Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Nutritional Adequacy of Seven-Day WahlsElim Menus
2.3. Nutritional Adequacy of Diets Using Food Pattern Modeling
2.4. Food Sources of Nutrients
2.5. Data Analysis
3. Results
3.1. WahlsElim Menu Composition
3.2. Nutritional Adequacy
3.2.1. WahlsElim Menus
3.2.2. WahlsElim Menus Plus Dietary Supplements
3.2.3. Food Pattern Modeling
3.3. Food Sources of Nutrients on WahlsElim Menus
4. Discussion
4.1. Nutritional Adequacy: Nutrients Above the RDA or AI
4.2. Nutrients Below the RDA or AI
4.3. Nutrients Outside the AMDR, above DGA Maximum Levels, or above the UL
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Patejdl, R.; Penner, I.K.; Noack, T.K.; Zettl, U.K. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration. Autoimmun. Rev. 2016, 15, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Milo, R.; Miller, A. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev. 2014, 13, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cerdá, F.; Sánchez-Gómez, M.V.; Matute, C. The link of inflammation and neurodegeneration in progressive multiple sclerosis. Mult. Scler. Demyelin. Disord. 2016, 1, 9. [Google Scholar] [CrossRef]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Roman, C.; Menning, K. Treatment and disease management of multiple sclerosis patients: A review for nurse practitioners. J. Am. Assoc. Nurse Pract. 2017, 29, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.; Bhargava, P.; Kalb, R. Your patients with multiple sclerosis have set wellness as a high priority—and the National Multiple Sclerosis Society is responding. US Neurol. 2015, 11, 80–86. [Google Scholar] [CrossRef]
- The Wahls Diet for multiple sclerosis: A clinical conversation with Terry Wahls, MD, and Robert Rountree, MD. Altern. Complement. Ther. 2017, 23, 79–86. [CrossRef]
- Eaton, S.; Cordain, L. Evolutionary aspects of diet: Old genes, new fuels. Nutritional changes since agriculture. World Rev. Nutr. Diet. 1997, 81, 26–37. [Google Scholar] [PubMed]
- Cordain, L. The nutritional characteristics of a contemporary diet based upon Paleolithic food groups. J. Am. Neutraceut. Assoc. 2002, 5, 15–24. [Google Scholar]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Bisht, B.; Darling, W.G.; Grossmann, R.E.; Shivapour, E.T.; Lutgendorf, S.K.; Snetselaar, L.G.; Hall, M.J.; Zimmerman, M.B.; Wahls, T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014, 20, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Wahls, T.; Adamson, E. The Wahls Protocol: How I Beat Progressive MS Using Paleo Principles and Functional Medicine; Avery: New York, NY, USA, 2014. [Google Scholar]
- Reese, D.; Shivapour, E.T.; Wahls, T.L.; Dudley-Javoroski, S.D.; Shields, R. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a secondary progressive multiple sclerosis patient leads to marked gains in function: A case report. Cases J. 2009, 2, 7601. [Google Scholar] [CrossRef] [PubMed]
- Wahls, T.L. Minding My Mitochondria: How I Overcame Secondary Progressive Multiple Sclerosis (MS) and Got out of My Wheelchair, 2nd ed.; TZ Press LLC: Iowa City, IA, USA, 2010. [Google Scholar]
- Wahls, T.L. The seventy percent solution. J. Gen. Intern. Med. 2011, 26, 1215–1216. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Toohey, L.; Smith, M.J.; Hickey, M.S. Modulation of immune function by dietary lectins in rheumatoid arthritis. Br. J. Nutr. 2000, 83, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, A. Lectins, agglutinins, and their roles in autoimmune reactivities. Altern. Ther. Health Med. 2015, 21, 46–51. [Google Scholar] [PubMed]
- Vojdani, A.; Kharrazian, D.; Mukherjee, P. The prevalence of antibodies against wheat and milk proteins in blood donors and their contribution to neuroimmune reactivities. Nutrients 2014, 6, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Mana, P.; Goodyear, M.; Bernard, C.; Tomioka, R.; Freire-Garabal, M.; Linares, D. Tolerance induction by molecular mimicry: Prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. Int. Immunol. 2004, 16, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Guggenmos, J.; Schubart, A.S.; Ogg, S.; Andersson, M.; Olsson, T.; Mather, I.H.; Linington, C. Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J. Immunol. 2004, 172, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Bisht, B.; Darling, W.G.; Shivapour, E.T.; Lutgendorf, S.K.; Snetselaar, L.G.; Chenard, C.A.; Wahls, T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015, 5, 19–35. [Google Scholar] [PubMed]
- Irish, A.K.; Erickson, C.M.; Wahls, T.L.; Snetselaar, L.G.; Darling, W.G. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- De Punder, K.; Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Wahls, T.; Scott, M.O.; Alshare, Z.; Rubenstein, L.; Darling, W.; Carr, L.; Smith, K.; Chenard, C.A.; LaRocca, N.; Snetselaar, L. Dietary approaches to treat MS-related fatigue: Comparing the modified Paleolithic (Wahls Elimination) and low saturated fat (Swank) diets on perceived fatigue in persons with relapsing-remitting multiple sclerosis: Study protocol for a randomized controlled trial. Trials 2018, 19, 309. [Google Scholar] [PubMed]
- Wahls, T.L. Dietary Approaches to Treat Multiple Sclerosis-Related Fatigue Study. Available online: https://clinicaltrials.gov/ct2/show/NCT02914964 (accessed on 15 June 2018).
