Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects
Abstract
:1. Introduction
2. Methods of Isolation, Characterization, and Determination of Antioxidative, Antimicrobial, and Antigenotoxic Potentials of Main Chemical Compounds in Hops
2.1. Isolation of Main Chemical Compounds from Hops
2.2. Analytical Methods
2.3. Methods and Techniques for Determination of Antioxidative Activity
2.4. Methods and Techniques for Determination of Antimicrobial Potential
2.5. Methods for Determination of (Anti)Genotoxic Potential
3. Main Chemical Compounds of Hops and Their Biological Effects
3.1. Soft Resins (Bitter Acids)
3.2. Polyphenols
3.2.1. Prenylflavonoids
3.2.2. Catechins
3.2.3. Flavonols
3.2.4. Multifidol and Multifidol Glucosides
3.2.5. Phenolic Acids: Ferulic Acid
3.2.6. Stilbenes: Resveratrol
3.3. Essential Oils
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3MH | 3-mercaptohexan-1-ol |
4MMP | 4-methyl-4-mercaptopentan-2-one |
8-PN | 8-prenylnaringenin |
BaP | benzo[a]pyrene |
BMP7 | bone morphogenetic protein 7 |
CB(1,2) | cannabinoid receptor 1, 2 |
CBMN | cytokinesis-block micronucleus |
DPPH* | 2,2-diphenyl-1-picrylhydrazyl radical |
EBV-EA | Epstein–Barr virus early antigen |
EGCG | epigallocatechin gallate |
FGP | formamidopyrimidine DNA glycosylase |
GC | gas chromatography |
GC–MS | gas chromatography coupled with mass spectrometry |
HDPE | high-density polyethylene |
HPLC | high-performance liquid chromatography |
IQ | 2-amino-3-methyl-3H-imidazo[4,5-ƒ]quinolin |
LCO2 | liquid carbon dioxide |
LDPE | low-density polyethylene |
LTQ-Orbitrap-MS | ion trap quadrupole-Orbitrap-mass spectrometry |
MAPK | mitogen-activated protein kinase |
MHBA | matured hop bitter acids |
MMP-9 | matrix metalloproteinase |
MNi | micronucleus index |
MS/MS | two-stage mass analysis |
MSn | multi-stage mass analysis |
NBUDs | nuclear buds |
NPBs | nucleoplasmic bridges |
PCR | polymerase-chain-reaction |
PE | polyethylene |
PVPP | polyvinylpolypyrrolidone |
ROS | reactive oxygen species |
SCF | supercritical fluid |
TPA | 12-O-tetradecanoyl phorbol-13-acetat |
XN | xanthohumol |
References
- Sawadogo, W.R.; Schumacher, M.; Teiten, M.H.; Dicato, M.; Diederich, M. Traditional West African pharmacopeia, plants and derived compounds for cancer therapy. Biochem. Pharmacol. 2012, 84, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Labadie, R.P.; Van Der Nat, J.M.; Simons, J.M.; Kroes, B.H.; Kosasi, S.; Van Den Berg, A.J.; Hart, L.A.; Van Der Sluis, W.G.; Abeysekera, A.; Bamunuarachchi, A.; et al. An ethnopharmacognostic approach to the search for immunomodulators of plant origin. Planta Med. 1989, 55, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.; Drake, V.J. An Evidence-Based Approach to Phytochemicals and Other Dietary Factors; Thieme Publishing Group: Stuttgart, Germany, 2012. [Google Scholar]
- Zanoli, P.; Zavatti, M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Prins, S.J.; Bates, L.M.; Keyes, K.M.; Muntaner, C. Anxious? Depressed? You might be suffering from capitalism: Contradictory class locations and the prevalence of depression and anxiety in the United States. Sociol. Health Illn. 2015, 37, 1352–1372. [Google Scholar] [CrossRef] [PubMed]
- Eyer, J. Social Causes of Coronary Heart Disease. Psychother. Psychosom. 1980, 34, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Biendl, M.; Pinzl, C. Hops and health Uses-Effects-History, 2nd updated ed.; German Hop Museum Wonlzach: Wonlzach, Germany, 2013. [Google Scholar]
- Helmja, K.; Vaher, M.; Püssa, T.; Kamsol, K.; Orav, A.; Kaljurand, M. Bioactive components of the hop strobilus: Comparison of different extraction methods by capillary electrophoretic and chromatographic methods. J. Chromatogr. A 2007, 1155, 222–229. [Google Scholar] [CrossRef]
- Marriott, J.R. Flavours-Greener chemistry preparation of traditional flavour extracts and molecules. Agro Food Ind. Hi-Tech 2010, 21, 46. [Google Scholar]
- Daoud, I.S.; Kusinski, S. Process aspects of the extraction of hops with liquid carbon dioxide. Inst. Brew. 1986, 92, 559–567. [Google Scholar] [CrossRef]
- Green, C.P.; Osborne, P. Rapid methods for obtaining essential oil from hops. J. Inst. Brew. 1993, 99, 335–339. [Google Scholar] [CrossRef]
- Von Horst, L.A.F.; Kellner, M. Thin Layer Steam Distillation of Hop Oil Extract. U.S. Patent No. 3436319A, 1969. [Google Scholar]
- Pekhov, A.V.; Ponomaresko, I.Y.A.; Prokopchuk, A.F. Thin Layer Steam Distillation of Hop Oil Extract. USSR Patent 167798, 1965. [Google Scholar]
- Laws, D.R.J.; Bath, N.A.; Pickett, J.A.; Ennis, C.S.; Wheldon, A.G. Preparation of Hop Extracts Without Using Organic Solvents. J. Inst. Brew. 1977, 83, 39–40. [Google Scholar] [CrossRef]
- Muller, A. Deutsche Auslegeschrift 2827002, 1978.
- Grant, H.L. UK Patent Application GB 2114117A, 1983.
