96. [Google Scholar] [CrossRef]
- Phattarakul, N.; Rerkasem, B.; Li, L.; Wu, L.; Zou, C.; Ram, H.; Sohu, V.; Kang, B.; Surek, H.; Kalayci, M. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 2012, 361, 131–141. [Google Scholar] [CrossRef]
- Manzeke, G.M.; Mtambanengwe, F.; Nezomba, H.; Mapfumo, P. Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crop. Res. 2014, 166, 128–136. [Google Scholar] [CrossRef]
- Sunanda, L.; Sumathi, S.; Venkatasubbaiah, V. Relationship between soil zinc, dietary zinc and zinc nutritional status of humans. Plant Foods Hum. Nutr. (Formerly Qual. Plant.) 1995, 48, 201–207. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Africa Soil Information Service. Soil Nutrient Maps. Available online: http://africasoils.net/ (accessed on 10 August 2017).
- Population Census Commission. Summary and Statistical Report of the 2007 Population and Housing Census. Population Size by Age and Sex; Population Census Commission: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Lohr, S. Sampling: Design and Analysis; Duxbury Press: Albany, NY, USA, 1999. [Google Scholar]
- IZiNCG. Assessing Population Zinc Status with Serum ZINC Concentration; IZiNCG: Oakland, CA, USA, 2012; pp. 1–4. [Google Scholar]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lonnerdal, B.; Ruel, M.T.; Sandtrom, B.; Wasantwisut, E.; Hotz, C. International zinc nutrition consultative group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- Suchdev, P.S.; Namaste, S.M.L.; Aaron, G.J.; Raiten, D.J.; Brown, K.H.; Flores-Ayala, R.; Grp, B.W. Overview of the biomarkers reflecting inflammation and nutritional determinants of anemia (Brinda) project. Adv. Nutr. 2016, 7, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Namaste, S.M.L.; Aaron, G.J.; Varadhan, R.; Peerson, J.M.; Suchdev, P.S.; Grp, B.W. Methodologic approach for the biomarkers reflecting inflammation and nutritional determinants of anemia (Brinda) project. Am. J. Clin. Nutr. 2017, 106, 333s–347s. [Google Scholar] [PubMed]
- Larson, L.M.; Addo, O.Y.; Sandalinas, F.; Faigao, K.; Kupka, R.; Flores-Ayala, R.; Suchdev, P.S. Accounting for the influence of inflammation on retinol-binding protein in a population survey of Liberian preschool-age children. Matern. Child Nutr. 2017, 13. [Google Scholar] [CrossRef]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef]
- World Health Organization. Indicators for Assessing Infant and Young Child Feeding Practices: Part 2: Measurement; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Ballard, T.J.; Kepple, A.W.; Cafiero, C. The Food Insecurity Experience Scale: Development of a Global Standard for Monitoring Hunger Worldwide; FAO: Rome, Italy, 2013. [Google Scholar]
- WHO. Child Growth Standards 2006; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. Soilgrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—Or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115–132. [Google Scholar] [PubMed]
- Ethiopian Ministry of Agriculture and Natural Resource. Fertilizer Blending Plant Initiative Matches Inputs and Soil. Available online: http://ethioagp.org/fertilizer-blending-plant-initiative/ (accessed on 20 September 2017).
- IZiNCG. Countries with Serum Zinc Data. Available online: http://www.izincg.org/countries-serum-zinc-data/ (accessed on 21 October 2017).
- Laillou, A.; Pham, T.V.; Tran, N.T.; Le, H.T.; Wieringa, F.; Rohner, F.; Fortin, S.; Le, M.B.; Tran do, T.; Moench-Pfanner, R.; et al. Micronutrient deficits are still public health issues among women and young children in vietnam. PLoS ONE 2012, 7, e34906. [Google Scholar] [CrossRef] [PubMed]
