Serum Concentration of Genistein, Luteolin and Colorectal Cancer Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Serum Flavonoid Phytoestrogens Measurement
2.3. Tumor Tissue Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003, 133, 3248S–3254S. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.H. Absorption, Bioavailability, and Metabolism of Flavonoids. Pharm. Biol. 2004, 42, 74–83. [Google Scholar] [CrossRef]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- van der Velpen, V.; Hollman, P.C.; van Nielen, M.; Schouten, E.G.; Mensink, M.; Van’t Veer, P.; Geelen, A. Large inter-individual variation in isoflavone plasma concentration limits use of isoflavone intake data for risk assessment. Eur. J. Clin. Nutr. 2014, 68, 1141–1147. [Google Scholar] [CrossRef]
- Lim, C.-G.; Koffas, M. Bioavailability and recent advances in the bioactivity of flavonoid and stilbene compounds. Curr. Org. Chem. 2010, 14, 1727–1751. [Google Scholar] [CrossRef]
- Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo 2005, 19, 895–909. [Google Scholar] [PubMed]
- Bielecki, A.; Roberts, J.; Mehta, R.; Raju, J. Estrogen receptor-beta mediates the inhibition of DLD-1 human colon adenocarcinoma cells by soy isoflavones. Nutr. Cancer 2011, 63, 139–150. [Google Scholar] [CrossRef]
- Jiang, R.; Botma, A.; Rudolph, A.; Husing, A.; Chang-Claude, J. Phyto-oestrogens and colorectal cancer risk: A systematic review and dose-response meta-analysis of observational studies. Br. J. Nutr. 2016, 116, 2115–2128. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wu, K.; Meyerhardt, J.A.; Ogino, S.; Wang, M.; Fuchs, C.S.; Giovannucci, E.L.; Chan, A.T. Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Principi, M.; Di Leo, A.; Pricci, M.; Scavo, M.P.; Guido, R.; Tanzi, S.; Piscitelli, D.; Pisani, A.; Ierardi, E.; Comelli, M.C.; et al. Phytoestrogens/insoluble fibers and colonic estrogen receptor beta: Randomized, double-blind, placebo-controlled study. World J. Gastroenterol. WJG 2013, 19, 4325–4333. [Google Scholar] [CrossRef] [PubMed]
- Jassam, N.; Bell, S.M.; Speirs, V.; Quirke, P. Loss of expression of oestrogen receptor beta in colon cancer and its association with Dukes’ staging. Oncol. Rep. 2005, 14, 17–21. [Google Scholar] [PubMed]
- Rudolph, A.; Toth, C.; Hoffmeister, M.; Roth, W.; Herpel, E.; Jansen, L.; Marx, A.; Brenner, H.; Chang-Claude, J. Expression of oestrogen receptor beta and prognosis of colorectal cancer. Br. J. Cancer 2012, 107, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Guino, E.; Alonso, M.H.; Vidal, C.; Barenys, M.; Soriano, A.; Moreno, V. Dietary flavonoids, lignans and colorectal cancer prognosis. Sci. Rep. 2015, 5, 14148. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Chang-Claude, J.; Rickert, A.; Seiler, C.M.; Hoffmeister, M. Risk of colorectal cancer after detection and removal of adenomas at colonoscopy: Population-based case-control study. J. Clin. Oncol 2012, 30, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Chang-Claude, J.; Seiler, C.M.; Rickert, A.; Hoffmeister, M. Protection from colorectal cancer after colonoscopy: A population-based, case-control study. Ann. Intern. Med. 2011, 154, 22–30. [Google Scholar] [CrossRef]