- Wahls, T.L.; Chenard, C.A.; Snetselaar, L.G. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients 2019, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.D.; Black, L.J.; Sherriff, J.L.; Begley, A. Dietary responses to a multiple sclerosis diagnosis: A qualitative study. Eur. J. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sumowski, J.F.; McDonnell, G.V.; Bourdette, D. Diet in multiple sclerosis: Science takes a seat at the table. Neurology 2018, 90, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Swank, R.L.; Goodwin, J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition 2003, 19, 161–162. [Google Scholar] [CrossRef]
- Yadav, V.; Marracci, G.; Kim, E.; Spain, R.; Cameron, M.; Overs, S.; Riddehough, A.; Li, D.K.B.; McDougall, J.; Lovera, J.; et al. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016, 9, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, F.; Jessri, M.; Behrooz, M.; Mirghotbi, M.; Rashidkhani, B. Mediterranean diet adherence and risk of multiple sclerosis: A case-control study. Asia Pac. J. Clin. Nutr. 2016, 25, 377–384. [Google Scholar] [PubMed]
- Katz Sand, I. The role of diet in multiple sclerosis: Mechanistic connections and current evidence. Curr. Nutr. Rep. 2018, 7, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Storoni, M.; Plant, G.T. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult. Scler. Int. 2015, 2015, 681289. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Vizthum, D.; Henry-Barron, B.; Schweitzer, A.; Cassard, S.D.; Kossoff, E.; Hartman, A.L.; Kapogiannis, D.; Sullivan, P.; Baer, D.J.; et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 23, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018, 27, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Saadatnia, M.; Etemadifar, M.; Fatehi, F.; Ashtari, F.; Shaygannejad, V.; Chitsaz, A.; Maghzi, A.H. Short-term effects of prolonged fasting on multiple sclerosis. Eur. Neurol. 2009, 61, 230. [Google Scholar] [CrossRef] [PubMed]
- Farinotti, M.; Vacchi, L.; Simi, S.; Di Pietrantonj, C.; Brait, L.; Filippini, G. Dietary interventions for multiple sclerosis. Cochrane Database Syst. Rev. 2012, 12, Cd004192. [Google Scholar] [CrossRef] [PubMed]
- Venasse, M.; Edwards, T.; Pilutti, L.A. Exploring wellness interventions in progressive multiple sclerosis: An evidence-based review. Curr. Treat. Opt. Neurol. 2018, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P. Diet and Multiple Sclerosis. Available online: http://www.nationalmssociety.org/NationalMSSociety/media/MSNationalFiles/Documents/Diet-and-Multiple-Sclerosis-Bhargava-06-26-15.pdf (accessed on 25 June 2015).
- Diet & Nutrition. Available online: https://www.nationalmssociety.org/Living-Well-With-MS/Diet-Exercise-Healthy-Behaviors/Diet-Nutrition#section-0 (accessed on 16 October 2017).
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans; Skyhorse Publishing Inc.: Washington, DC, USA, 2015.
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 2014, 129, S76–S99. [Google Scholar] [CrossRef] [PubMed]
- Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012, 62, 30–67. [Google Scholar] [CrossRef] [PubMed]
- Center for Nutrition Policy and Promotion. Healthy US-Style Pattern: Recommended Intake Amounts. Available online: https://www.cnpp.usda.gov/sites/default/files/usda_food_patterns/HealthyUS-StylePattern-RecommendedIntakeAmounts.pdf (accessed on 19 September 2017).
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. Nutrients in Healthy US-Style Food Pattern: Nutrients in the Pattern at Each Calorie Level and Comparison of Nutrient Content to the Nutritional Goals for That Pattern. Available online: https://www.cnpp.usda.gov/sites/default/files/usda_food_patterns/NutrientsInHealthyUS-StyleFoodPattern.pdf (accessed on 22 September 2017).
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee Appendix E-3.1: Adequacy of USDA Food Patterns. Available online: https://health.gov/dietaryguidelines/2015-scientific-report/PDFs/Appendix-E-3.1.pdf (accessed on 7 May 2018).
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- U.S. News Staff. Paleo Diet Expert Reviews. Available online: https://health.usnews.com/best-diet/paleo-diet/reviews (accessed on 1 February 2019).
- Eaton, S.B.; Konner, M.J.; Cordain, L. Diet-dependent acid load, Paleolithic nutrition, and evolutionary health promotion. Am. J. Clin. Nutr. 2010, 91, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Faurot, K.R.; Carrera-Bastos, P.; Cordain, L.; De Lorgeril, M.; Sperling, L.S. Dietary fat quality and coronary heart disease prevention: A unified theory based on evolutionary, historical, global, and modern perspectives. Curr. Treat. Opt. Cardiovasc. Med. 2009, 11, 289–301. [Google Scholar] [CrossRef]
- Lindeberg, S.; Cordain, L.; Boyd Eaton, S. Biological and Clinical Potential of a Palaeolithic Diet. J. Nutr. Environ. Med. 2003, 13, 149–160. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: EAR, RDA, AI, Acceptable Macronutrient Distribution Ranges, and UL. Available online: http://www.nationalacademies.org/hmd/~/media/Files/Activity%20Files/Nutrition/DRI-Tables/5Summary%20TableTables%2014.pdf?la=en (accessed on 16 June 2018).
