In Vitro Study for Lipolysis of Soybean Oil, Pomegranate Oil, and Their Blended and Interesterified Oils under a pH-Stat Model and a Simulated Model of Small Intestinal Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Oil Samples
2.3. Total Fatty Acid Composition Analysis
2.4. Preparation of Digestion Fluids
2.5. Particle Size and Physical Stability of Emulsified Oils in Digestive Fluid
2.6. Lipolysis in a pH-Stat Digestion Model
2.7. Lipolysis in a Model that Simulated Small Intestinal Digestion
2.8. HPLC Analysis
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Oil Samples
3.2. Particle Size and Physical Stability of the Emulsified Oils in Digestive Fluids
3.3. The Effect of Lipid Composition on Lipolysis Using a pH-Stat Model
3.4. Lipolysis in a Simulated Model of Small Intestinal Digestion
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khoddami, A.; Che Man, Y.B.; Roberts, T.H. Physico-chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing. Eur. J. Lipid Sci. Technol. 2014, 116, 553–562. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.201300416 (accessed on 15 February 2019). [CrossRef]
- Belitz, H.D.; Grosch, W. Food Chemistry, 2nd ed.; Springer: Berlin, German, 1999; pp. 152–158. ISBN 3-540-64692-2. [Google Scholar]
- Wang, X.Y.; Yang, D.; Gan, L.J.; Zhang, H.; Shin, J.A.; Park, S.H.; Lee, K.T. Degree of oxidation depending on the positional distribution of linolenic acid in perilla oil and interesterified products. Food Sci. Biotechnol. 2014, 23, 1733–1740. Available online: https://link.springer.com/article/10.1007/s10068-014-0237-7 (accessed on 15 February 2019). [CrossRef]
- Kohno, H.; Suzuki, R.; Yasui, Y.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 2004, 95, 481–486. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1349-7006.2004.tb03236.x (accessed on 15 February 2019). [CrossRef] [Green Version]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. Available online: https://www.sciencedirect.com/science/article/pii/S0378874106004570 (accessed on 15 February 2019). [CrossRef] [PubMed]
- Sek, L.; Porter, C.J.H.; Kaukonen, A.M.; Charman, W.N. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J. Pharm. Pharmacol. 2002, 54, 29–41. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1211/0022357021771896 (accessed on 15 February 2019). [CrossRef]
- Zhu, X.; Ye, A.; Verrier, T.; Singh, H. Free fatty acid profiles of emulsified lipids during in vitro digestion with pancreatic lipase. Food Chem. 2013, 139, 398–404. Available online: https://www.sciencedirect.com/science/article/pii/S030881461300037X?via%3Dihub (accessed on 15 February 2019). [CrossRef]
- Arishima, T.; Tachibana, N.; Kojima, M.; Takamatsu, K.; Imaizumi, K. Screening of resistant triacylglycerols to the pancreatic lipase and their potentialities as a digestive retardant. J. Food Lipids 2009, 16, 72–88. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1745-4522.2009.01133.x (accessed on 15 February 2019). [CrossRef]
- Martin, J.C.; Sébédio, J.L.; Caselli, C.; Pimont, C.; Martine, L.; Bernard, A. Lymphatic delivery and in vitro pancreatic lipase hydrolysis of glycerol esters of conjugated linoleic acids in rats. J. Nutr. 2000, 130, 1108–1114. Available online: https://academic.oup.com/jn/article/130/5/1108/4686450 (accessed on 15 February 2019). [CrossRef] [PubMed]
- List, G.R.; Mounts, T.L.; Orthoefer, F.; Neff, W.E. Margarine and shortening oils by interesterification of liquid and trisaturated triglycerides. J. Am. Oil Chem. Soc. 1995, 72, 379–382. Available online: https://link.springer.com/article/10.1007/BF02541100 (accessed on 15 February 2019). [CrossRef]
