Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microencapsulated Iron (Microcapsules)
2.3. Food Samples
2.4. Scanning Electron Microscopy (SEM)
2.5. Particle Size Distribution
2.6. Fourier Transform-Infrared Spectroscopy (FT-IR)
2.7. Gastrointestinal Digestion
2.8. Measurement of Total Iron
2.9. Iron Chemical Speciation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Iron Content
3.2. Morphology of Microcapsules
3.3. Structural Analysis (FTIR)
3.4. Gastrointestinal Digestion
3.4.1. Total Iron Content in Fractions
3.4.2. Iron Bioaccessiblity
3.4.3. Iron Speciation
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Worldwide Prevalence of Anaemia 1993–2005; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control: A Guide for Programme Managers; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Hurrell, R.F. Preventing iron deficiency through food fortification. Nutr. Rev. 1997, 55, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Gera, T.; Sachdev, H.S.; Boy, E. Effect of iron-fortified foods on hematologic and biological outcomes: Systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Hertrampf, E.; Reddy, M. Iron fortification of foods: Overcoming technical and practical barriers. J. Nutr. 2002, 132, 849S–852S. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Navas-Carretero, S.; Pérez-Granados, A.M.; Sarriá, B.; Schoppen, S.; Vaquero, M.P. Iron Bioavailability from Pate Enriched with Encapsulated Ferric Pyrophosphate or Ferrous Gluconate in Rats. Food Sci. Technol. Int. 2007, 13, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Navas-Carretero, S.; Pérez-Granados, A.M.; Sarriá, B.; Vaquero, M.P. Iron absorption from meat pate fortified with ferric pyrophosphate in iron-deficient women. Nutrition 2009, 25, 20–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Lal, M.K.; Kar, S.S.; Nayak, L.; Ngangkham, U.; Samantaray, S.; Sharma, S.G. Bioavailability of iron and zinc as affected by phytic acid content in rice grain. J. Food Biochem. 2017, 41, e12413. [Google Scholar] [CrossRef]
- Hurrell, R.F.; Reddy, M.B.; Juillerat, M.-A.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003, 77, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Van Thuy, P.; Berger, J.; Davidsson, L.; Khan, N.C.; Lam, N.T.; Cook, J.D.; Hurrell, R.F.; Khoi, H.H. Regular consumption of NaFeEDTA-fortified fish sauce improves iron status and reduces the prevalence of anemia in anemic Vietnamese women. Am. J. Clin. Nutr. 2003, 78, 284–290. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Wortley, G.M.; Teucher, B.; Dainty, J. Iron Absorption from a Breakfast Cereal: Effects of EDTA Compounds and Ascorbic Acid. Int. J. Vitam. Nutr. Res. 2001, 71, 117–122. [Google Scholar] [CrossRef]
- Davidsson, L.; Walczyk, T.; Zavaleta, N.; Hurrell, R. Improving iron absorption from a Peruvian school breakfast meal by adding ascorbic acid or Na2EDTA. Am. J. Clin. Nutr. 2001, 73, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Kloots, W.; Op den Kamp, D.; Abrahamse, L. In vitro iron availability from iron-fortified whole-grain wheat flour. J. Agric. Food Chem. 2004, 52, 8132–8136. [Google Scholar] [CrossRef]
- Bryszewska, M.; Laghi, L.; Zannoni, A.; Gianotti, A.; Barone, F.; Taneyo Saa, D.; Bacci, M.; Ventrella, D.; Forni, M. Bioavailability of Microencapsulated Iron from Fortified Bread Assessed Using Piglet Model. Nutrients 2017, 9, 272. [Google Scholar] [CrossRef]
- Bryszewska, M.A.; Tomás-Cobos, L.; Gallego, E.; Villalba, M.; Rivera, D.; Taneyo Saa, D.L.; Gianotti, A. In vitro bioaccessibility and bioavailability of iron from breads fortified with microencapsulated iron. LWT Food Sci. Technol. 2019, 99, 431–437. [Google Scholar] [CrossRef]
- Peijnenburg, W.J.G.M.; Jager, T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol. Environ. Saf. 2003, 56, 63–77. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J.R. In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC Trends Anal. Chem. 2006, 25, 876–886. [Google Scholar] [CrossRef]
- Do Nascimento da Silva, E.; Heerdt, G.; Cidade, M.; Pereira, C.D.; Morgon, N.H.; Cadore, S. Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al, Cd, Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry. Microchem. J. 2015, 119, 152–158. [Google Scholar] [CrossRef]
- Dziennik Ustaw. Available online: http://dziennikustaw.gov.pl/DU/2010/89/1 (accessed on 9 October 2017).