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- He, G.-Q.; Xiong, H.-P.; Chen, Q.-H.; Ruan, H.; Wang, Z.-Y.; Traore, L. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.). J. Zhejiang Univ. Sci. B 2005, 6, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Formato, A.; Gallo, M.; Ianniello, D.; Montesano, D.; Naviglio, D. Supercritical fluid extraction of α and β acids from hops compared to cyclically pressurized solid–liquid extraction. J. Supercrit. Fluids 2013, 84, 113–120. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [Green Version]
- Ligor, M.; Stankevičius, M.; Wenda-Piesik, A.; Obelevičius, K.; Ragažinskienė, O.; Stanius, Ž.; Maruška, A.; Buszewski, B. Comparative Gas Chromatographic–Mass Spectrometric Evaluation of Hop (Humulus lupulus L.) Essential Oils and Extracts Obtained Using Different Sample Preparation Methods. Food Anal. Methods 2014, 7, 1433–1442. [Google Scholar] [CrossRef]
- Sixt, M.; Koudous, I.; Strube, J. Process design for integration of extraction, purification and formulation with alternative solvent concepts. Comptes Rendus Chim. 2016, 19, 733–748. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez-Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- De Vos, D.; Mertens, P. United States Patent Application 20170037346, 2011.
- Ochiai, N.; Sasamoto, K.; Kishimoto, T. Development of a Method for the Quantitation of Three Thiols in Beer, Hop, and Wort Samples by Stir Bar Sorptive Extraction with in Situ Derivatization and Thermal Desorption–Gas Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 6698–6706. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Matsukura, Y.; Taniguchi, H.; Koizumi, H.; Katayama, M. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components. Biosci. Biotechnol. Biochem. 2015, 79, 1684–1694. [Google Scholar] [CrossRef] [PubMed]
- Sohrabvandi, S.; Mortazavian, A.M.; Rezaei, K. Advanced Analytical Methods For The Analysis of Chemical And Microbiological Properties of Beer. J. Food Drug Anal. 2011, 19, 202–222. [Google Scholar]
- Quifer-Rada, P.; Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC–ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Paunović, D.Đ.; Mitić, S.S.; Stojanović, G.S.; Mitić, M.N.; Stojanović, B.T.; Stojković, M.B. Kinetics of the Solid-Liquid Extraction Process of Phenolic Antioxidants and Antioxidant Capacity from Hop (Humulus lupulus L. Separ. Sci. Technol. 2015, 50, 1658–1664. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.; Lluis, J.; Fité, B.; Paseiro-Losada, P.; Cruz, J.M. Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chem. 2014, 145, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Smole Mozina, S.; Kosir, I.J.; Kac, M.; Demšar, L.; et al. A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind. Crop. Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Spreng, S.; Hofmann, T. Activity-Guided Identification of in Vitro Antioxidants in Beer. J. Agric. Food Chem. 2018, 66, 720–731. [Google Scholar] [CrossRef]
- Teuber, M.; Schmalreck, A.F. Membrane Leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Arch. Microbiol. 1973, 94, 159–171. [Google Scholar] [CrossRef]
- Dušek, M.; Jandovská, V.; Čermák, P.; Mikyška, A.; Olšovská, J. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops. Talanta 2016, 156–157, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Bartmańska, A.; Wałecka-Zacharska, E.; Tronina, T.; Popłoński, J.; Sordon, S.; Brzezowska, E.; Bania, J.; Huszcza, E. Antimicrobial Properties of Spent Hops Extracts, Flavonoids Isolated Therefrom, and Their Derivatives. Molecules 2018, 23, 2059. [Google Scholar] [CrossRef] [PubMed]
- Rauha, J.-P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Groppo, F.C.; Bergamaschi, C.D.C.; Cogo, K.; Franz-Montan, M.; Motta, R.H.L.; De Andrade, E.D.; Cogo-Muller, K.; Franz-Montan, M. Use of phytotherapy in dentistry. Phytother. Res. 2008, 22, 993–998. [Google Scholar] [CrossRef]
- Shelef, L.A.; Naglik, O.A.; Bogen, D.W. Sensitivity of some common food-borne bacteria to the spices sage, rosemary, and allspice. J. Food Sci. 1980, 45, 1042–1044. [Google Scholar] [CrossRef]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Vaughan, A.; O’Sullivan, T.; van Sinderen, D. Enhancing the microbiological stability of malt and beer—A review. J. Inst. Brew. 2005, 111, 355–371. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [Green Version]
- Brantner, A.; Grein, E. Antibacterial activity of plant extracts used externally in traditional medicine. J. Ethnopharmacol. 1994, 44, 35–40. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Spanou, C.; Bourou, G.; Dervishi, A.; Aligiannis, N.; Angelis, A.; Komiotis, D.; Skaltsounis, A.L.; Kouretas, D. Antioxidant and Chemopreventive Properties of Polyphenolic Compounds Derived from Greek Legume Plant Extracts. J. Agric. Food Chem. 2008, 56, 6967–6976. [Google Scholar] [CrossRef] [PubMed]
- Rój, E.; Tadić, V.M.; Mišić, D.; Žižović, I.; Arsić, I.; Dobrzyńska-Inger, A.; Kostrzewa, D. Supercritical carbon dioxide hops extracts with antimicrobial properties. Open Chem. 2015, 13, 1157–1171. [Google Scholar] [CrossRef]
- Di Sotto, A.; Di Giacomo, S.; Abete, L.; Božović, M.; Parisi, O.A.; Barile, F.; Vitalone, A.; Izzo, A.A.; Ragno, R.; Mazzanti, G. Genotoxicity assessment of piperitenone oxide: An in vitro and in silico evaluation. Food Chem. Toxicol. 2017, 106, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Plazar, J. Mechanism of Antigenotoxic Activity of Xanthohumol and Related Prenylflavonoids from Hops (Humulus lupulus L.). Dissertation Thesis, Nacionalni inštitut za biologijo, Ljubljana, Slovenia, 2007. [Google Scholar]