- Shimada, Y.; Sugihara, A.; Maruyama, K.; Nagao, T.; Nakayama, S.; Nakano, H.; Tominaga, Y. Production of structured lipid containing docosahexaenoic and caprylic acids using immobilized Rhizopus delemar lipase. J. Ferment. Bioeng. 1996, 81, 299–303. Available online: https://www.sciencedirect.com/science/article/pii/0922338X96805800 (accessed on 15 February 2019). [CrossRef]
- Lee, K.T.; Akoh, C.C. Structured lipids: Synthesis and applications. Food Rev. Int. 1998, 14, 17–34. Available online: https://www.sciencedirect.com/science/article/pii/0922338X96805800 (accessed on 15 February 2019). [CrossRef]
- Lee, J.H.; Lee, K.T. Chapter 23, Structured Lipids Production. In Handbook of Functional Lipids, 1st ed.; Akoh, C.C., Ed.; CRC Press: New York, NY, USA, 2006; pp. 489–511. ISBN 0-8493-2162-X. [Google Scholar]
- Li, Y.; McClements, D.J. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 2010, 58, 8085–8092. Available online: https://pubs.acs.org/doi/abs/10.1021/jf101325m (accessed on 15 February 2019). [CrossRef] [PubMed]
- Jannin, V.; Dellera, E.; Chevrier, S.; Chavant, Y.; Voutsinas, C.; Bonferoni, C.; Demarne, F. In vitro lipolysis tests on lipid nanoparticles: Comparison between lipase/co-lipase and pancreatic extract. Drug Dev. Ind. Pharm. 2015, 41, 1582–1588. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25342478 (accessed on 15 February 2019). [CrossRef]
- Mat, D.J.L.; Le Feunteun, S.; Michon, C.; Souchon, I. In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Res. Int. 2016, 88, 226–233. Available online: https://www.sciencedirect.com/science/article/pii/S0963996915302738 (accessed on 07 March 2019). [CrossRef]
- Giang, T.M.; Gaucel, S.; Brestaz, P.; Anton, M.; Meynier, A.; Trelea, I.C.; Feunteun, S.Le. Dynamic modeling of in vitro lipid digestion: Individual fatty acid release and bioaccessibility kinetics. Food Chem. 2016, 194, 1180–1188. Available online: https://www.sciencedirect.com/science/article/pii/S0308814615013345?via%3Dihub (accessed on 15 February 2019). [CrossRef] [PubMed] [Green Version]
- Christie, W.W. Lipid Analysis, 3rd ed.; The Oily Press: Bridgwater, UK, 2003; pp. 108–112. ISBN 0-9531949-5-7. [Google Scholar]
- Adhikari, P.; Shin, J.A.; Lee, J.H.; Hu, J.N.; Hwang, K.T.; Lee, K.T. Enzymatic production of trans-free hard fat stock from fractionated rice bran oil, fully hydrogenated soybean oil, and conjugated linoleic acid. J. Food Sci. 2009, 74, E87–E96. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1750-3841.2009.01052.x (accessed on 15 February 2019). [CrossRef]
- Hur, S.J.; Decker, E.A.; McClements, D.J. Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chem. 2009, 114, 253–262. Available online: https://www.sciencedirect.com/science/article/pii/S0308814608011424 (accessed on 15 February 2019). [CrossRef]
- Versantvoort, C.H.M.; Oomen, A.G.; Van de Kamp, E.; Rompelberg, C.J.M.; Sips, A.J.A.M. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem. Toxicol. 2005, 43, 31–40. Available online: https://www.sciencedirect.com/science/article/pii/S0278691504002698 (accessed on 15 February 2019). [CrossRef] [PubMed]
- Gan, L.J.; Yang, D.; Shin, J.A.; Kim, S.J.; Hong, S.T.; Lee, J.H.; Sung, C.K.; Lee, K.T. Oxidative comparison of emulsion systems from fish oil-based structured lipid versus physically blended lipid with purple-fleshed sweet potato (Ipomoea batatas L.) extracts. J. Agric. Food Chem. 2012, 60, 467–475. Available online: https://pubs.acs.org/doi/abs/10.1021/jf203708y (accessed on 15 February 2019). [CrossRef]
- Kaufman, M.; Wiesman, Z. Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J. Agric. Food Chem. 2007, 55, 10405–10413. Available online: https://pubs.acs.org/doi/abs/10.1021/jf072741q (accessed on 15 February 2019). [CrossRef]