- Institute of Medicine. Dietary Reference Intakes: Applications in Dietary Planning; The National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Wahls, T.L.; (University of Iowa, Iowa City, IA, USA). Personal communication, 2017.
- Nutrition Coordinating Center (NCC). Nutrition Data System for Research (NDSR) Software; University of Minnesota: Minneapolis, MN, USA, 2017. [Google Scholar]
- Bowman, S.A.; Clemens, J.C.; Shimizu, M.; Friday, J.E.; Alanna, J.; Moshfegh, A.J. Food Patterns Equivalents Database 2015–2016: Methodology and User Guide. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fped/FPED_1516.pdf (accessed on 27 September 2018).
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. Estimated Calorie Needs Per Day—Energy Levels Used for Assignment of Individuals to USDA Food Patterns. Available online: https://www.cnpp.usda.gov/sites/default/files/usda_food_patterns/EstimatedCalorieNeedsPerDay.pdf (accessed on 19 September 2017).
- Murphy, S.P. Using DRIs as the basis for dietary guidelines. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 52–54. [Google Scholar]
- Krebs-Smith, S.M.; Clark, L.D. Validation of a nutrient adequacy score for use with women and children. J. Am. Diet. Assoc. 1989, 89, 775–783. [Google Scholar] [PubMed]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. Nutrient Profiles for Food Groups and Subgroups in the 2015 USDA Food Patterns. Available online: https://www.cnpp.usda.gov/sites/default/files/usda_food_patterns/NutrientProfiles.pdf (accessed on 27 September 2017).
- U.S. Department of Agriculture. A.R.S. Item Clusters, Percent of Consumption, and Representative Foods for USDA Food Pattern Food Groups and Subgroups. Available online: https://www.cnpp.usda.gov/sites/default/files/usda_food_patterns/ItemClustersPercentOfConsumptionAndRepresentativeFoodsCorrected5-16-17.pdf (accessed on 27 September 2017).
- Britten, P.; Cleveland, L.E.; Koegel, K.L.; Kuczynski, K.J.; Nickols-Richardson, S.M. Updated US Department of Agriculture Food Patterns meet goals of the 2010 dietary guidelines. J. Acad. Nutr. Diet. 2012, 112, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Pannucci, T.E.; (USDA, Alexandria, VA, USA). Personal communication, 2018.
- NCI. Usual Dietary Intakes: Food Intakes, U.S. Population, 2007–10; Total Fruit. Available online: https://epi.grants.cancer.gov/diet/usualintakes/pop/2007-10/table_a01.html (accessed on 4 May 2018).
- NCI. Usual Dietary Intakes: Food Intakes, U.S. Population, 2007–10; Total Vegetables Including Beans and Peas. Available online: https://epi.grants.cancer.gov/diet/usualintakes/pop/2007-10/table_a06.html (accessed on 4 May 2018).
- NCI. Usual Dietary Intakes: Food Intakes, U.S. Population, 2007–10; Dark-Green Vegetables. Available online: https://epi.grants.cancer.gov/diet/usualintakes/pop/2007-10/table_a08.html (accessed on 4 May 2018).
- Drewnowski, A. New metrics of affordable nutrition: Which vegetables provide most nutrients for least cost? J. Acad. Nutr. Diet. 2013, 113, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS 9.4; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Microsoft Corporation. Microsoft Excel; 14.0.7208.5000 (32-bit); Microsoft Corporation: Albuquerque, NM, USA, 2010. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes: Macronutrients. Available online: http://www.nationalacademies.org/hmd/~/media/Files/Activity%20Files/Nutrition/DRI-Tables/8_Macronutrient%20Summary.pdf?la=en (accessed on 16 June 2018).
- Crittenden, A.N.; Schnorr, S.L. Current views on hunter-gatherer nutrition and the evolution of the human diet. Am. J. Phys. Anthropol. 2017, 162, e23148. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Martin, N.A. Cerebral metabolism following traumatic brain injury: New discoveries with implications for treatment. Front. Neurosci. 2014, 8, 408. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.A.; Jeschke, M.G.; Williams, F.N.; Kamolz, L.P.; Herndon, D.N. Nutrition in burns: Galveston contributions. JPEN J. Parenter. Enteral Nutr. 2011, 35, 704–714. [Google Scholar] [CrossRef] [PubMed]
- What We Eat in American, N—Table 1. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed Per Individual, by Gender and Age, in the United States, 2015–2016. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1516/Table_1_NIN_GEN_15.pdf (accessed on 11 September 2018).
- Popescu, D.C.; Huang, H.; Singhal, N.K.; Shriver, L.; McDonough, J.; Clements, R.J.; Freeman, E.J. Vitamin K enhances the production of brain sulfatides during remyelination. PLoS ONE 2018, 13, e0203057. [Google Scholar] [CrossRef] [PubMed]
- Ferland, G. Vitamin K and brain function. Semin. Thromb. Hemost. 2013, 39, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, S.; Rivera, A.; Butt, A.M.; Hafizi, S. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination. ASN Neurol. 2016, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Ferland, G. Vitamin K and the nervous system: An overview of its actions. Adv. Nutr. 2012, 3, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lasemi, R.; Kundi, M.; Moghadam, N.B.; Moshammer, H.; Hainfellner, J.A. Vitamin K2 in multiple sclerosis patients. Wiener Klinische Wochenschrift 2018, 130, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- NIH Office of Dietary Supplements. Vitamin K Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminK-HealthProfessional/ (accessed on 30 January 2018).
