Determinants of Undernutrition among Young Children Living in Soth Nikum District, Siem Reap, Cambodia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design and Sample
2.3. Data Collection
2.3.1. Anthropometry and Biochemical Data
2.3.2. Dietary Intake
2.3.3. Health Status
2.3.4. Health and Feeding Practices
2.3.5. Household Food Security
2.3.6. Socio-Demographics and Access to Healthy Environment
2.4. Data Analysis
2.4.1. Nutritional Status
2.4.2. Dietary Intake
2.4.3. Health Status
2.4.4. Household Food Security
2.4.5. Feeding and Health Practices
2.4.6. Access to a Healthy Environment
2.4.7. Socioeconomics
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
UNICEF | United Nations Children’s Funds |
LAZ | Length for age Z-score |
HAZ | Height for age Z-score |
DHS | Demographic and health survey |
NGO | Non governmental organization |
HFIAS | Household food insecurity and access scale |
WHO | World Health Organization |
WLZ | Weight for length Z-score |
BMI | Body-mass index |
CRP | C-reactive protein |
ARI | Acute respiratory infection |
DESR | Degree of satisfaction of energy requirements |
DSPR | Degree of satisfaction of protein requirements |
DSIR | Degree of satisfaction of iron requirements |
DSZR | Degree of satisfaction of zinc requirements |
DSCR | Degree of satisfaction of vitamin C requirements |
References
- International Food Policy Research Institute/IFPRI. Global Nutrition Report 2016: From Promise to Impact Ending Malnutrition by 2030; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- World Health Organization. Micronutrient Deficiencies. 2016. Available online: http://www.who.int/nutrition/topics/vad/en/ (accessed on 15 December 2018).
- United Nations Children’s Funds/UNICEF. Strategy for Improved Nutrition of Children and Women in Developing Countries; UNICEF: New York, NY, USA, 1990. [Google Scholar]
- Michaud-Létourneau, I.; Pelletier, D.L. Perspectives on the coordination of multisectoral nutrition in Mozambique and an emerging framework. Food Policy 2017, 70, 84–97. [Google Scholar] [CrossRef]
- International Food Policy Research Institute/IFPRI. Working Multisectorally in Nutrition Principles, Practices, and Case Studies; IFPRI: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Blaney, S.; Beaudry, M.; Latham, M. Determinants of undernutrition in rural communities of a protected area in Gabon. Public Health Nutr. 2009, 12, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.H.; Headey, D.; Frongillo, E.A.; Tran, L.M.; Rawat, R.; Ruel, M.T.; Menon, P. Changes in Underlying Determinants Explain Rapid Increases in Child Linear Growth in Alive & Thrive Study Areas between 2010 and 2014 in Bangladesh and Vietnam. J. Nutr. 2017, 147, 462–469. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Statistics, Directorate General for Health, and ICF International. Cambodia Demographic and Heath Survey; National Institute of Statistics, Directorate General for Health, Phnom Penh, Cambodia and ICF International: Rockville, MD, USA, 2015. [Google Scholar]
- Wessels, K.P.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed]
- Darapheak, C.; Takano, T.; Kizuki, M.; Nakamura, K.; Seino, K. Consumption of animal source foods and dietary diversity reduce stunting in children in Cambodia. Int. Arch. Med. 2013, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Menasria, L.; Blaney, S.; Main, B.; Vong, L.; Hun, V.; Raminashvili, D.; Chhorvann, C.; Chiasson, L.; Leblanc, C.P. Mitigated impact impact of provision of local foods combined with nutrition counseling and education on young child nutritional status in Cambodia. Nutrients 2019, 10, 1450. [Google Scholar] [CrossRef]
- Skau, J.K.H.; Bunthang, T.; Chamnan, C.; Wieringa, F.T.; Dijkhuizen, M.A.; Roos, N.; Ferguson, E.L. The use of linear programming to determine whether a formulated complementary food product can ensure adequate nutrients for 6- to 11-month-old Cambodian infants. Am. J. Clin. Nutr. 2013, 99, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, V.P.; Cornwall, J.; Jack, S.; Gibson, R.S. Intakes from non-breastmilk foods for stunted toddlers living in poor urban villages of Phnom Penh, Cambodia, are inadequate. Matern. Child Nutr. 2008, 4, 146–159. [Google Scholar] [CrossRef]
- Osendarp, S.J.M.; Broersen, B.; van Liere, M.J.; De-Regil, L.M.; Bahirathan, L.; Klassen, E.; Neufeld, L.M. Complementary feeding diets made of local foods can be optimized, but additional interventions will be needed to meet iron and zinc requirements in 6- to 23-month-old children in low- and middle-income countries. Food Nutr. Bull. 2016, 37, 544–570. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. 2018. Available online: https://data.worldbank.org/country/cambodia (accessed on 10 March 2018).