- Hennig, B.; Petriello, M.C.; Gamble, M.V.; Surh, Y.J.; Kresty, L.A.; Frank, N.; Rangkadilok, N.; Ruchirawat, M.; Suk, W.A. The role of nutrition in influencing mechanisms involved in environmentally mediated diseases. Rev. Environ. Health 2018, 33, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta 2014, 1840, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Koppen, G.; Valdiglesias, V.; Dusinska, M.; Kruszewski, M.; Møller, P.; Rojas, E.; Dhawan, A.; Benzie, I.; Coskun, E.; et al. The comet assay as a tool for human biomonitoring studies: The ComNet Project. Mutat. Res. 2014, 759, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Staruchova, M.; Collins, A.R.; Volkovova, K.; Mislanová, C.; Kovacikova, Z.; Tulinska, J.; Kocan, A.; Staruch, L.; Wsolova, L.; Dusinska, M. Occupational exposure to mineral fibres. Biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair. Mutagenesis 2008, 23, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.R.; Azqueta, A. DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat. Res. 2012, 736, 122–129. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat. Res. 2006, 600, 58–66. [Google Scholar] [CrossRef]
- Novak, M.; Žegura, B.; Modic, B.; Heath, E.; Filipič, M. Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. Sci. Total Environ. 2017, 601–602, 293–300. [Google Scholar] [CrossRef]
- Neiens, S.D.; Steinhaus, M. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris. J. Agric. Food Chem. 2018, 66, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Štulíková, K.; Karabín, M.; Nešpor, J.; Dostálek, P. Therapeutic Perspectives of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops. Molecules 2018, 23, 660. [Google Scholar] [CrossRef]
- Mutlu Altundağ, E.; Yılmaz, A.M.; Koçtürk, S.; Taga, Y.; Yalçın, A.S. Synergistic Induction of Apoptosis by Quercetin and Curcumin in Chronic Myeloid Leukemia (K562) Cells. Nutr. Cancer 2018, 70, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Van Cleemput, M.; Cattoor, K.; De Bosscher, K.; Haegeman, G.; De Keukeleire, D.; Heyerick, A. Hop (Humulus lupulus)-Derived Bitter Acids as Multipotent Bioactive Compounds. J. Nat. Prod. 2009, 72, 1220–1230. [Google Scholar] [CrossRef]
- Pichler, C.; Ferk, F.; Al-Serori, H.; Huber, W.; Jäger, W.; Waldherr, M.; Mišík, M.; Kundi, M.; Nersesyan, A.; Herbacek, I.; et al. Xanthohumol Prevents DNA Damage by Dietary Carcinogens: Results of a Human Intervention Trial. Cancer Prev. Res. 2017, 10, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Jiang, J.; Xong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalobos-Delgado, L.H.; Caro, I.; Blanco, C.; Bodas, R.; Andrés, S.; Giráldez, F.J.; Mateo, J. Effect of the addition of hop (infusion or powder) on the oxidative stability of lean lamb patties during storage. Small Ruminant Res. 2015, 125, 73–80. [Google Scholar] [CrossRef] [Green Version]
- De Keukeleire, J.; Ooms, G.; Heyerick, A.; Roldan-Ruiz, I.; Van Bockstaele, E.; De Keukeleire, D. Formation and accumulation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.). J. Agric. Food Chem. 2003, 51, 4436–4441. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Ito, K. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.). Biosci. Biotechnol. Biochem. 2001, 65, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 2006, 13, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Lamy, V.; Roussi, S.; Chaabi, M.; Gossé, F.; Schall, N.; Lobstein, A.; Raul, F. Chemopreventive effects of lupulone, a hop β-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 2007, 28, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Inui, T.; Oka, K.; Fukui, N. The influence of pruning and harvest timing on hop aroma, cone appearance, and yield. Food Chem. 2016, 202, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Schurr, B.C.; Hahne, H.; Kuster, B.; Behr, J.; Vogel, R.F. Molecular mechanisms behind the antimicrobial activity of hop iso-a-acids in Lactobacillus brevis. Food Microbiol. 2015, 46, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Kurasawa, T.; Chikaraishi, Y.; Naito, A.; Toyoda, Y.; Notsu, Y. Effect of Humulus lupulus on Gastric Secretion in Rat Pylorus-Ligated Model. Biol. Pharm. Bull. 2005, 28, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Hell, J.; Liszt, K.I.; Dresel, M.; Pignitter, M.; Hofmann, T.; Somoza, V. Identification of Beer Bitter Acids Regulating Mechanisms of Gastric Acid Secretion. J. Agric. Food Chem. 2012, 60, 1405–1412. [Google Scholar] [CrossRef]
- Schiller, H.; Forster, A.; Vonhoff, C.; Hegger, M.; Biller, A.; Winterhoff, H. Sedating effects of Humulus lupulus L. extracts. Phytomedicine 2006, 13, 535–541. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Menten, J.F.M.; Silveira, H.; Melo, A.D.B.; Rostagno, M.H. Hops β-acids (Humulus lupulus) decrease intestinal gene expression of proinflammatory cytokines in an ex-vivo model. J. Appl. Poult. Res. 2016, 25, 191–196. [Google Scholar] [CrossRef]