- Rivera, D.; Gallego, E.; Villalba, M.; Gianotti, A. Innovative Iron Fortified Bakery Products. Microencapsulation Technology to Improve Iron Bioaccessibility of Enriched Bread Products. Available online: https://www.slideshare.net/ainiappt/innovative-iron-fortified-bakery-products (accessed on 27 June 2017).
- Camire, A.L.; Clydesdale, F.M. Analysis of Phytic Acid in Foods by HPLC. J. Food Sci. 1982, 47, 575–578. [Google Scholar] [CrossRef]
- Kafaoglu, B.; Fisher, A.; Hill, S.; Kara, D. Determination and evaluation of element bioaccessibility in some nuts and seeds by in-vitro gastro-intestinal method. J. Food Compos. Anal. 2016, 45, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Wolfgor, R.; Drago, S.R.; Rodriguez, V.; Pellegrino, N.R.; Valencia, M.E. In vitro measurement of available iron in fortified foods. Food Res. Int. 2002, 35, 85–90. [Google Scholar] [CrossRef]
- Skibniewska, K.A.; Kozirok, W.; Fornal, L.; Markiewicz, K. In vitro availability of minerals from oat products. J. Sci. Food Agric. 2002, 82, 1676–1681. [Google Scholar] [CrossRef]
- Hennessy, D.J.; Reid, G.R.; Smith, F.E.; Thompson, S.L. Ferene—A new spectrophotometric reagent for iron. Can. J. Chem. 1984, 62, 721–724. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- de Mendiburu, F. Statistical Procedures for Agricultural Research. R Package Version 1.2-8. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 13 February 2018).
- Bovell-Benjamin, A.C.; Viteri, F.E.; Allen, L.H. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Am. J. Clin. Nutr. 2000, 71, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- Loksuwan, J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 2007, 21, 928–935. [Google Scholar] [CrossRef]
- Van Hoogmoed, C.G.; Busscher, H.J.; de Vos, P. Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. J. Biomed. Mater. Res. 2003, 67, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A.; Bernad-Bernad, M.J. Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT Food Sci. Technol. 2015, 64, 571–577. [Google Scholar] [CrossRef]
- Yohannan Panicker, C.; Tresa Varghese, H.; Philip, D. FT-IR, FT-Raman and SERS spectra of Vitamin C. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 65, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Petibois, C.; Melin, A.-M.; Perromat, A.; Cazorla, G.; Déléris, G. Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy. J. Lab. Clin. Med. 2000, 135, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.E.; Clydesdale, F.M. Thermodynamic and Kinetic Stability Constants of Selected Carboxylic Acids and Iron. J. Food Sci. 1984, 49, 500–503. [Google Scholar] [CrossRef]
- Jaiswar, D.R.; Amin, P.D. Solid-State Characterization of Ferrous Ascorbate. Int. J. Pharm. Pharm. Sci. 2012, 4, 282–287. [Google Scholar]
- Gotić, M.; Musić, S. Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 2007, 834–836, 445–453. [Google Scholar] [CrossRef]
- Suzuki, T.; Clydesdale, F.M.; Pandolf, T. Solubility of iron in model systems containing organic acids and lignin. J. Food Prot. 1992, 55, 893–898. [Google Scholar] [CrossRef]