- Azary, S.; Schreiner, T.; Graves, J.; Waldman, A.; Belman, A.; Guttman, B.W.; Aaen, G.; Tillema, J.M.; Mar, S.; Hart, J.; et al. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Munger, K.L.; Kochert, K.; Arnason, B.G.; Comi, G.; Cook, S.; Goodin, D.S.; Filippi, M.; Hartung, H.P.; Jeffery, D.R.; et al. Association of Vitamin D Levels with Multiple Sclerosis Activity and Progression in Patients Receiving Interferon Beta-1b. JAMA Neurol. 2015, 72, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee Appendix E-3.6: Dairy Group and Alternatives. Available online: https://health.gov/dietaryguidelines/2015-scientific-report/15-appendix-E3/e3-6.asp (accessed on 5 July 2018).
- Jonsson, T.; Granfeldt, Y.; Erlanson-Albertsson, C.; Ahren, B.; Lindeberg, S. A paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease. Nutr. Metab. 2010, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Tankeu, A.T.; Ndip Agbor, V.; Noubiap, J.J. Calcium supplementation and cardiovascular risk: A rising concern. J. Clin. Hypertens. 2017, 19, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Fleet, J.C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Rasouli-Ghahroudi, A.A. Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. BioMed Res. Int. 2018, 2018, 4629383. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.B.; Wan, S.L.; Lu, Y.J.; Ning, L.; Liu, C.; Fan, S.W. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: A meta-analysis of randomized controlled trials. Osteoporos. Int. 2015, 26, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, E.; Nathoo, N.; Mahjoub, Y.; Dunn, J.F.; Yong, V.W. Iron in multiple sclerosis: Roles in neurodegeneration and repair. Nat. Rev. Neurol. 2014, 10, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Zivadinov, R.; Weinstock-Guttman, B.; Pirko, I. Iron deposition and inflammation in multiple sclerosis. Which one comes first? BMC Neurosci. 2011, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Thau-Zuchman, O.; Gomes, R.N.; Dyall, S.C.; Davies, M.; Priestley, J.V.; Groenendijk, M.; De Wilde, M.C.; Tremoleda, J.L.; Michael-Titus, A.T. Brain phospholipid precursors administered post-injury reduce tissue damage and improve neurological outcome in experimental traumatic brain injury. J. Neurotrauma 2019, 36, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Skripuletz, T.; Manzel, A.; Gropengiesser, K.; Schafer, N.; Gudi, V.; Singh, V.; Salinas Tejedor, L.; Jorg, S.; Hammer, A.; Voss, E.; et al. Pivotal role of choline metabolites in remyelination. Brain 2015, 138, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Skripuletz, T.; A Linker, R.; Stangel, M. The choline pathway as a strategy to promote central nervous system (CNS) remyelination. Neural Regener. Res. 2015, 10, 1369–1370. [Google Scholar]
- NIH Office of Dietary Supplements. Choline Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/#en11 (accessed on 25 September 2018).
- Miyake, S.; Yamamura, T. Gut environmental factors and multiple sclerosis. J. Neuroimmunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Berer, K.; Martinez, I.; Walker, A.; Kunkel, B.; Schmitt-Kopplin, P.; Walter, J.; Krishnamoorthy, G. Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Sci. Rep. 2018, 8, 10431. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, V.C.; De Meirleir, K.L.; Subramanian, K.; Nourani, S.M.; Dagda, R.K.; Delaney, S.L.; Palotás, A. Nutritional modulation of the intestinal microbiota: Future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem. 2018, 61, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.K.; Freedman, S.N.; Mangalam, A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes 2017, 8, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Freedman, S.N.; Shahi, S.K.; Mangalam, A.K. The “gut feeling”: Breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics 2018, 15, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Jandacek, R.J. Linoleic acid: A nutritional quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Osterdahl, M.; Kocturk, T.; Koochek, A.; Wandell, P.E. Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur. J. Clin. Nutr. 2008, 62, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, T.; Granfeldt, Y.; Ahren, B.; Branell, U.C.; Palsson, G.; Hansson, A.; Soderstrom, M.; Lindeberg, S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: A randomized cross-over pilot study. Cardiovasc. Diabetol. 2009, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Pastore, R.L.; Brooks, J.T.; Carbone, J.W. Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations. Nutr. Res. 2015, 35, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Genoni, A.; Lyons-Wall, P.; Lo, J.; Devine, A. Cardiovascular, metabolic effects and dietary composition of ad-libitum Paleolithic vs. Australian guide to healthy eating diets: A 4-week randomised trial. Nutrients 2016, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, T.; Granfeldt, Y.; Lindeberg, S.; Hallberg, A.C. Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr. J. 2013, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Ledikwe, J.H.; Blanck, H.M.; Khan, L.K.; Serdula, M.K.; Seymour, J.D.; Tohill, B.C.; Rolls, B.J. Dietary energy density determined by eight calculation methods in a nationally representative United States population. J. Nutr. 2005, 135, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Escamilla, R.; Obbagy, J.E.; Altman, J.M.; Essery, E.V.; McGrane, M.M.; Wong, Y.P.; Spahn, J.M.; Williams, C.L. Dietary energy density and body weight in adults and children: A systematic review. J. Acad. Nutr. Diet. 2012, 112, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Vernarelli, J.A.; Mitchell, D.C.; Rolls, B.J.; Hartman, T.J. Dietary energy density and obesity: How consumption patterns differ by body weight status. Eur. J. Nutr. 2018, 57, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Mokry, L.E.; Ross, S.; Timpson, N.J.; Sawcer, S.; Davey Smith, G.; Richards, J.B. Obesity and multiple sclerosis: A Mendelian randomization study. PLoS Med. 2016, 13, e1002053. [Google Scholar] [CrossRef] [PubMed]
- Tettey, P.; Simpson, S.; Taylor, B.; Ponsonby, A.L.; Lucas, R.M.; Dwyer, T.; Kostner, K.; van der Mei, I.A. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J. Neurol. Neurosurg. Psychiatry 2017, 88, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Pasquinelli, S.; Solaro, C. Nutritional assessment and malnutrition in multiple sclerosis. Neurol. Sci. 2008, 29 (Suppl. 4), S367. [Google Scholar] [CrossRef]
- Cunningham, E. Are there evidence-based dietary interventions for multiple sclerosis? J. Acad. Nutr. Diet. 2013, 113, 1004. [Google Scholar] [CrossRef] [PubMed]
- Burgos, R.; Breton, I.; Cereda, E.; Desport, J.C.; Dziewas, R.; Genton, L.; Gomes, F.; Jesus, P.; Leischker, A.; Muscaritoli, M.; et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018, 37, 354–396. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.T.; Liu, X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 2015, 34, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Riccio, P.; Rossano, R. Diet, Gut Microbiota, and Vitamins D + A in Multiple Sclerosis. Neurotherapeutics 2018, 15, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press (US): Washington, DC, USA, 1998. [Google Scholar]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.R.; Sobczynska-Malefora, A. The adverse effects of an excessive folic acid intake. Eur. J. Clin. Nutr. 2017, 71, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Food standards: Amendment of standards of identity for enriched grain products to require addition of folic acid. Fed. Regist. 1996, 61, 8781–8789. [Google Scholar]