- Mitra, K.; Lee, J.H.; Lee, K.T.; Kim, S.A. Production tactic and physiochemical properties of low ω6/ω3 ratio structured lipid synthesised from perilla and soybean oil. Int. J. Food Sci. Technol. 2010, 45, 1321–1329. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2621.2009.02132.x (accessed on 15 February 2019). [CrossRef]
- Armand, M.; Pasquier, B.; André, M.; Borel, P.; Senft, M.; Peyrot, J.; Salducci, J.; Portugal, H.; Jaussan, V.; Lairon, D. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am. J. Clin. Nutr. 1999, 70, 1096–1106. Available online: https://academic.oup.com/ajcn/article/70/6/1096/4729250 (accessed on 15 February 2019). [CrossRef] [Green Version]
- Bauer, E.; Jakob, S.; Mosenthin, R. Principles of physiology of lipid digestion. Asian-Australas. J. Anim. Sci. 2005, 18, 282–295. Available online: https://www.ajas.info/journal/view.php?number=20957 (accessed on 15 February 2019). [CrossRef]
- Celia, C.; Trapasso, E.; Cosco, D.; Paolino, D.; Fresta, M. Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf. B Biointerfaces. 2009, 72, 155–160. Available online: https://www.sciencedirect.com/science/article/pii/S0927776509001088 (accessed on 15 February 2019). [CrossRef]
- Fioramonti, S.A.; Martinez, M.J.; Pilosof, A.M.R.; Rubiolo, A.C.; Santiago, L.G. Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration. Food Hydrocoll. 2015, 43, 8–17. Available online: https://www.sciencedirect.com/science/article/pii/S0268005X14001660 (accessed on 15 February 2019). [CrossRef]
- Mengual, O.; Meunier, G.; Cayre, I.; Puech, K.; Snabre, P. Characterisation of instability of concentrated dispersions by a new optical analyser: The TURBISCAN MA 1000. Colloids Surf. A Physicochem. Eng. Aspects 1999, 152, 111–123. Available online: https://www.sciencedirect.com/science/article/pii/S0927775798006803 (accessed on 15 February 2019). [CrossRef]
- Golding, M.; Wooster, T.J. The influence of emulsion structure and stability on lipid digestion. Curr. Opin. Colloid Interface Sci. 2010, 15, 90–101. Available online: https://www.sciencedirect.com/science/article/pii/S135902940900106X (accessed on 15 February 2019). [CrossRef]
- Willis, W.M.; Lencki, R.W.; Marangoni, A.G. Lipid modification strategies in the production of nutritionally functional fats and oils. Crit. Rev. Food Sci. Nutr. 1998, 38, 639–674. [Google Scholar] [CrossRef]
- McClements, D.J.; Li, Y. Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Funct. 2010, 1, 32–59. Available online: https://pubs.rsc.org/en/Content/ArticleLanding/2010/FO/c0fo00111b#!divAbstract (accessed on 15 February 2019). [CrossRef]
- Perona, J.S.; Ruiz-Gutierrez, V. Quantification of major lipid classes in human triacylglycerol-rich lipoproteins by high-performance liquid chromatography with evaporative light-scattering detection. J. Sep. Sci. 2004, 27, 653–659. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jssc.200301723 (accessed on 15 February 2019). [CrossRef]
- Moreau, R.A. The Evaporative Light-Scattering Detector as a Tool for the Analysis of Lipids by HPLC. In HPLC of Acyl Lipids, 1st ed.; Lin, J.T., McKeon, T.A., Eds.; HNB Publishing Inc.: New York, NY, USA, 2005; pp. 93–115. ISBN 0-9728061-1-3. [Google Scholar]
- Rodríguez-Alcalá, L.M.; Fontecha, J. Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J. Chromatogr. A 2010, 1217, 3063–3066. Available online: https://www.sciencedirect.com/science/article/pii/S0021967310003092 (accessed on 15 February 2019). [CrossRef] [PubMed] [Green Version]
- Bottino, N.R.; Vandenburg, G.A.; Reiser, R. Resistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids 1967, 2, 489–493. Available online: https://www.ncbi.nlm.nih.gov/pubmed/17805793 (accessed on 7 March 2019). [CrossRef]