- Engle-Stone, R.; Ndjebayi, A.O.; Nankap, M.; Killilea, D.W.; Brown, K.H. Stunting prevalence, plasma zinc concentrations and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in Cameroon. J. Nutr. 2014, 144, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Huey, S.L.; Mehta, S. Stunting: The need for application of advances in technology to understand a complex health problem. EBioMedicine 2016, 6, 26–27. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.H. Effect of infections on plasma zinc concentration and implications for zinc status assessment in low-income countries. Am. J. Clin. Nutr. 1998, 68, 425S–429S. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef] [PubMed]
- IZiNCG. The Value of Measuring Plasma or Zinc Concentrations in National Surveys; IZiNCG: Oakland, CA, USA, 2018. [Google Scholar]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of nutrition for development (bond)—zinc review–5. J. Nutr. 2015, 146, 858S–885S. [Google Scholar] [CrossRef] [PubMed]
- Kujinga, P.; Galetti, V.; Onyango, E.; Jakab, V.; Buerkli, S.; Andang’o, P.; Brouwer, I.D.; Zimmermann, M.B.; Moretti, D. Effectiveness of zinc-fortified water on zinc intake, status and morbidity in kenyan pre-school children: A randomised controlled trial. Public Health Nutr. 2018, 21, 2855–2865. [Google Scholar] [CrossRef]
Indicators | N | Median (25th, 75th Percentiles) or % |
---|---|---|
Age in months | 1776 | 36 (24, 48) |
Age categories | ||
Age (6–11 months) | 118 | 7% |
Age (12–23 months) | 288 | 16% |
Age (24–59 months) | 1370 | 77% |
Sex (female) | 1776 | 48% |
Child had diarrhoea in preceding two weeks | 1776 | 15% |
Child received medication during the diarrheal episode | 1776 | 5% |
Child consumed meat or meat products in the last 24 h | 1776 | 11% |
Unadjusted serum zinc (μg/dL) | 1171 | 74.1 (63.4, 87.4) |
AGP (g/L) | 1180 | 0.95 (0.75, 1.20) |
CRP (mg/L) | 1164 | 0.64 (0.25, 2.20) |
Percentage of Households on Zinc-Deficient Soils (<1.5 mg/kg), n = 1298 | Prevalence Serum Zinc Deficiency 1 (<65 μg/dL), n = 1171 | Prevalence of Stunting (HAZ < −2.0), n = 1673 | ||
---|---|---|---|---|
Unadjusted | Adjusted 2,3 | |||
Region | ||||
Tigray | 50 | 36 | 29 | 44 |
Afar | 87 | 40 | 34 | 31 |
Amhara | 25 | 30 | 28 | 42 |
Oromia | 17 | 25 | 22 | 35 |
Somali | 33 | 24 | 22 | 36 |
Benishangul | 15 | 20 | 16 | 36 |
SNNPR | 2 | 29 | 22 | 37 |
Gambella | 42 | 13 | 11 | 21 |
Harari | 46 | 32 | 28 | 29 |
Addis Ababa | 25 | 60 | 60 | 16 |
Dire Dawa | 20 | 29 | 29 | 32 |
Age group | ||||
Age (6–11 months) Age (12–23 months) Age (24–59 months) | 31 24 18 | 28 26 28 | 20 24 24 | 6 34 41 |
Sex | ||||
Boys | 20 | 26 | 23 | 41 |
Girls | 20 | 29 | 25 | 34 |
Residence | ||||
Urban | 24 | 32 | 25 | 26 |
Rural | 20 | 27 | 24 | 39 |
National prevalence 4 | 20 | 28 | 24 | 38 |
Indicators | Soil Zinc | Serum Zinc | AGP | CRP | HAZ | WHZ | Diarrhoea |
---|---|---|---|---|---|---|---|
Serum zinc (µg/dL) | 0.09 ** | ||||||
AGP (g/L) 1 | 0.12 ** | −0.08 * | |||||
CRP (mg/L) 2 | 0.07 * | -0.05 | 0.55 ** | ||||
HAZ 3 | −0.03 | 0.02 | 0.02 | −0.03 | |||
WHZ 4 | 0.08 ** | 0.02 | −0.01 | −0.0006 | −0.05 * | ||
Diarrhoea | 0.06 ** | −0.05 | 0.08** | −0.001 | −0.01 | −0.07 ** | |
FIES 5 | −0.03 | 0.0001 | 0.04 | −0.02 | −0.02 | −0.07 * | 0.09 ** |
Fixed Effects | Estimate 1 | SE | p |
---|---|---|---|
Soil zinc (mg/kg) | 0.9 | 0.4 | 0.020 |
Diarrhoea in past two weeks | −1.9 | 1.8 | 0.284 |
CRP (mg/L) and AGP (g/L) (ref = normal) | |||
Elevated CRP only (mg /L) | −4.4 | 6.5 | 0.503 |
Elevated AGP only (g/L) | −4.1 | 1.4 | 0.003 |
Elevated AGP (g/L) and CRP (mg/L) | −6.8 | 2.0 | 0.0008 |
Age in months (Ref = 6–11 months) | |||
Age category 2 (12–23 months) | −1.5 | 3.5 | 0.655 |
Age category 3 (24–59 months) | −1.2 | 3.1 | 0.702 |
Sex of child (female) | −1.9 | 1.2 | 0.127 |
Wealth status (Ref = wealthier) | |||
Wealth status (poorer) | 1.8 | 1.8 | 0.301 |
Wealth status (medium) | 2.6 | 1.6 | 0.111 |