- Grace, P.B.; Mistry, N.S.; Carter, M.H.; Leathem, A.J.; Teale, P. High throughput quantification of phytoestrogens in human urine and serum using liquid chromatography/tandem mass spectrometry (LC-MS/MS). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 853, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Grace, P.B.; Taylor, J.I.; Botting, N.P.; Fryatt, T.; Oldfield, M.F.; Al-Maharik, N.; Bingham, S.A. Quantification of isoflavones and lignans in serum using isotope dilution liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B.; Cook, N.; Portman, R.; Daniels, S.; Falkner, B. Determination of blood pressure percentiles in normal-weight children: Some methodological issues. Am. J. Epidemiol. 2008, 167, 653–666. [Google Scholar] [CrossRef]
- Jia, M.; Jansen, L.; Walter, V.; Tagscherer, K.; Roth, W.; Herpel, E.; Kloor, M.; Blaker, H.; Chang-Claude, J.; Brenner, H.; et al. No association of CpG island methylator phenotype and colorectal cancer survival: Population-based study. Br. J. Cancer 2016, 115, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Warth, A.; Kloor, M.; Schirmacher, P.; Blaker, H. Genetics and epigenetics of small bowel adenocarcinoma: The interactions of CIN, MSI, and CIMP. Mod. Pathol. 2011, 24, 564–570. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Pollock, B.G. Regression models in clinical studies: Determining relationships between predictors and response. J. Natl. Cancer Inst. 1988, 80, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.T.; Ha, J.; Park, O.J. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem. Biophys. Res. Commun. 2005, 332, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Chian, S.; Li, Y.Y.; Wang, X.J.; Tang, X.W. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prev. 2014, 15, 2911–2916. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Dahal, S.; Bhatt, V.R.; Khanal, N.; Silberstein, P.T. Chemotherapy use in stage III colon cancer: A National Cancer Database analysis. Ther. Adv. Med. Oncol. 2015, 7, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Schrag, D.; Cramer, L.D.; Bach, P.B.; Begg, C.B. Age and adjuvant chemotherapy use after surgery for stage III colon cancer. J. Natl. Cancer Inst. 2001, 93, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Capsec, J.; Lefebvre, C.; Chupe, F.; Heitzmann, P.; Raveneau, C.; Dardaine-Giraud, V.; Sauger, C.; Lagasse, J.P.; Kraft, K.; Linassier, C.; et al. Age and factors associated with access and time to post-operative adjuvant chemotherapy in colon cancer: A French epidemiological study. J. Gastrointest. Oncol. 2017, 8, 842–849. [Google Scholar] [CrossRef]
- Collins, B.M.; McLachlan, J.A.; Arnold, S.F. The estrogenic and antiestrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast. Steroids 1997, 62, 365–372. [Google Scholar] [CrossRef]