- Shivappa, N.; Hebert, J.R.; Behrooz, M.; Rashidkhani, B. Dietary inflammatory index and risk of multiple sclerosis in a case-control study from Iran. Neuroepidemiology 2016, 47, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Manousou, S.; Stal, M.; Larsson, C.; Mellberg, C.; Lindahl, B.; Eggertsen, R.; Hulthen, L.; Olsson, T.; Ryberg, M.; Sandberg, S.; et al. A Paleolithic-type diet results in iodine deficiency: A 2-year randomized trial in postmenopausal obese women. Eur. J. Clin. Nutr. 2018, 72, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Bonavita, S.; Sparaco, M.; Gallo, A.; Tedeschi, G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018, 21, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Britten, P.; Cleveland, L.E.; Koegel, K.L.; Kuczynski, K.J.; Nickols-Richardson, S.M. Impact of typical rather than nutrient-dense food choices in the US Department of Agriculture Food Patterns. J. Acad. Nutr. Diet. 2012, 112, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
Wahls Elimination Diet | ||
---|---|---|
Saturated Fat | No restriction | |
Foods Recommended 3 | 2–3+ cup-eq 1,2 (~60–420+ g) dark green leafy vegetables per day | |
2–3+ cup-eq 1,2 (~40–765+ g) sulfur-rich vegetables 4 per day | ||
2–3+ cup-eq 1,2 (~40–765+ g) deeply colored fruits/vegetables 5 per day | ||
6–12+ ounces (170–340 g) meat, fish, poultry, game per day | ||
Foods Encouraged 6 | 12 ounces (340 g) organ meat per week | |
16 ounces (454 g) omega-3 rich fish per week | ||
1 serving 7 seaweed per day | ||
1 serving 8 algae per day | ||
1 serving 9 nutritional yeast per day | ||
1 serving 10 fermented food per day | ||
Clarified butter 11, animal fats 11, coconut oil/milk 11, avocado oil, extra virgin olive oil, sesame oil, sunflower seed oil daily as needed to meet energy needs | ||
Foods Limited | White fruits and vegetables limited each day until leafy, sulfur-rich and colored servings are met 12 | |
Allowed sweeteners 13 ≤1 teaspoon (4–7 g) per day | ||
Nuts and seeds, maximum 4 ounces (113 g) per day, soaked preferred | ||
Flax, hemp and walnut oil, maximum 2 tablespoons (30 g) per day | ||
Alcoholic beverages ≤1 drink per day for women; ≤2 drinks per day for men | ||
Foods Not Recommended | Grains | |
Dairy (cow, goat, mare) | ||
Eggs | ||
Legumes | ||
Nightshade14 vegetables/seed spices | ||
Non-allowed sweeteners 15 or oils 16 | ||
Processed foods | ||
Daily Supplements | 1 teaspoon (5 g) cod liver oil | |
1 multivitamin/mineral for men 50+ years | ||
1000 µg methyl folate | ||
1000 µg methyl B12 | ||
5000 IU (125 µg) vitamin D3 17 |
Modifications |
---|
|
Food Group | Mean Servings | Food Group | Mean Servings |
---|---|---|---|
Fruits and Vegetables, Total (cup equivalents 1) | 10.3 | Meat/Fish/Eggs/Nuts/Seeds, Total (servings 4) | 10.1 |
Fruits, Total (cups 1) | 3.9 | Beef/Pork/Lamb | 2.5 |
Juice | 0.1 | Poultry | 1.3 |
Whole Fruit | 3.9 | Fish and Shellfish | 2.8 |
Vegetables, Total (cup equivalents 1) | 6.4 | Cold Cuts and Sausage | 0.4 |
Dark-green Vegetables | 3.3 | Organ Meats | 0.9 |
Deep-yellow Vegetables | 1.1 | Eggs | 0.0 |
Tomato | 0.0 | Nuts and Seeds including Butters | 2.2 |
White Potatoes | 0.0 | Dairy and Nondairy, Total (cup equivalents) | 0.8 |
Other Starchy Vegetables | 0.0 | Milk, dairy, low fat and fat free | 0.0 |
Other Vegetables | 1.9 | Yogurt, dairy, fat free | 0.0 |
Grains, Total (servings 2) | 0.0 | Milk, non-dairy 5 | 0.8 |
Whole Grain | 0.0 | Fats, Total (servings 6) | 5.2 |
Some Whole Grain | 0.0 | Oil | 4.8 |
Refined Grain | 0.0 | Butter and Other Animal Fats | 0.4 |
Sweets, Total (servings 3) | 0.4 | Salad Dressing | 0.0 |
Nutrient | Mean | SD 2 | Nutrient | Mean | SD 2 |
---|---|---|---|---|---|
Energy (kcal) | 1776 | 154 | % Calories from Protein | 19.8 | 3.6 |
Energy (kJ) | 7429 | 643 | % Calories from Fat | 42.6 | 6.0 |
Total Protein (g) | 91.8 | 11.9 | % Calories from SFA | 16.4 | 4.5 |
Total Carbohydrate (g) | 179.8 | 25.3 | % Calories from TRANS | 0.2 | 0.1 |
Total Dietary Fiber (g) | 39.5 | 4.6 | % Calories from MUFA | 15.1 | 1.6 |
Soluble Dietary Fiber (g) | 10.7 | 2.4 | % Calories from PUFA | 7.6 | 2.5 |
Insoluble Dietary Fiber (g) | 28.8 | 3.8 | % Calories from 18:2 linoleic acid 4 | 5.6 | 1.7 |
Total Sugars (g) | 104.6 | 14.7 | % Calories from 18:3 n-3 α-linolenic acid 4 | 1.1 | 1.2 |