- Kunachowicz, H. Wartość Odżywcza Wybranych Produktów Spożywczych i Typowych Potraw; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2012. [Google Scholar]
- Febles, C.I.; Arias, A.; Hardisson, A.; Rodríguez-Alvarez, C.; Sierra, A. Phytic Acid Level in Wheat Flours. J. Cereal Sci. 2002, 36, 19–23. [Google Scholar] [CrossRef]
Vitamins | Mineral Components | ||||
---|---|---|---|---|---|
Spl1 [%] | Spl2 [%] | Spl1 | Spl2 | ||
A | 100.0 | np | Iron | ||
B1 Thiamin | 90.9 | 91.0 | Ferrous sulphate | 6.15 mg | np |
B2 Riboflavin | 100.0 | 93.0 | Ferrous lactate | np | 9.9 mg |
B5 (Pantothenic acid) | 16.6 | 113.0 | Zinc | 3.00 mg | 10.6 mg |
Niacin | 62.5 | 74.0 | Fluoride | 0.525 mg | np |
B6 | 15.0 | 103.0 | Manganese | 0.33 mg | np |
B12 | 100.0 | 32.0 | Copper | 0.2 mg | np |
C | 50.0 | 50.0 | Iodine | 50.0 µg | 100.0 µg |
D | 100.0 | np | Molibdenium | 7.5 µg | np |
E | 50.0 | 55.0 | |||
Folic acid | 100.0 | 132.0 | |||
Biotin | np | 200.0 |
Preparation | Iron Source | Vitamin C | Fe |
---|---|---|---|
(g/g) | mg/100 g | ||
Mi1 | FS | n.a. | 11.28 ± 0.49 |
Mi2 | FS | 0.25 | 8.28 ± 0.38 |
Mi3 | FL | n.a. | 5.87 ± 0.15 |
Mi4 | FL | 0.25 | 4.49 ± 0.08 |
mg/tablet | mg/tablet | ||
Spl1 | FS | 40.0 | 6.56 ± 0.35 |
Spl2 | FL | 39.6 | 10.44 ± 0.08 |
Variants of Digestion | ||||||
---|---|---|---|---|---|---|
Preparations | Preparations with Bread | Preparations with Brfs | ||||
G | GI | G | GI | G | GI | |
Part (A) | ||||||
µg | µg | µg | µg | µg | µg | |
Ferrous sulphate | 104.6 ± 0.4 | 47.0 ± 11.5 | nd | nd | nd | nd |
Ferrous lactate | 109.7 ± 4.4 | 22.9 ± 1.6 | nd | nd | nd | nd |
Spl1 | 75.1 ± 4.1 | 29.2 ± 12.3 | 27.7 ± 3.7 | 30.8 ± 3.3 | 11.3 ± 5.9 | 30.6 ± 5.3 |
Spl2 | 109.5 ± 0.2 | 66.2 ± 0.7 | 35.9 ± 15.9 | 70.0 ± 7.5 | 16.7 ± 3.9 | 67.2 ± 8.3 |
Mi1 | 112.4 ± 1.1 | 31.9 ± 4.6 | 24.0 ± 2.5 | 45.5 ± 3.9 | 34.4 ± 0.8 | 71.5 ± 0.7 |
Mi2 | 123.9 ± 4.5 | 123.5 ± 6.2 | 31.4 ± 6.2 | 69.4 ± 1.2 | 45.0 ± 0.5 | 79.7 ± 4.6 |
Mi3 | 178.2 ± 2.3 | 17.5 ± 3.2 | 36.2 ± 5.3 | 89.9 ± 3.3 | 15.5 ± 0.0 | 94.9 ± 6.8 |
Mi4 | 107.2 ± 9.8 | 105.3 ± 12.9 | 44.2 ± 14.2 | 89.1 ± 1.9 | 28.3 ± 5.1 | 70.6 ± 6.7 |
Part (B) | ||||||
Spl1 | 39.2 aBC | 31.9 aC | 38.0 aB | |||
Spl2 | 50.6 aB | 52.2 aAB | 51.6 aA | |||
Mi1 | 24.6 cCD | 45.0 bB | 53.6 aA | |||
Mi2 | 92.9 aA | 59.4 bA | 57.5 bA | |||
Mi3 | 12.8 bD | 49.3 aB | 54.3 aA | |||
Mi4 | 106.5 aA | 59.0 bA | 61.1 bA |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryszewska, M.A. Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations. Nutrients 2019, 11, 273. https://doi.org/10.3390/nu11020273
Bryszewska MA. Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations. Nutrients. 2019; 11(2):273. https://doi.org/10.3390/nu11020273
Chicago/Turabian StyleBryszewska, Malgorzata Anita. 2019. "Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations" Nutrients 11, no. 2: 273. https://doi.org/10.3390/nu11020273
APA StyleBryszewska, M. A. (2019). Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations. Nutrients, 11(2), 273. https://doi.org/10.3390/nu11020273