- Han, D.H.; Denison, M.S.; Tachibana, H.; Yamada, K. Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids. Biosci. Biotechnol. Biochem. 2002, 66, 1479–1487. [Google Scholar] [CrossRef]
- Williams, C.; DiLeo, A.; Niv, Y.; Gustafsson, J.A. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett. 2016, 372, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Barzi, A.; Lenz, A.M.; Labonte, M.J.; Lenz, H.J. Molecular pathways: Estrogen pathway in colorectal cancer. Clin. Cancer Res. 2013, 19, 5842–5848. [Google Scholar] [CrossRef] [PubMed]
- Pampaloni, B.; Palmini, G.; Mavilia, C.; Zonefrati, R.; Tanini, A.; Brandi, M.L. In vitro effects of polyphenols on colorectal cancer cells. World J. Gastrointest. Oncol. 2014, 6, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Suetsugi, M.; Su, L.; Karlsberg, K.; Yuan, Y.C.; Chen, S. Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol. Cancer Res. 2003, 1, 981–991. [Google Scholar] [PubMed]
- Collins-Burow, B.M.; Burow, M.E.; Duong, B.N.; McLachlan, J.A. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr. Cancer 2000, 38, 229–244. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.W.; Groen, A.J.; Miller, J.L.; Warren, A.Y.; Holmes, K.A.; Tarulli, G.A.; Tilley, W.D.; Katzenellenbogen, B.S.; Hawse, J.R.; Gnanapragasam, V.J.; et al. Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol. Cell. Endocrinol. 2017, 440, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.; Sundberg, M.; Pristovsek, N.; Ibrahim, A.; Jonsson, P.; Katona, B.; Clausson, C.M.; Zieba, A.; Ramstrom, M.; Soderberg, O.; et al. Insufficient antibody validation challenges oestrogen receptor beta research. Nat. Commun. 2017, 8, 15840. [Google Scholar] [CrossRef] [PubMed]
- King, R.A.; Bursill, D.B. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am. J. Clin. Nutr. 1998, 67, 867–872. [Google Scholar] [CrossRef]
- Nielsen, I.L.; Williamson, G. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer 2007, 57, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C. Factors to consider in the association between soy isoflavone intake and breast cancer risk. J. Epidemiol. 2010, 20, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Peeters, P.H.; Slimani, N.; van der Schouw, Y.T.; Grace, P.B.; Navarro, C.; Tjonneland, A.; Olsen, A.; Clavel-Chapelon, F.; Touillaud, M.; Boutron-Ruault, M.C.; et al. Variations in plasma phytoestrogen concentrations in European adults. J. Nutr. 2007, 137, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Grace, P.B.; Taylor, J.I.; Low, Y.L.; Luben, R.N.; Mulligan, A.A.; Botting, N.P.; Dowsett, M.; Welch, A.A.; Khaw, K.T.; Wareham, N.J.; et al. Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol. Biomark. Prev. 2004, 13, 698–708. [Google Scholar]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Slimani, N.; Romieu, I.; Fedirko, V.; de Magistris, M.S.; Ericson, U.; Amiano, P.; Trichopoulou, A.; et al. Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 h dietary recall cohort. Br. J. Nutr. 2011, 106, 1915–1925. [Google Scholar] [CrossRef]