- Sandoval-Ramírez, B.A.; Lamuela-Raventós, R.M.; Estruch, R.; Sasot, G.; Doménech, M.; Tresserra-Rimbau, A. Beer Polyphenols and Menopause: Effects and Mechanisms-A Review of Current Knowledge. Oxid. Med. Cell Longev. 2017, 2017, 4749131:1–4749131:9. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Lin, J.K. Mechanisms of Cancer Chemoprevention by Hop Bitter Acids (Beer Aroma) through Induction of Apoptosis Mediated by Fas and Caspase Cascades. J. Agric. Food Chem. 2004, 52, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lamy, V.; Roussi, S.; Chaabi, M.; Gossé, F.; Lobstein, A.; Raul, F. Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 2008, 13, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Lamy, V.; Bousserouel, S.; Gossé, F.; Minker, C.; Lobstein, A.; Raul, F. Lupulone triggers p38 MAPK-controlled activation of p53 and of the TRAIL receptor apoptotic pathway in human colon cancer-derived metastatic cells. Oncol. Rep. 2011, 26, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Saugspier, M.; Dorn, C.; Czech, B.; Gehrig, M.; Heilmann, J.; Hellerbrand, C. Hop bitter acids inhibit tumorigenicity of hepatocellular carcinoma cells in vitro. Oncol. Rep. 2012, 28, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef] [Green Version]
- Hougee, S.; Faber, J.; Sanders, A.; van den Berg, W.B.; Garssen, J.; Smit, H.F.; Hoijer, M.A. Selective inhibition of COX-2 by a standardized CO 2 extract of Humulus lupulus in vitro and its activity in a mouse model of zymosan-induced arthritis. Planta Med. 2006, 72, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Kundu, J.K.; Hwang, D.M.; Na, H.K.; Surh, Y.J. Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-kappa B and AP-1: I kappa B kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 2007, 28, 1491–1498. [Google Scholar] [CrossRef]
- Hsu, C.H.; Ho, Y.S.; Lai, C.S.; Hsieh, S.C.; Chen, L.H.; Lin, E.; Ho, C.T.; Pan, M.H. Hexahydro-β-acids potently inhibit 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice. J. Agric. Food Chem. 2013, 61, 11541–11549. [Google Scholar] [CrossRef]
- Akazawa, H.; Kohno, H.; Tokuda, H.; Suzuki, N.; Yasukawa, K.; Kimura, Y.; Manosroi, A.; Manosroi, J.; Akihisa, T. Anti-Inflammatory and Anti-Tumor-Promoting Effects of 5-Deprenyllupulonol C and Other Compounds from Hop (Humulus lupulus L.). Chem. Biodivers. 2012, 9, 1045–1054. [Google Scholar] [CrossRef]
- Menezes, J.C.; Orlikova, B.; Morceau, F.; Diederich, M. Natural and Synthetic Flavonoids: Structure Activity Relationship and Chemotherapeutic Potential for the Treatment of Leukemia. Crit. Rev. Food Sci. Nutr. 2016, 56, S4–S28. [Google Scholar] [CrossRef] [PubMed]
- Terao, J.; Mukai, R. Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Arch. Biochem. Biophys. 2014, 559, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Legette, I.; Ma, L.; Reed, R.L.; Miranda, C.L.; Christensen, J.M.; Rodriguez-Proteau, R.; Stevens, J.F. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res. 2012, 56, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Cattoor, K.; Bracke, D.; Deforce, D.; de Keukeleire, D.; Heyerick, A. Transport of hop bitter acids across intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 2010, 58, 4132–4140. [Google Scholar] [CrossRef]
- Konishi, Y.; Hitomi, Y.; Yodhida, M.; Yoshida, E. Absorption and bioavailability of artepillin C in rats after oral administration. J. Agric. Food Chem. 2005, 53, 9928–9933. [Google Scholar] [CrossRef] [PubMed]
- Mukai, R.; Horikawa, H.; Fujikura, Y.; Kawamura, T.; Nemoto, H.; Nikawa, T.; Terao, J. Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice. PLoS ONE 2012, 7, e45048. [Google Scholar] [CrossRef]
- Mukai, R.; Fujikura, Y.; Murota, K.; Uehara, M.; Minekawa, S.; Matsui, N.; Kawamura, T.; Nemoto, H.; Terao, J. Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J. Nutr. 2013, 143, 1558–1564. [Google Scholar] [CrossRef]
- Calvo-Castro, L.A.; Burkard, M.; Sus, N.; Scheubeck, G.; Leischner, C.; Lauer, U.M.; Bosy-Westphal, A.; Hund, V.; Busch, C.; Venturelli, S.; et al. The Oral Bioavailability of 8-Prenylnaringenin from Hops (Humulus lupulus L.) in Healthy Women and Men is Significantly Higher than that of its Positional Isomer 6-Prenylnaringenin in a Randomized Crossover Trial. Mol. Nutr. Food Res. 2018, 62, e1700838. [Google Scholar] [CrossRef]
- Gerhäuser, C.; Alt, A.; Heiss, E.; Gamal-Eldeen, A.; Klimo, K.; Knauft, J.; Neumann, I.; Scherf, H.R.; Frank, N.; Bartsch, H.; et al. Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 2002, 1, 959–969. [Google Scholar]
- Miranda, C.L.; Aponso, G.I.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett. 2000, 149, 21–29. [Google Scholar] [CrossRef]
- Dietz, B.M.; Kang, Y.H.; Liu, G.; Eggler, A.L.; Yao, P.; Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R.; Mesecar, A.D.; van Breemen, R.B.; et al. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 2005, 18, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Gerhäuser, C. Phenolic beer compounds to prevent cancer. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier Inc.: San Diego, CA, USA, 2009; pp. 669–684. [Google Scholar]
- Harikumar, K.B.; Kunnumakkara, A.B.; Ahn, K.S.; Anand, P.; Krishnan, S.; Guha, S.; Aggarwa, B.B. Modification of the cysteine residues in IkB kinase and NF-kB (p65) by xanthohumol leads to suppression of NF-kB–regulated gene products and potentiation of apoptosis in leukemia cells. Blood 2009, 113, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Becker, H.; Gerhäuser, C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res. 2005, 49, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-Y.; Della-Fera, M.A.; Rayalam, S.; Baile, C.A. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis 2007, 12, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chu, W.; Wei, P.; Liu, Y.; Wei, T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med. 2015, 89, 486–497. [Google Scholar] [CrossRef]