- Brockerhoff, H. Substrate specificity of pancreatic lipase. Influence of the structure of fatty acids on the reactivity of esters. Biochim. Biophys. Acta 1970, 212, 92–101. [Google Scholar] [CrossRef]
Duodenal Juice | Bile Juice | |||
---|---|---|---|---|
Inorganic components | 40 mL NaCl | 175.3 g/L | 30 mL NaCl | 175.3 g/L |
40 mL NaHCO3 | 84.7 g/L | 68.3 mL NaHCO3 | 84.7 g/L | |
10 mL KH2PO4 | 8 g/L | 4.2 mL KCl | 89.6 g/L | |
6.3 mL KCl | 89.6 g/L | |||
10 mL MgCl2 | 5 g/L | |||
250 μL HCl 35% | 350 μL HCl 35% | |||
Organic components | 4 mL urea | 25 g/L | 10 mL urea | 25 g/L |
Mixture of organic and inorganic solution 1 | 9 mL CaCl2 | 16.8 g/L | 10 mL CaCl2 | 16.8 g/L |
1 g BSA | 1.8 g BSA | |||
15 g bile salts 2 | ||||
pH | 6.4 ± 0.2 | 6.4 ± 0.2 |
Fatty Acids | SBO 1 | PGO | PHY | IO |
C16:0 (P, palmitic acid) | 13.1 ± 0.1 | 4.0 ± 0.1 | 9.8 ± 0.3 | 8.8 ± 0.3 |
C18:0 (S, stearic acid) | 3.8 ± 0.1 | 2.6 ± 0.0 | 4.0 ± 0.1 | 3.7 ± 0.1 |
C18:1 n-9 (O, oleic acid) | 22.1 ± 0.2 | 7.0 ± 0.0 | 18.1 ± 0.6 | 16.7 ± 0.1 |
C18:1 n-7 | 2.8 ± 0.1 | 1.1 ± 0.1 | 2.4 ± 0.2 | 2.7 ± 0.4 |
C18:2t | 0.5 ± 0.1 | 0.9 ± 0.0 | 0.6 ± 0.0 | 0.8 ± 0.1 |
C18:2 n-6 (L, linoleic acid) | 49.5 ± 0.1 | 8.5 ± 0.3 | 35.1 ± 1.0 | 32.9 ± 0.2 |
C18:3 n-6 (γ-Ln, γ-linolenic acid) | 0.6 ± 0.1 | - | 0.3 ± 0.0 | 0.3 ± 0.1 |
C18:3 n-3 (Ln, α-linolenic acid) | 5.5 ± 0.2 | - | 3.4 ± 0.2 | 3.0 ± 0.1 |
C18:3 n-5 (CLn, conjugated linolenic acid) | - | 74.7 ± 0.9 | 24.7 ± 2.0 | 29.2 ± 0.9 |
Unknown | 2.0 ± 0.1 | 1.2 ± 0.3 | 1.8 ± 0.3 | 1.9 ± 0.1 |
Plausible Major TAG Species (PN) 2 | SBO | PGO | PHY | IO |
CLn-CLn-CLn (36) | - | 67.8 ± 1.9 | 24.8 ± 1.1 | - |
CLn-CLn-CLn/CLn-CLn-Ln (36) | - | - | - | 3.4 ± 0.4 |
CLn-CLn-L (38) | - | 7.9 ± 0.8 | 3.0 ± 0.5 | - |
CLn-CLn-L/CLn-Ln-L (38) | - | - | - | 18.0 ± 0.2 |
L-L-Ln (40) | 6.0 ± 0.0 | - | 2.7 ± 0.5 | - |
L-L-Ln/L-L-CLn (40) | - | - | - | 14.7 ± 0.3 |
CLn-CLn-O(P) (40) | - | 12.1 ± 0.5 | 4.7 ± 1.2 | - |
CLn-CLn-O(P)/CLn-Ln-O(P) (40) | - | - | - | 10.4 ± 0.4 |
L-L-L (42) | 24.5 ± 0.1 | - | 12.9 ± 1.9 | 2.2 ± 0.1 |
O-L-Ln (42) | 2.8 ± 0.1 | - | 1.7 ± 0.4 | - |
O-L-Ln/O-L-CLn (42) | - | - | - | 18.5 ± 1.0 |
L-L-O (44) | 21.4 ± 0.1 | - | 13.2 ± 0.2 | 5.2 ± 0.2 |
P-L-L (44) | 15.2 ± 0.2 | - | 9.0 ± 0.3 | 5.9 ± 0.3 |
L-O-O (46) | 6.8 ± 0.2 | - | 4.8 ± 0.2 | 1.4 ± 0.2 |
L-L-S/P-L-O (46) | 12.7 ± 0.2 | - | 8.6 ± 0.1 | 3.0 ± 0.2 |
S-L-O (48) | 4.2 ± 0.1 | - | 3.0 ± 0.5 | - |
Unknown | 6.4 ± 0.4 | 12.2 ± 0.6 | 11.7 ± 1.2 | 17.2 ± 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.; Shin, J.-A.; Hong, S.T.; Lee, K.-T. In Vitro Study for Lipolysis of Soybean Oil, Pomegranate Oil, and Their Blended and Interesterified Oils under a pH-Stat Model and a Simulated Model of Small Intestinal Digestion. Nutrients 2019, 11, 678. https://doi.org/10.3390/nu11030678
Ji C, Shin J-A, Hong ST, Lee K-T. In Vitro Study for Lipolysis of Soybean Oil, Pomegranate Oil, and Their Blended and Interesterified Oils under a pH-Stat Model and a Simulated Model of Small Intestinal Digestion. Nutrients. 2019; 11(3):678. https://doi.org/10.3390/nu11030678
Chicago/Turabian StyleJi, Chenming, Jung-Ah Shin, Soon Taek Hong, and Ki-Teak Lee. 2019. "In Vitro Study for Lipolysis of Soybean Oil, Pomegranate Oil, and Their Blended and Interesterified Oils under a pH-Stat Model and a Simulated Model of Small Intestinal Digestion" Nutrients 11, no. 3: 678. https://doi.org/10.3390/nu11030678
APA StyleJi, C., Shin, J. -A., Hong, S. T., & Lee, K. -T. (2019). In Vitro Study for Lipolysis of Soybean Oil, Pomegranate Oil, and Their Blended and Interesterified Oils under a pH-Stat Model and a Simulated Model of Small Intestinal Digestion. Nutrients, 11(3), 678. https://doi.org/10.3390/nu11030678