Added Sugars (by Total Sugars) (g) | 2.3 | 1.4 | % Calories from Carbohydrate | 37.5 | 4.3 |
Gluten (g) | 0.0 | 0.0 | % Calories from added sugar 4 | 0.5 | 0.3 |
Glycemic Index (glucose reference) | 51 | 8 | Total Grams (g) | 2572 | 190 |
Glycemic Load (glucose reference) | 72 | 19 | kcal/Gram | 0.7 | 0.1 |
Total Fat (g) | 87.4 | 17.7 | kJ/Gram | 2.9 | 0.3 |
Total Saturated Fatty Acids (SFA) (g) | 33.8 | 11.0 | Water (g) | 2185 | 189 |
Total Trans-Fatty Acids (TRANS) (g) | 0.5 | 0.3 | sodium:potassium ratio | 0.45 | 0.19 |
Total Monounsaturated Fatty Acids (MUFA) (g) | 30.7 | 4.8 | calcium:phosphorus ratio | 0.56 | 0.1 |
Total Polyunsaturated Fatty Acids (PUFA) (g) | 15.8 | 5.9 | calcium:magnesium ratio | 1.84 | 0.54 |
Total Conjugated Linoleic Acid (CLA 18:2) (g) | 0.1 | 0.1 | Phytic Acid (mg/1000 kcal) | 452 | 135 |
PUFA 18:2 (linoleic acid) (g) | 11.7 | 4.1 | Oxalic Acid (mg/1000 kcal) | 439 | 386 |
PUFA 18:3 n-3 (alpha-linolenic acid [ALA]) (g) | 2.4 | 2.7 | Pantothenic Acid (mg/1000 kcal) | 5 | 2 |
Omega 6 Fatty Acids (g) 3 | 12.2 | 4.1 | Betaine (mg/1000 kcal) | 74 | 37 |
Omega-3 Fatty Acids (g) | 3.5 | 2.2 | |||
Omega 6:3 ratio | 3.9 | 1.5 | |||
PUFA 20:5 (eicosapentaenoic acid [EPA]) (g) | 0.4 | 0.4 | |||
PUFA 22:5 (docosapentaenoic acid [DPA]) (g) | 0.1 | 0.1 | |||
PUFA 22:6 (docosahexaenoic acid [DHA]) (g) | 0.5 | 0.4 | |||
Cholesterol (mg) | 321 | 264 |
Females | Males | |||||||
---|---|---|---|---|---|---|---|---|
Age, Years | 19–30 | 31–50 | 51–70 | >70 | 19–30 | 31–50 | 51–70 | >70 |
Energy, kcal | 2000 | 1800 | 1600 | 1600 | 2600 | 2200 | 2000 | 2000 |
Energy, kJ | 8368 | 7531 | 6694 | 6694 | 10,878 | 9205 | 8368 | 8368 |
Protein, g | 103 | 93 | 83 | 83 | 134 | 114 | 103 | 103 |
Carbohydrate, g | 202 | 182 | 162 | 162 | 263 | 223 | 202 | 202 |
Fat, g | 98 | 89 | 79 | 79 | 128 | 108 | 98 | 98 |
Saturated Fat, g | 38 | 34 | 30 | 30 | 49 | 42 | 38 | 38 |
Percent Recommended Dietary Allowance (RDA) | ||||||||
Vitamin A, %RDA | 572 | 515 | 458 | 458 | 579 | 490 | 445 | 445 |
Vitamin C, %RDA | 547 | 493 | 438 | 438 | 593 | 502 | 456 | 456 |
Vitamin D, %RDA | 92 1 | 83 | 74 | 55 | 119 | 101 | 92 | 69 |
Vitamin E, %RDA | 132 | 118 | 105 | 105 | 171 | 145 | 132 | 132 |
Vitamin B1, %RDA | 833 | 750 | 666 | 666 | 993 | 840 | 763 | 763 |
Vitamin B2, %RDA | 1017 | 924 | 832 | 832 | 1017 | 938 | 860 | 860 |
Vitamin B3, %RDA | 686 | 618 | 549 | 549 | 781 | 661 | 601 | 601 |
Vitamin B6, %RDA | 826 | 744 | 573 | 573 | 1074 | 909 | 632 | 632 |
Folate, %RDA | 266 | 240 | 213 | 213 | 346 | 293 | 266 | 266 |
Vitamin B12, %RDA | 797 | 717 | 637 | 637 | 1035 | 876 | 797 | 797 |
Calcium, %RDA | 93 | 84 | 62 | 62 | 121 | 102 | 93 | 78 |
Copper, %RDA | 383 | 345 | 307 | 307 | 498 | 422 | 383 | 383 |
Iron, %RDA | 119 | 107 | 214 | 214 | 348 | 295 | 268 | 268 |
Magnesium, %RDA | 167 | 146 | 129 | 129 | 168 | 136 | 123 | 123 |
Phosphorus, %RDA | 239 | 215 | 192 | 192 | 311 | 263 | 239 | 239 |
Selenium, %RDA | 262 | 236 | 210 | 210 | 340 | 288 | 262 | 262 |
Zinc, %RDA | 268 | 242 | 215 | 215 | 254 | 215 | 195 | 195 |
Average %RDA | 429 | 387 | 345 | 344 | 515 | 440 | 389 | 386 |
MAR, % 2 | 99 | 98 | 96 | 95 | 100 | 100 | 99 | 97 |
Percent Adequate Intake (AI) | ||||||||
Dietary Fiber, %AI | 178 | 160 | 169 | 169 | 152 | 129 | 148 | 148 |
Linoleic Acid, %AI | 110 | 99 | 96 | 96 | 101 | 85 | 94 | 94 |
α-Linolenic Acid, %AI | 250 | 225 | 200 | 200 | 223 | 189 | 172 | 172 |
Vitamin K, %AI | 1184 | 1065 | 947 | 947 | 1154 | 977 | 888 | 888 |
Manganese, %AI | 344 | 309 | 275 | 275 | 350 | 296 | 269 | 269 |
Choline, %AI | 118 | 106 | 95 | 95 | 119 | 100 | 91 | 91 |
Potassium, %AI | 127 | 114 | 102 | 102 | 165 | 140 | 127 | 127 |
Percent Tolerable Upper Intake Level (UL) | ||||||||
Sodium | 117 | 106 | 94 | 94 | 153 | 129 | 117 | 117 |
Category | Females 31–50 Years | Males 31–50 Years | ||||||
---|---|---|---|---|---|---|---|---|
HEP 1 | Wahls ElimA 2 | Wahls ElimB 3 | Wahls Elim 4 | HEP | Wahls ElimA | Wahls ElimB | Wahls Elim | |