- Whitley, E.; Ball, J. Statistics Review 4: Sample Size Calculations. 2002. Available online: https://www.ncbi.nlm.nih.gov/pubmed/12225610 (accessed on 15 April 2018).
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Household Food Access: Indicator Guide (version 3); Food and Nutrition Technical Assistance Project; Academy for Educational Development: Washington, DC, USA, 2007. [Google Scholar]
- McDonald, C.M.; McLean, J.; Kroeun, H.; Talukder, A.; Lynd, L.D.; Green, T.J. Correlates of household food insecurity and low dietary diversity in rural Cambodia. Asia Pac. J. Clin. Nutr. 2015, 24, 720–730. [Google Scholar]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control: A Guide for Programme Manager; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Institute of Nutrition, Mahidol University. ASEAN Food Composition Database. 2014. Available online: http://www.inmu.mahidol.ac.th/aseanfoods/doc/ASEAN_FCD_V1_2014.pdf (accessed on 10 September 2017).
- Ministry of Agriculture, Forestry and Fisheries of Cambodia; Department of Fisheries Post-Harvest Technologies and Quality Control, Ministry of Health, Cambodia—National Maternal and Child Health Center. Food Composition Table of Cambodia; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013.
- World Health Organization. Complementary Feeding of Young Children in Developing Countries A Review of Current Scientific Knowledge; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Dewey, K.G.; Cohen, R.J.; Rivera, L.L.; Brown, K.H. Effects of age of introduction of complementary foods on iron status of breast-fed infants in Honduras. Am. J. Clin. Nutr. 1998, 67, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Brown, K.H. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutr. Bull. 2003, 24, 5–28. [Google Scholar] [CrossRef]
- Food and Agriculture organization of the United Nations; World Health Organization; United Nations University. Human Energy Requirements; FAO: Rome, Italy, 2001. [Google Scholar]
- World Health Organization; Food and Agriculture Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- World Health Organization; Food and Agriculture Organization of the United Nations; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- World Health Organization. Basic Laboratory Methods in Medical Parasitology; WHO: Geneva, Switzerland, 1991. [Google Scholar]
- World Health Organization. Indicators for Assessing Infant and Young Child Feeding Practices: Conclusions of a Consensus Meeting held 6–8 November 2007 in Washington DC, USA; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- World Health Organization. Guiding Principles for Feeding Non-Breastfed Children 6–24 Months of Age; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- United Nations Children’s Funds; World Health Organization. Progress on Drinking Water, Sanitation and Hygiene; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Durand, C. L’analyse factorielle et l’analyse de fidélité; Université de Montréal: Montréal, QC, Canada, 2003. [Google Scholar]
- Brown, K.H.; Peerson, J.M.; Baker, S.K.; Hess, S.Y. Preventive zinc supplementation among infants, preschoolers, and older prepubertalc cildren. Food Nutr. Bull. 2009, 30, s12–s40. [Google Scholar] [CrossRef]
- de Benoist, B.; Darnton-Hill, I.; Davidsson, L.; Fontaine, O.; Hotz, C. Conclusions of the Joint WHO/UNICEF/IAEA/IZiNCG Interagency Meeting on Zinc Status Indicators. Food Nutr. Bull. 2007, 28, s480–s484. [Google Scholar] [CrossRef] [PubMed]
- Friis, H.; Ndhlovu, P.; Mduluza, T.; Kaondera, K.; Sandström, B.; Michaelsen, K.F.; Vennerdal, B.J.; Christensen, N.O. The impact of zinc supplementation on growth and body composition: A randomized, controlled trial among rural Zimbabwean schoolchildren. Eur. J. Clin. Nutr. 1997, 51, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangour, A.D.; Watson, L.; Cumming, O.; Boisson, S.; Che, Y.; Velleman, Y.; Cavill, S.; Allen, E.; Uauy, R. Interventions to improve water quality and supply, sanitation and hygiene practices, and their effects on the nutritional status of children. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Guerrant, R.L.; Oriá, R.B.; Moore, S.R.; Oriá, M.O.B.; Lima, A.A.M. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr. Rev. 2008, 66, 487–505. [Google Scholar] [CrossRef] [Green Version]
- Briend, A. Is diarrhoea a major cause of malnutrition among the under-fives in developing countries? A review of available evidence. Eur. J. Clin. Nutr. 1990, 44, 611–628. [Google Scholar] [PubMed]
- Humphrey, J.H. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet 2009, 374, 1032–1035. [Google Scholar] [CrossRef]
- Prüss-Üstün, A.; Corvalán, C. Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Reinbott, A.; Jordan, I. Determinants of Child Malnutrition and Infant and Young Child Feeding Approaches in Cambodia. In World Review of Nutrition and Dietetics; Biesalski, H.K., Black, R.E., Baltimore, M.D., Eds.; Karger: Basel, Switzerland, 2016. [Google Scholar]
- Millward, D.J. Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr. Res. Rev. 2017, 30, 50–72. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Vaz, M.; Kurpad, A.V. Protein intakes in India. Br. J. Nutr. 2012, 108, S50–S58. [Google Scholar] [CrossRef]
- Marriott, B.P.; White, A.; Hadden, L.; Davies, J.C.; Wallingford, J.C. World Health Organization (WHO) infant and young child feeding indicators: Associations with growth measures in 14 low-income countries. Matern. Child Nutr. 2012, 8, 354–370. [Google Scholar] [CrossRef]
- Caulfield, L.E.; Bentley, M.E.; Ahmed, S. Is prolonged breastfeeding associated with malnutrition? Evidence from nineteen demographic and health surveys. Int. J. Epidemiol. 1996, 25, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Northrop-Clewes, C.A. Interpreting indicators of iron status during an acute phase response—Lessons from malaria and human immunodeficiency virus. Ann. Clin. Biochem. 2008, 45, 18–32. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control. Consulté à l’adresse. 2017. Available online: http://www.who.int/iris/handle/10665/259425 (accessed on 15 December 2017).