Time since most recent meal (hr) | −6.3 | 3.3 | 0.057 |
FIES 2 | −0.1 | 0.2 | 0.693 |
Consumption of meat or meat products in the last 24 h | −3.0 | 2.0 | 0.136 |
Random effects | |||
Intercept (cluster) | 29.7 | 11.5 | 0.0049 |
Model 1 2 | Model 2 2 | |||||
---|---|---|---|---|---|---|
Fixed Effects | Estimate | SE | p | Estimate | SE | p |
Soil zinc (mg/kg) | 0.02 | 0.03 | 0.6035 | 0.02 | 0.03 | 0.522 |
Serum zinc (μg/dL) | −0.002 | 0.003 | 0.506 | |||
Diarrhoea in past two weeks | −0.30 | 0.16 | 0.0654 | −0.3 | 0.2 | 0.091 |
CRP (mg/L) and AGP (g/L) (Ref = normal) | ||||||
Elevated CRP only (mg/L) | 0.01 | 0.57 | 0.9842 | −0.11 | 0.60 | 0.848 |
Elevated AGP only (g/L) | −0.09 | 0.13 | 0.4751 | −0.04 | 0.13 | 0.753 |
Elevated CRP (mg/L) and AGP (g/L) | −0.10 | 0.18 | 0.5839 | −0.05 | 0.19 | 0.781 |
Age in months (Ref = 6–11 months) | ||||||
Age category 2 (12–23 months) | −0.40 | 0.3 | 0.199 | −38 | 0.32 | 0.235 |
Age category 3 (24–59 months) | −1.1 | 0.3 | <0.0001 | −1.1 | 0.28 | <0.0001 |
Sex (female) | 0.2 | 0.1 | 0.054 | 0.2 | 0.12 | 0.036 |
Wealth status (Ref = wealthier) | ||||||
Wealth status (poorer) | −0.2 | 0.2 | 0.214 | −0.13 | 0.16 | 0.435 |
Wealth status (medium) | −0.2 | 0.1 | 0.269 | −0.11 | 0.15 | 0.451 |
FIES 3 | −0.02 | 0.02 | 0.286 | −0.03 | 0.02 | 0.175 |
Random effects | ||||||
Intercept(cluster) | 0.2 | 0.1 | 0.007 | 0.2 | 0.08 | 0.009 |
Model 1 2 | Model 2 2 | |||||
---|---|---|---|---|---|---|
Fixed Effects | Estimate | SE | p | Estimate | SE | p |
Soil zinc (mg/kg) | 0.05 | 0.02 | 0.026 | 0.05 | 0.023 | 0.045 |
Serum zinc (μg/dL) | 0.002 | 0.002 | 0.488 | |||
Diarrhoea in past two weeks | −0.16 | 0.12 | 0.162 | −0.184 | 0.118 | 0.121 |
CRP (mg/L) and AGP (g/L) (Ref = normal) | ||||||
Elevated CRP only (mg/L) | −0.14 | 0.40 | 0.737 | −0.104 | 0.426 | 0.808 |
Elevated AGP only (g/L) | 0.04 | 0.09 | 0.694 | 0.037 | 0.093 | 0.687 |
Elevated CRP (mg/L) and AGP (g/L) | −0.01 | 0.13 | 0.916 | −0.0002 | 0.134 | 0.999 |
Age in months (Ref = 6–11 months) | ||||||
Age category 2(12–23 months) | −0.04 | 0.23 | 0.846 | −0.020 | 0.228 | 0.931 |
Age category 3 (24–59 months) | 0.07 | 0.20 | 0.734 | 0.044 | 0.201 | 0.827 |
Sex (female) | −0.03 | 0.08 | 0.717 | −0.031 | 0.082 | 0.704 |
Wealth status (Ref = wealthier) | ||||||
Wealth status (poorer) | −0.40 | 0.11 | 0.001 | −0.434 | 0.117 | 0.0002 |
Wealth status (medium) | −0.09 | 0.10 | 0.366 | −0.141 | 0.107 | 0.187 |
FIES 3 | 0.01 | 0.02 | 0.703 | 0.008 | 0.015 | 0.604 |
Random effects | ||||||
Intercept(cluster) | 0.12 | 0.05 | 0.005 | 0.124 | 0.048 | 0.005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, M.; De Groote, H.; D. Brouwer, I.; J.M. Feskens, E.; Belachew, T.; Zerfu, D.; Belay, A.; Demelash, Y.; S. Gunaratna, N. Soil Zinc Is Associated with Serum Zinc But Not with Linear Growth of Children in Ethiopia. Nutrients 2019, 11, 221. https://doi.org/10.3390/nu11020221
Tessema M, De Groote H, D. Brouwer I, J.M. Feskens E, Belachew T, Zerfu D, Belay A, Demelash Y, S. Gunaratna N. Soil Zinc Is Associated with Serum Zinc But Not with Linear Growth of Children in Ethiopia. Nutrients. 2019; 11(2):221. https://doi.org/10.3390/nu11020221
Chicago/Turabian StyleTessema, Masresha, Hugo De Groote, Inge D. Brouwer, Edith J.M. Feskens, Tefera Belachew, Dilnesaw Zerfu, Adamu Belay, Yoseph Demelash, and Nilupa S. Gunaratna. 2019. "Soil Zinc Is Associated with Serum Zinc But Not with Linear Growth of Children in Ethiopia" Nutrients 11, no. 2: 221. https://doi.org/10.3390/nu11020221
APA StyleTessema, M., De Groote, H., D. Brouwer, I., J.M. Feskens, E., Belachew, T., Zerfu, D., Belay, A., Demelash, Y., & S. Gunaratna, N. (2019). Soil Zinc Is Associated with Serum Zinc But Not with Linear Growth of Children in Ethiopia. Nutrients, 11(2), 221. https://doi.org/10.3390/nu11020221