Fruits + Vegetables, cup-eq 5/day | 4.0 | 6.1 | 9.2 | 11.6 | 5.0 | 7.4 | 11.3 | 14.2 |
Fruit, cup-eq/day | 1.5 | 2.3 | 3.5 | 4.4 | 2.0 | 2.8 | 4.3 | 5.4 |
Vegetable, cup-eq/day | 2.5 | 3.8 | 5.7 | 7.2 | 3.0 | 4.6 | 7.0 | 8.7 |
Dark-Green, cup-eq/day | 0.2 | 2.0 | 3.0 | 3.7 | 0.3 | 2.4 | 3.6 | 4.6 |
Protein Foods, ounce-eq 6/day | 5.0 | 15.1 | 13.0 | 11.5 | 6.0 | 18.4 | 15.9 | 14.0 |
Energy, kcals | 1797 | 1800 | 1800 | 1800 | 2198 | 2200 | 2200 | 2200 |
Energy, kJ | 7519 | 7531 | 7531 | 7531 | 9196 | 9205 | 9205 | 9205 |
Protein, g | 87 | 104 | 97 | 92 | 100 | 127 | 118 | 112 |
Protein, %kcal | 19 | 23 | 22 | 20 | 18 | 23 | 22 | 20 |
Fat, g | 61 | 113 | 100 | 90 | 78 | 139 | 122 | 110 |
Fat, %kcal | 31 | 57 7 | 50 | 45 3 | 32 | 57 | 50 | 45 |
Saturated Fat, g | 15 | 31 | 27 | 24 | 20 | 38 | 34 | 30 |
Saturated Fat, %kcal | 8 | 16 | 14 | 12 | 8 | 16 | 14 | 12 |
Monounsaturated Fat, %kcal | 11 | 22 | 20 | 17 | 12 | 22 | 20 | 17 |
Polyunsaturated Fat, %kcal | 10 | 16 | 14 | 12 | 10 | 16 | 14 | 12 |
EPA 8, g | 0.1 | 0.6 | 0.5 | 0.5 | 0.1 | 0.7 | 0.6 | 0.6 |
DHA 9, g | 0.2 | 1.3 | 1.1 | 1.0 | 0.2 | 1.6 | 1.3 | 1.2 |
Carbohydrate, g | 233 | 102 | 144 | 177 | 286 | 125 | 177 | 216 |
Carbohydrate, %kcal | 52 | 23 | 32 | 39 | 52 | 23 | 32 | 39 |
Dietary Fiber, g | 29 | 20 | 28 | 34 | 35 | 25 | 34 | 42 |
Percent Recommended Dietary Allowance (RDA) | ||||||||
Vitamin A, %RDA | 125 | 151 | 213 | 259 | 109 | 144 | 202 | 247 |
Vitamin C, %RDA | 133 | 276 | 415 | 521 | 141 | 281 | 423 | 531 |
Vitamin D, %RDA | 45 | 69 | 60 | 53 | 47 | 85 | 73 | 65 |
Vitamin E, %RDA | 61 | 108 | 115 | 121 | 74 | 132 | 141 | 148 |
Vitamin B1, %RDA | 153 | 110 | 121 | 129 | 165 | 124 | 135 | 144 |
Vitamin B2, %RDA | 185 | 118 | 136 | 150 | 175 | 122 | 141 | 155 |
Vitamin B3, %RDA | 160 | 221 | 210 | 202 | 166 | 236 | 225 | 216 |
Vitamin B6, %RDA | 274 | 209 | 233 | 251 | 201 | 255 | 284 | 307 |
Folate, %RDA | 143 | 116 | 161 | 195 | 172 | 141 | 197 | 239 |
Vitamin B12, %RDA | 274 | 320 | 277 | 244 | 304 | 392 | 339 | 298 |
Calcium, %RDA | 126 | 35 | 46 | 55 | 134 | 43 | 57 | 67 |
Copper, %RDA | 146 | 116 | 149 | 174 | 173 | 142 | 182 | 213 |
Iron, %RDA | 91 | 62 | 73 | 82 | 242 | 170 | 202 | 226 |
Magnesium, %RDA | 105 | 105 | 123 | 136 | 94 | 98 | 114 | 127 |
Phosphorus, %RDA | 239 | 182 | 182 | 182 | 266 | 222 | 222 | 223 |
Selenium, %RDA | 193 | 228 | 204 | 186 | 221 | 279 | 250 | 228 |
Zinc, %RDA | 171 | 159 | 155 | 151 | 143 | 141 | 137 | 134 |
Average %RDA | 154 | 152 | 169 | 182 | 166 | 177 | 196 | 210 |
MAR, % 10 | 94 | 92 | 93 | 94 | 95 | 96 | 96 | 96 |
Percent Adequate Intake (AI) | ||||||||
Dietary Fiber, %AI | 114 | 81 | 113 | 137 | 114 | 65 | 91 | 110 |
Linoleic Acid, %AI | 143 | 210 | 184 | 165 | 125 | 181 | 159 | 142 |
α-Linolenic Acid, %AI | 185 | 254 | 242 | 234 | 157 | 213 | 204 | 196 |
Vitamin K, %AI | 147 | 703 | 1045 | 1306 | 142 | 644 | 958 | 1197 |
Manganese, %AI | 213 | 151 | 191 | 221 | 199 | 145 | 183 | 212 |
Choline, %AI | 77 | 83 | 88 | 93 | 69 | 78 | 83 | 87 |
Potassium, %AI | 67 | 74 | 92 | 106 | 79 | 90 | 113 | 130 |
Percent Tolerable Upper Intake Level (UL) | ||||||||
Sodium, %UL | 75 | 58 | 55 | 52 | 84 | 71 | 67 | 64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chenard, C.A.; Rubenstein, L.M.; Snetselaar, L.G.; Wahls, T.L. Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern. Nutrients 2019, 11, 537. https://doi.org/10.3390/nu11030537
Chenard CA, Rubenstein LM, Snetselaar LG, Wahls TL. Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern. Nutrients. 2019; 11(3):537. https://doi.org/10.3390/nu11030537
Chicago/Turabian StyleChenard, Catherine A., Linda M. Rubenstein, Linda G. Snetselaar, and Terry L. Wahls. 2019. "Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern" Nutrients 11, no. 3: 537. https://doi.org/10.3390/nu11030537
APA StyleChenard, C. A., Rubenstein, L. M., Snetselaar, L. G., & Wahls, T. L. (2019). Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern. Nutrients, 11(3), 537. https://doi.org/10.3390/nu11030537