- Mojzis, J.; Varinska, L.; Mojzisova, G.; Kostova, I.; Mirossay, L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol. Res. 2008, 57, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Stracke, D.; Schulz, T.; Prehm, P. Inhibitors of hyaluronan export from hops prevent osteoarthritic reactions. Mol. Nutr. Food Res. 2011, 55, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, H.; Nakao, W.; Zhao, F.; Kondo, K. Dietary supplement of isohumulones inhibits the formation of aberrrant crypt foci with a concomitant decrease in prostaglandin E2 level in rat colon. Mol. Nutr. Food Res. 2005, 49, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Rudzitis-Auth, J.; Körbel, C.; Scheuer, C.; Menger, M.D.; Laschke, M.W. Xanthohumol inhibits growth and vascularization of developing endometriotic lesions. Hum. Reprod. 2012, 27, 1735–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameh, S.J.; Ibekwe, N.N.; Ebeshi, B.U. Essential Oils in Ginger, Hops, Cloves, and Pepper Flavored Beverages–A Review. J. Dietary Suppl. 2015, 12, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Rad, M.; Hümpel, M.; Schaefer, O.; Schoemaker, R.C.; Schleuning, W.D.; Cohen, A.F.; Burggraaf, J. Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen 8-prenylnaringenin after single oral doses to postmenopausal women. Br. J. Clin. Pharmacol. 2006, 62, 288–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiler, A.M.; Macejova, D.; Dietz, B.M.; Bolton, J.L.; Pauli, G.F.; Chen, S.N.; van Breemen, R.B.; Nikolic, D.; Goerl, F.; Muders, M.H.; et al. Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. J. Steroid. Biochem. Mol. Biol. 2017, 174, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Erkkola, R.; Vervarcke, S.; Vansteelandt, S.; Rompotti, P.; De Keukeleire, D.; Heyerick, A. A randomized, double-blind, placebo-controlled, cross-over pilot study on the use of a standardized hop extract to alleviate menopausal discomforts. Phytomedicine 2010, 17, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, E.; Minassi, A.; Appendino, G.; Moro, L. 8-Prenylnaringenin, inhibits estrogen receptor-alfa mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2007, 107, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Delmulle, L.; Vanden Berghe, T.; De Keukeleire, D.; Vandenabeele, P. Treatment of PC-3 and DU145 Prostate Cancer Cells by Prenylflavonoids from Hop (Humulus lupulus L.) induces a Caspase-independent Form of Cell Death. Phytother. Res. 2008, 22, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Diller, R.A.; Riepl, H.M.; Rose, O.; Frias, C.; Henze, G.; Prokop, A. Synthesis of Demethylxanthohumol, a New Potent Apoptosis-Inducing Agent from Hops. Chem. Biodivers. 2005, 2, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Gerhauser, C. Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res. 2005, 49, 827–831. [Google Scholar] [CrossRef]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P.M. New Insights on the Anticancer Properties of Dietary Polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef]
- Kampa, M.; Nifli, A.-P.; Notas, G.; Castanas, E. Polyphenols and cancer cell growth. Rev. Physiol. Biochem. Pharmacol. 2007, 159, 79–113. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Peralta, R.M.; Haminiuk, C.W.I.; Maciel, G.M.; Bracht, A.; Ferreira, I.C.F.R. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 942–957. [Google Scholar] [CrossRef]
- Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Singh, P.R.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr. 2014, 33, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Tabrez, S.T.; Priyadarshini, M.; Urooj, M.; Shakil, S.; Ashraf, G.M.; Khan, M.S.; Kamal, M.A.; Alam, Q.; Jabir, N.R.; Abuzenadah, A.M.; et al. Cancer Chemoprevention by Polyphenols and Their Potential Application as Nanomedicine. J. Environ. Sci. Health Part C 2013, 31, 67–98. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stępkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem. 2015, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.; Russo, M.; Bilotto, S.; Tedesco, I.; Laratta, B.; Russo, G.L. Dietary polyphenols in cancer prevention: The example of the flavonoid quercetin in leukemia. Ann. N. Y. Acad. Sci. 2012, 1259, 95–103. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, J.R. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [Green Version]
- Segawa, S.; Yasui, K.; Takata, Y.; Kurihara, T.; Kaneda, H.; Watari, J. Flavonoid Glycosides Extracted from Hop (Humulus lupulus L.) as Inhibitors of Chemical Mediator Release from Human Basophilic KU812 Cells. Biosci. Biotechnol. Biochem. 2006, 70, 2990–2997. [Google Scholar] [CrossRef]
- Kosasi, S.; Van Der Sluism, W.G.; Labadie, R.P. Multifidol and Multifidol Glucoside From the Latex of Jatropha Multifida. Phytochemistry 1989, 28, 2439–2441. [Google Scholar] [CrossRef]
- Bohr, G.; Gerhäuser, C.; Knauft, J.; Zapp, J.; Becker, H. Anti-inflammatory Acylphloroglucinol Derivatives from Hops (Humulus lupulus). J. Nat. Prod. 2005, 68, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.-Y.; Chang, C.-S.; Yeh, W.-L.; Tang, C.-H.; Cheung, C.-W.; Leung, Y.-M.; Liu, J.-F.; Wong, K.-L. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine 2012, 19, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Dresel, M.; Dunkel, A.; Hofmann, T. Sensomics Analysis of Key Bitter Compounds in the Hard Resin of Hops (Humulus lupulus L.) and Their Contribution to the Bitter Profile of Pilsner-Type Beer. J. Agric. Food Chem. 2015, 63, 3402–3418. [Google Scholar] [CrossRef]