- Kilkkinen, A.; Pietinen, P.; Klaukka, T.; Virtamo, J.; Korhonen, P.; Adlercreutz, H. Use of oral antimicrobials decreases serum enterolactone concentration. Am. J. Epidemiol. 2002, 155, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Lu, L.; Wang, X.S.; Qin, L.Y.; Wang, P.; Qiu, S.P.; Wu, H.; Huang, F.; Zhang, B.B.; Shi, H.L.; et al. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Front. Cell. Infect Microbiol. 2017, 7, 455. [Google Scholar] [CrossRef]
- Stringer, A.M.; Gibson, R.J.; Bowen, J.M.; Keefe, D.M. Chemotherapy-induced modifications to gastrointestinal microflora: Evidence and implications of change. Curr. Drug Metab. 2009, 10, 79–83. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, J.; Murphy, P.A.; Alekel, D.L.; Franke, W.D.; Hendrich, S. Rapid gut transit time and slow fecal isoflavone disappearance phenotype are associated with greater genistein bioavailability in women. J. Nutr. 2003, 133, 3110–3116. [Google Scholar] [CrossRef] [PubMed]
Genistein 2 (N = 2029) | Luteolin 3 (N = 2011) | |||||||
---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | |
No. of patients | 508 | 507 | 507 | 507 | 503 | 503 | 503 | 502 |
Age mean (sd) | 67.7 (9.9) | 67.6 (10.5) | 67.7 (11.0) | 69.7 (11.0) | 68.6 (10.2) | 68.2 (10.8) | 67.5 (10.9) | 68.6 (10.7) |
Gender | ||||||||
Male | 311 (61.2) | 311 (61.3) | 292 (57.6) | 294 (58.0) | 303 (60.2) | 295 (58.7) | 303 (60.2) | 292 (58.2) |
Female | 197 (38.8) | 196 (38.7) | 215 (42.4) | 213 (42.0) | 200 (39.8) | 208 (41.3) | 200 (39.8) | 210 (41.8) |
Stage | ||||||||
1 | 157 (30.9) | 121 (23.9) | 122 (24.1) | 107 (21.1) | 135 (26.8) | 117 (22.6) | 126 (25.0) | 128 (25.5) |
2 | 156 (30.7) | 202 (39.8) | 179 (35.3) | 205 (40.4) | 171 (34.0) | 199 (39.7) | 183 (37.4) | 179 (35.7) |
3 | 195 (38.4) | 184 (36.3) | 206 (40.6) | 195 (38.5) | 197 (39.2) | 187 (37.7) | 194 (38.6) | 195 (38.8) |
Cancer site | ||||||||
Proximal colon | 144 (28.3) | 166 (32.7) | 158 (31.2) | 182 (35.9) | 155 (30.8) | 174 (34.6) | 161 (32.0) | 157 (31.3) |
Distal Colon | 129 (25.4) | 142 (28.0) | 135 (26.6) | 126 (24.9) | 137 (27.2) | 124 (24.6) | 134 (26.6) | 138 (27.5) |
Rectum | 234 (46.1) | 198 (38.1) | 211 (41.6) | 198 (39.0) | 209 (41.6) | 203 (40.4) | 208 (41.4) | 205 (40.8) |
Other | 1 (0.2) | 1 (0.2) | 3 (0.6) | 1 (0.2) | 2 (0.4) | 2 (0.4) | 0 (0) | 2 (0.4) |
BMI | ||||||||
<25 | 171 (33.6) | 214 (42.2) | 175 (34.5) | 198 (39.1) | 194 (38.6) | 186 (37.0) | 186 (37.0) | 188 (37.5) |
25–<30 | 232 (45.7) | 212 (41.8) | 228 (45.0) | 209 (41.2) | 217 (43.1) | 220 (43.7) | 211 (41.9) | 223 (44.4) |
≥30 | 105 (20.7) | 81 (16.0) | 104 (20.5) | 100 (19.7) | 92 (18.3) | 97 (19.3) | 106 (21.1) | 91 (18.1) |
Education | ||||||||
Low | 307 (60.4) | 300 (59.2) | 314 (61.9) | 326 (64.3) | 315 (62.6) | 299 (59.4) | 309 (61.4) | 316 (63.0) |
Intermediate | 118 (23.2) | 108 (21.3) | 108 (21.3) | 113 (22.3) | 109 (21.7) | 113 (22.5) | 115 (22.9) | 105 (20.9) |
High | 83 (16.4) | 99 (19.5) | 85 (16.8) | 68 (13.4) | 79 (15.7) | 91 (18.1) | 79 (15.7) | 81 (16.1) |
Physical activity (MET-h/week) | ||||||||
<138.9 | 118 (23.2) | 117 (23.1) | 129 (25.4) | 139 (27.4) | 118 (23.4) | 131 (26.0) | 110 (21.9) | 133 (26.5) |
138.9–<201.6 | 114 (22.4) | 131 (25.8) | 124 (24.5) | 137 (27.0) | 114 (22.7) | 114 (22.7) | 143 (28.4) | 134 (26.7) |
201.6–<286.9 | 136 (26.8) | 133 (26.2) | 130 (25.6) | 109 (21.5) | 126 (25.1) | 128 (25.5) | 136 (27.0) | 117 (23.3) |
≥286.9 | 140 (27.6) | 126 (24.9) | 124 (24.5) | 122 (24.1) | 145 (28.8) | 130 (25.8) | 114 (22.7) | 118 (23.5) |
Screening detected cancer | ||||||||
No | 367 (72.2) | 401 (79.1) | 366 (72.2) | 377 (74.4) | 371 (73.8) | 365 (72.6) | 379 (75.4) | 378 (75.3) |
Yes | 141 (27.8) | 106 (20.9) | 141 (27.8) | 130 (25.6) | 132 (26.2) | 138 (27.4) | 124 (24.6) | 124 (24.7) |
Chemotherapy | ||||||||
No | 335 (65.9) | 321 (63.3) | 315 (62.1) | 323 (63.7) | 326 (64.8) | 323 (64.2) | 308 (61.2) | 327 (65.1) |
Yes | 173 (34.1) | 186 (36.7) | 192 (37.9) | 184 (36.3) | 177 (35.2) | 180 (35.8) | 195 (38.8) | 175 (34.9) |
Diabetes | ||||||||
No | 413 (81.3) | 417 (82.3) | 409 (80.7) | 388 (76.5) | 395 (78.5) | 411 (81.7) | 415 (82.5) | 391 (77.9) |
Yes | 95 (18.7) | 90 (17.7) | 98 (19.3) | 119 (23.5) | 108 (21.3) | 92 (18.3) | 88 (17.5) | 111 (22.1) |
CVD | ||||||||
No | 387 (76.2) | 404 (79.7) | 370 (73.0) | 361 (71.2) | 375 (74.5) | 385 (76.5) | 373 (74.2) | 376 (74.9) |
Yes | 121 (23.8) | 103 (20.3) | 137 (27.0) | 146 (28.8) | 128 (25.5) | 118 (23.5) | 130 (25.8) | 126 (25.1) |
Constipation | ||||||||
No | 474 (93.3) | 470 (92.7) | 478 (94.3) | 476 (93.9) | 469 (93.2) | 466 (92.6) | 475 (94.4) | 470 (93.6) |
Yes | 34 (6.7) | 37 (7.3) | 29 (5.7) | 31 (6.1) | 34 (6.8) | 37 (7.4) | 28 (5.6) | 32 (6.4) |
ESR2 status 4 | ||||||||
Negative | 151 (44.7) | 157 (43.3) | 162 (47.1) | 165 (47.8) | 174 (49.0) | 151 (42.5) | 152 (45.9) | 155 (45.6) |
Positive | 187 (55.3) | 206 (56.7) | 182 (52.9) | 180 (52.2) | 181 (51.0) | 204 (57.5) | 179 (54.1) | 185 (54.4) |
CIMP 5 | ||||||||
Negative/Low | 324 (85.7) | 338 (82.6) | 335 (82.5) | 317 (80.7) | 347 (86.3) | 323 (80.1) | 304 (79.8) | 331 (85.1) |
High | 54 (14.3) | 71 (17.4) | 71 (17.5) | 76 (19.3) | 55 (13.7) | 80 (19.9) | 77 (20.2) | 58 (14.9) |
KRAS mutation 6 | ||||||||
Wild type | 236 (67.2) | 266 (69.6) | 273 (70.5) | 232 (62.9) | 253 (67.8) | 265 (69.5) | 252 (68.5) | 232 (65.2) |
Mutant | 115 (32.8) | 116 (30.4) | 114 (29.5) | 137 (37.1) | 120 (32.2) | 116 (30.5) | 116 (31.5) | 124 (34.8) |
Interval between diagnosis and blood drawn | ||||||||
<1 month | 201 (39.6) | 218 (43.0) | 218 (43.0) | 207 (40.8) | 229 (45.5) | 204 (40.6) | 186 (37.0) | 215 (42.8) |
1–6 months | 114 (22.4) | 116 (22.9) | 123 (24.3) | 115 (22.7) | 92 (18.3) | 129 (25.6) | 142 (28.2) | 99 (19.7) |
>6 months | 193 (38.0) | 173 (34.1) | 166 (32.7) | 185 (36.5) | 182 (36.2) | 170 (33.8) | 175 (34.8) | 188 (37.5) |
Interval between surgery and blood drawn | ||||||||