- Ghosh, S.; Basak, P.; Duttam, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol. 2017, 103, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Landau, J.M.; Huang, M.-T.; Newmark, H.L. Inhibition of carcinogenesis by dietary Polyphenolic compounds. Annu. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Torres, E.; Rodríguez, G.; Meneses-Morales, I.; Zarain-Herzberg, A. ATP2A3 gene as an important player for resveratrol anticancer activity in breast cancer cells. Mol. Carcinog. 2017, 56, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.H.; Zhou, L.Y.; Chen, Q.Z.; Li, Y.; Shao, Y.; Ren, W.Y.; Liao, Y.P.; Wang, H.; Zhu, J.H.; Huang, M.; et al. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol. Rep. 2017, 38, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta 2015, 1852, 1071–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, A.; Viel, C.; Reillon, F.; Delpech, S.; Boivin, P.; Schneider, R.; Dagan, L. First identification and quantification of glutathionylated and cysteinylated precursors of 3-mercaptohexan-1-ol and 4-methyl-4-mercaptopentan-2-one in hops (Humulus lupulus). Flavour. Fragr. J. 2016, 31, 455–463. [Google Scholar] [CrossRef]
- Kaškonas, P.; Stanius, Ž.; Kaškonienė, V.; Obelevičius, K.; Ragažinskienė, O.; Žilinskas, A.; Maruška, A. Clustering analysis of different hop varieties according to their essential oil composition measured by GC/MS. Chem. Pap. 2016, 70, 1568–1577. [Google Scholar] [CrossRef]
- Okaru, A.O.; Lachenmeier, D.W. The Food and Beverage Occurrence of Furfuryl Alcohol and Myrcene—Two Emerging Potential Human Carcinogens? Toxics 2017, 5, 9. [Google Scholar] [CrossRef]
- Mitić-Ćulafić, D.; Žegura, B.; Filipič, M.; Nikolić, B.; Jovanović, M.; Knežević-Vukčević, J. Antigenotoxic potential of plant monoterpenes linalool, myrcene and eucalyptol against IQ- and PhIP- induced DNA damage. Botanica Serbica 2016, 40, 37–42. [Google Scholar]
- Lee, J.-H.; Lee, K.; Lee, D.H.; Shin, S.Y.; Yong, Y.; Lee, Y.H. Anti-invasive effect of β-myrcene, a component of the essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 563–569. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Girardi, J.; Cosci, F.; Conti, B. Not just for beer: Evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. J. Pest. Sci. 2015, 88, 583–592. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, S.; Liu, X.; Gao, X. Synergistic Antitumor Effect of α-pinene and β-pinene with Paclitaxel against Non-small-cell Lung Carcinoma (NSCLC). Drug. Res. 2015, 65, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Peppard, T.L. Volatile Organosulphur Compounds in Hops and Hop Oils: A Review. J. Inst. Brew. 1981, 87, 376–385. [Google Scholar] [CrossRef]
- Guadagni, D.G.; Buttery, R.G.; Harris, J. Odour intensities of hop oil components. J. Sci. Food Agric. 1966, 17, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Cibaka, M.-L.K.; Decourrière, L.; Lorenzo-Alonso, C.-J.; Bodart, E.; Robiette, R.; Collin, S. 3-Sulfanyl-4-methylpentan-1-ol in Dry-Hopped Beers: First Evidence of Glutathione S-Conjugates in Hop (Humulus lupulus L.). J. Agric. Food Chem. 2016, 64, 8572–8582. [Google Scholar] [CrossRef] [PubMed]
- Unnadkat, N.R.; Elias, R.J. Oxidative Stability of (-)-Epigallocatechin Gallate in the Presence of Thiols. J. Agric. Food Chem. 2012, 60, 10815–10821. [Google Scholar] [CrossRef]
- Yun, J.-M.; Lian, W.-Q.; Pu, L.-M.; Xue, H.-L.; Ai, D.-Y.; Zhang, W.-W. Optimization of Extraction Process for Humulone and Lupulone from Hop Extract by Acid-Alkali Precipitation. Food Sci. 2012, 33, 6–10. [Google Scholar]
- Zekovic, Z.; Pfaf-Sovljanski, I.; Grujic, O. Supercritical Fluid Extraction of Hops. J. Serb. Chem. Soc. 2007, 72, 81–87. [Google Scholar] [CrossRef]
- Hudcová, T.; Bryndová, J.; Fialová, K.; Fiala, J.; Karabín, M.; Jelínek, L.; Dostálek, P. Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J. Inst. Brew. 2014, 120, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Gil-Ramírez, A.; Mendiola, J.A.; Arranz, E.; Ruíz-Rodríguez, A.; Reglero, G.; Ibáñez, E.; Marín, F.R. Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innov. Food Sci. Emerg. 2012, 16, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Perva-Uzunalic, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Gruner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Kishimoto, T.; Wanikawa, A.; Kagami, N.; Kawatsura, K. Analysis of hop-derived terpenoids in beer and evaluation of their behaviour using the stir bar sorptive extraction method with GC-MS. J. Agric. Food Chem. 2000, 48, 1776–1783. [Google Scholar]
- Buranov, A.U.; Mazza, G. Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem. 2009, 115, 1542–1548. [Google Scholar] [CrossRef]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J.; Horník, Š.; Cuřínová, P.; Sýkora, J. Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules 2015, 20, 6093–6112. [Google Scholar] [CrossRef] [PubMed]
- Lemberkovics, E.; Kéry, A.; Simándi, B.; Kakasy, A.; Balázs, A.; Héthelyi, E.; Szoke, E. Influence of extraction methods on the composition of essential oils. Acta Pharm. Hung. 2004, 74, 166–170. [Google Scholar]
- Wei, M.C.; Xiao, J.; Yang, Y.C. Extraction of α-humulene-enriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility. Food Chem. 2016, 10, 172–181. [Google Scholar] [CrossRef]
- Vinatoru, M.; Toma, M.; Radu, O.; Filip, P.I.; Lazurca, D.; Mason, T.J. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem. 1997, 4, 135–139. [Google Scholar] [CrossRef]
- Piano, F.; Fracassetti, D.; Buica, A.; Stander, M.; du Toit, W.J.; Borsa, D.; Tirelli, A. Development of a novel liquid/liquid extraction and ultra-performance liquid chromatography tandem mass spectrometry method for the assessment of thiols in South African Sauvignon Blanc wines. Aust. J. Grape Wine R. 2015, 21, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Russ, W.; Meyer-Pittroff, R. Utilizing waste products from food production and processing industries. Crit. Rev. Food Sci. 2004, 44, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Mastanjević, K.; Krstanović, V.; Lukinac, J.; Jukić, M.; Vulin, Z.; Mastanjević, K. Beer–The Importance of Colloidal Stability (Non-Biological Haze). Fermentation 2018, 4, 91. [Google Scholar] [CrossRef]
- Wietstock, P.C.; Glattfelder, R.; Garbe, L.A.; Methner, F.J. Characterization of the Migration of Hop Volatiles into Different Crown Cork Liner Polymers. J. Agric. Food. Chem. 2016, 64, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.S.; Ponte, B.M.; Boonme, P.; Silva, A.M.; Souto, E.B. Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer. Biotechnol. Adv. 2013, 31, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer prevention and therapy. Ann. N.Y. Acad. Sci. 2015, 1348, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Matsuda, N.; Kashino, Y.; Fujikura, Y.; Nakamura, T.; Kato, Y.; Shimizu, R.; Okuyam, S.; Tanaka, H.; Koda, T.; et al. alpha-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 2010, 501, 91–97. [Google Scholar] [CrossRef]
- Takumi, H.; Nakamura, H.; Simizu, T.; Harada, R.; Kometani, T.; Nadamoto, T.; Mukai, R.; Murota, K.Y.; Kawai, Y.; Terao, J. Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: Implication of endothelial functions of plasma conjugated metabolites. Food Funct. 2012, 3, 389–398. [Google Scholar] [CrossRef]
- Knez, Ž.; Knez Hrnčič, M.; Škerget, M. Particle Formation and Product Formulation Using Supercritical Fluids. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 379–407. [Google Scholar] [CrossRef]
- Lajovic, A.; Nagy, L.D.; Guengerich, F.P.; Bren, U. Carcinogenesis of urethane: Simulation versus experiment. Chem. Res. Toxicol. 2015, 28, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.L.; Bren, U.; Stone, M.P.; Guengerich, F.P. Inherent stereospecificity in the reaction of aflatoxin B1 8, 9-epoxide with deoxyguanosine and efficiency of DNA catalysis. Chem. Res. Toxicol. 2009, 22, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Galeša, K.; Bren, U.; Kranjc, A.; Mavri, J. Carcinogenicity of acrylamide: A computational study. J. Agric. Food Chem. 2008, 56, 8720–8727. [Google Scholar] [CrossRef] [PubMed]
- Gaussian.com Expanding the Limits of Computational Chemistry. Available online: http://gaussian.com/ (accessed on 28 November 2018).
- MOLDEN a Visualization Program of Molecular and Electronic structure. Available online: http://cheminf.cmbi.ru.nl/molden/ (accessed on 28 November 2018).
- Gladović, M.; Španinger, E.; Bren, U. Nucleic bases alkylation with acrylonitrile and cyanoethylene oxide: A computational study. Chem. Res. Toxicol. 2018, 31, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Class of Compounds | Compound | Extraction Method | Health Effects | References |
---|---|---|---|---|
α-acids | humulone | supercritical CO2 extraction, T = 40–50 °C and P = 150–400 bar, accelerated solvent extraction | promotion of gastric acid secretion, sedative effects, antioxidative action, apoptosis-inducing, inhibition of tumor promotion, inhibition of angiogenesis, reduction of proliferation, reduction of inflammation, antimicrobial effects | [8,61,66,74,78,81,82,84,146,147] |
β-acids | lupolone | supercritical CO2 extraction, T = 40–50 °C and P = 150–400 bar, accelerated solvent extraction | promoting gastric acid secretion, sedative effects, antimicrobial, anti-inflammatory, antioxidative effects, induction of apoptosis, inhibition of tumor promotion, inhibition of angiogenesis, reduction of proliferation, inhibition of tumor growth | [8,61,66,69,70,74,75,76,78,79,80,81,82,147] |
hexahydro-β-acids | supercritical CO2 extraction, T = 40–50 °C and P = 150–400 bar, accelerated solvent extraction | reduction of inflammation | [61,83,84,85] | |
iso-α-acids | supercritical CO2 extraction, T = 40–50 °C and P = 150–400 bar, accelerated solvent extraction | promoting gastric acid secretion, antimicrobial effects, reducing inflammation | [61,72,74,83,84,85,147] | |
rho-iso-α-acids | supercritical CO2 extraction, T = 40–50 °C and P = 150–400 bar accelerated solvent extraction | reducing inflammation | [61,83,84,85,147] | |
Polyphenols/prenylflavonoids | xanthohumol | conventional extraction with polar solvents (ethanol, methanol), ultrasound extraction, microwave extraction, supercritical CO2 extraction, conditions of extraction, temperature 50 °C, and pressure 290 bar | anti-inflammatory, antimicrobial, sedative effects, protection against genotoxicity, slowing down (mutated) DNA replication, induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, anti-arteriosclerotic, antidiabetic, anti-endometriotic effects | [8,49,82,98,99,100,101,102,148] |
isoxanthohumol | supercritical CO2 extraction, conventional extraction with solvents of a high polarity (MeOH, EtOH), pressurized liquid (water) extractions, pressure 10.68 MPa and temperatures 50 °C, 100 °C, 150 °C and 200 °C; extraction time 30 min | Anti-mutagenic, antiangiogenic, estrogenic activity | [8,104,148,149] | |
8-prenylnaringenin | supercritical CO2 extraction, conventional extraction with solvents of a high polarity (MeOH, EtOH) | strong estrogenic activity, chemopreventive effects, a strong inhibitor of NF-κB activation | [4,8,82,87] | |