Before surgery | 32 (6.3) | 17 (3.4) | 40 (7.9) | 43 (8.5) | 36 (7.2) | 33 (6.6) | 29 (5.8) | 33 (6.6) |
After surgery | 476 (93.7) | 490 (96.6) | 467 (92.1) | 464 (91.5) | 467 (92.8) | 470 (93.4) | 474 (94.2) | 469 (93.4) |
Interval between chemotherapy and blood drawn | ||||||||
Before/no chemo | 420 (82.7) | 404 (79.7) | 397 (78.3) | 396 (78.1) | 405 (80.5) | 408 (81.1) | 390 (77.5) | 398 (79.3) |
During chemo | 25 (4.9) | 48 (9.5) | 44 (8.7) | 33 (6.5) | 28 (5.6) | 38 (7.6) | 51 (10.2) | 32 (6.4) |
After chemo | 63 (12.4) | 55 (10.8) | 66 (13.0) | 78 (15.4) | 70 (13.9) | 57 (11.3) | 62 (12.3) | 72 (14.3) |
Overall Mortality | CRC-Specific Mortality 2 | CRC-Recurrence 3 | Disease-Free Survival 4 | |||||
---|---|---|---|---|---|---|---|---|
N | HR (95% CI) | N | HR (95% CI) | N | HR (95% CI) | N | HR (95% CI) | |
Genistein | ||||||||
Q1 | 114 | 1.00 (Ref) | 69 | 1.00 (Ref) | 97 | 1.00 (Ref) | 138 | 1.00 (Ref) |
Q2 | 119 | 1.01 (0.78–1.31) | 69 | 1.01 (0.72–1.42) | 104 | 1.10 (0.81–1.49) | 147 | 1.05 (0.82–1.34) |
Q3 | 115 | 0.99 (0.77–1.29) | 56 | 0.79 (0.55–1.13) | 97 | 1.02 (0.76–1.38) | 144 | 1.08 (0.84–1.38) |
Q4 | 122 | 1.00 (0.77–1.30) | 58 | 0.83 (0.58–1.19) | 99 | 0.98 (0.72–1.34) | 150 | 1.03 (0.80–1.32) |
Linear | 470 | 1.03 (0.90–1.19) | 252 | 0.96 (0.80–1.15) | 397 | 1.05 (0.89–1.25) | 579 | 1.08 (0.94–1.24) |
Luteolin | ||||||||
Q1 | 117 | 1.00 (Ref) | 71 | 1.00 (Ref) | 108 | 1.00 (Ref) | 148 | 1.00 (Ref) |
Q2 | 116 | 1.12 (0.87–1.46) | 64 | 0.98 (0.70–1.38) | 90 | 0.82 (0.61–1.11) | 134 | 0.95 (0.74–1.21) |
Q3 | 110 | 1.07 (0.82–1.39) | 50 | 0.77 (0.53–1.12) | 92 | 0.80 (0.58–1.09) | 140 | 0.97 (0.75–1.24) |
Q4 | 125 | 1.19 (0.92–1.53) | 65 | 1.05 (0.74–1.47) | 104 | 1.02 (0.76–1.36) | 154 | 1.14 (0.90–1.44) |
Linear | 468 | 1.12 (0.89–1.40) | 250 | 0.96 (0.70–1.32) | 394 | 0.99 (0.75–1.30) | 576 | 1.09 (0.87–1.35) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.; Poschet, G.; Owen, R.; Celik, M.; Jansen, L.; Hell, R.; Hoffmeister, M.; Brenner, H.; Chang-Claude, J. Serum Concentration of Genistein, Luteolin and Colorectal Cancer Prognosis. Nutrients 2019, 11, 600. https://doi.org/10.3390/nu11030600
Jiang R, Poschet G, Owen R, Celik M, Jansen L, Hell R, Hoffmeister M, Brenner H, Chang-Claude J. Serum Concentration of Genistein, Luteolin and Colorectal Cancer Prognosis. Nutrients. 2019; 11(3):600. https://doi.org/10.3390/nu11030600
Chicago/Turabian StyleJiang, Ruijingfang, Gernot Poschet, Robert Owen, Muhabbet Celik, Lina Jansen, Rüdiger Hell, Michael Hoffmeister, Hermann Brenner, and Jenny Chang-Claude. 2019. "Serum Concentration of Genistein, Luteolin and Colorectal Cancer Prognosis" Nutrients 11, no. 3: 600. https://doi.org/10.3390/nu11030600
APA StyleJiang, R., Poschet, G., Owen, R., Celik, M., Jansen, L., Hell, R., Hoffmeister, M., Brenner, H., & Chang-Claude, J. (2019). Serum Concentration of Genistein, Luteolin and Colorectal Cancer Prognosis. Nutrients, 11(3), 600. https://doi.org/10.3390/nu11030600