Polyphenols/prenylflavonoids | desmethylxanthohumol | supercritical CO2 extraction, conventional extraction with solvents of a high polarity (MeOH, EtOH) | inhibition of leukemia cell growth | [8,135] |
6-prenylnaringenin | supercritical CO2 extraction, conventional extraction with solvents of a high polarity (MeOH, EtOH) | significant antifungal and antibacterial effects | [8,148,149] | |
Polyphenols/catechins | (+)-catechin | Conventional extraction, aqueous and pure organic solvents (acetone, ethanol, methanol, acetonitrile, water), different temperatures (60, 80, 95, and 100 °C), optimal solvents are acetone and acetonitrile | Antioxidative, vasodilative, anti-inflammatory effects, inhibition of telomerase, decreasing proliferation of breast and prostate cancer cells, interaction with estrogen and androgen receptors, inhibition of intestinal tumor formation, decreasing mobility, lowering metastasis | [8,115,148,150] |
epicatechin | Conventional extraction, aqueous and pure organic solvents (acetone, ethanol, methanol, acetonitrile, water), different temperatures (60, 80, 95, and 100 °C) | Antioxidative, antiinflammmatory effects, inhibition of telomerase, decreasing proliferation of breast and prostate cancer cells, interaction with estrogen and androgen receptors, suppressing the growth of various cancer cells | [115,116,150] | |
Polyphenols/flavonols | quercetin | Conventional extraction (ethanol and methanol) at moderate to elevated temperatures (50 to 80 °C), microwave assisted extraction and ultrasound assisted extraction | strong antioxidant activity, downregulation of cell survival and proliferative proteins, apoptosis-inducing, reducing cancer cell growth, induction of autophagy, ability to engage in epigenetic regulation, anti-inflammatory effects, a good chemopreventive agent, inhibition of cancer cells growth, inhibition of histamine release | [8,82,118,119,120,121,122,123,150] |
kaempferol | Conventional extraction with organic solvents of high polarity | strong antioxidant activity, a good chemopreventive agent, inhibition of cancer cells growth, inhibition of histamine release, reduction of cell viability and proliferation rate, impact on cell differentiation and apoptosis | [8,82,120,122,123,150] | |
Multifidol and multifidol glucosides | Conventional extraction with petroleum ether | anti-inflammatory effects, probable anticarcinogenic activity | [125,151] | |
Polyphenols/phenolic acids | ferulic acid | Non-pressurised alkaline hydrolysis (0.5 M NaOH) and pressurized solvents (0.5 M NaOH, water, ethanol, and ammonia) | highly antioxidative, amelioration of toxicity of several chemicals and carcinogens, anti-inflammatory, antiapoptotic effects, anticarcinogenic agent, decreasing cell viability and colony formation, inhibiting cell migration and invasion, antidiabetic, hepatoprotective, cardioprotective, neuroprotective, antimicrobial effects | [82,116,128,152] |
Polyphenols/stilbenes | resveratrol | maceration at room temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction, pressurized solvents (0.5 M NaOH, water, ethanol, and ammonia) | anti-inflammatory effects, inhibition of tumor formation and growth, antiangiogenic, antimetastatic activity, induction of apoptosis, inactivation of PI3K/Akt signaling, prevention or improvement of cardiovascular diseases | [131,132,133,153] |
Essential oils/monoterpenes | myrcene | water steam distillation, supercritical fluid extraction with CO2 | inhibition of genotoxicity, TNF-α inhibitor, an inhibitor of MDA-MB-231 cell invasion, good insect repellent | [137,138,139,154] |
linalool | water steam distillation, supercritical fluid extraction with CO2 | inhibition of genotoxicity | [137,154] | |
limonene | water steam distillation, supercritical fluid extraction with CO2 | good insect repellent | [139,154] | |
β-pinene | water steam distillation, supercritical fluid extraction with CO2 | synergistic antitumor effects with the Paclitaxel drug | [140,154] | |
Essential oils/sesquiterpenes | β-caryophyllene | supercritical fluid extraction with CO2 | affecting growth and proliferation, altering several key pathways of cancer development, analgesic effects, enhancing the efficacy of standard drugs | [141,154] |
β-caryophyllene oxide | supercritical fluid extraction with CO3 | affecting growth and proliferation, altering several key pathways of cancer development, enhancing the efficacy of standard drugs | [141,154] | |
2-methyl-3-butene-2-ol | supercritical fluid extraction with CO4 | calming (sedative) effects | [8,154] | |
humulene | supercritical CO2 extraction with and without ultrasound assistance, temperatures (32–50 °C) and pressures (9.0–25.0 MPa) | mild corticosteroid effects | [107,155,156] | |
Essential oils/polyfunctional thiols | 3-mercaptohexan-1-ol | pentane, dichloromethane, back-extraction of thiols from an organic solvent (pentane) to water | inhibition of EGCG oxidation | [145,157] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. https://doi.org/10.3390/nu11020257
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients. 2019; 11(2):257. https://doi.org/10.3390/nu11020257
Chicago/Turabian StyleKnez Hrnčič, Maša, Eva Španinger, Iztok Jože Košir, Željko Knez, and Urban Bren. 2019. "Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects" Nutrients 11, no. 2: 257. https://doi.org/10.3390/nu11020257
APA StyleKnez Hrnčič, M., Španinger, E., Košir, I. J., Knez, Ž., & Bren, U. (2019). Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients, 11(2), 257. https://doi.org/10.3390/nu11020257