- Cowin, I.; Emond, A.; Emmett, P.; ALSPAC Study Group. Association between composition of the diet and haemoglobin and ferritin levels in 18-month-old children. Eur. J. Clin. Nutr. 2001, 55, 278. [Google Scholar] [CrossRef] [PubMed]
- Sherriff, A.; Emond, A.; Hawkins, N.; Golding, J. Haemoglobin and ferritin concentrations in children aged 12 and 18 months. ALSPAC Children in Focus Study Team. Arch. Dis. Child. 1999, 80, 153–157. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Yiannakis, M.; Main, B.; Devenish, R.; Anderson, C.; Sam An, U.; Williams, S.M.; Gibson, R.S. Genetic Hemoglobin Disorders, Infection, and Deficiencies of Iron and Vitamin A Determine Anemia in Young Cambodian Children. J. Nutr. 2012, 142, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, S.; Aguayo, V.M.; Krishna, V.; Nair, R. Household food insecurity and children’s dietary diversity and nutrition in India. Evidence from the comprehensive nutrition survey in Maharashtra. Mater. Child Nutr. 2017, 13, e12447. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, D.L.; Deneke, K.; Kidane, Y.; Haile, B.; Negussie, F. The food-first bias and nutrition policy: Lessons from Ethiopia. Food Policy 1995, 20, 279–298. [Google Scholar] [CrossRef]
Type of Data | Methods for Data Collection |
---|---|
Anthropometry | Direct measurement |
Hemoglobin and ferritin | Venous blood collection |
Dietary intake | Interview for 24-h recalls (3) |
Health Status | Interview to collect data on signs of diarrhea, fever or acute respiratory infection in the 14 days preceding the study, and C-reactive protein |
Health and feeding practices | Interview to collect data on breastfeeding status of the child, minimum dietary diversity and meal frequency the last 24-h using a standardized questionnaire |
Household food security | Interview using the household food insecurity access scale |
Access to healthy environment | Interview using a standardized questionnaire to collect data on household access to improved sanitation and water source |
Socio-demographics | Interview using a standardized questionnaire to collect data on household ownership of assets and housing conditions. |
Characteristics | n | % | Mean (±SD) |
---|---|---|---|
Child’s characteristics | |||
Age group (months) | 346 | NA | |
6–11 | 39.3 | ||
12–17 | 36.1 | ||
18–23 | 24.6 | ||
Gender | 346 | NA | |
Female | 50.9 | ||
Male | 49.1 | ||
Caregiver’s characteristics | |||
Age | 346 | 30.1 ± 9.6 | |
Education level (years) * | 345 | ||
None | 27.5 | ||
1–6 | 50.7 | ||
≥7 | 21.7 |
Anthropometric Indicators ** | Iron Status Indicators | ||||||
---|---|---|---|---|---|---|---|
n | LAZ | WLZ | n | Hb | n | Ferritin | |
Child characteristics | |||||||
Age groups (months) | |||||||
6–11 | 135 | −0.67 a | −0.60 a | 109 | 9.75 a | 112 | 27.61 a |
(1.43) | (1.06) | (2.2) | (27.32) | ||||
12–17 | 125 | −1.25 b | −0.76 a | 112 | 9.77 a | 114 | 17.29 b |
(0.92) | (0.93) | (1.24) | (15.9) | ||||
18–23 | 85 | −1.47 b | −1.04 b | 75 | 10.53 b | 76 | 22.87 a |
(1.17) | (0.93) | (1.15) | (19.4) | ||||
Gender | |||||||
Female | 176 | −0.96 | −0.76 | 155 | 10.11 | 159 | 23.53 a |
(1.33) | (0.9) | (1.96) | (20.48) | ||||
Male | 169 | 1.19 | −0.78 | 141 | 9.78 | 143 | 21.39 b |
(1.14) | (1.09) | (1.23) | (23.59) | ||||
Birth weight (kg) | |||||||
<2.5 | 31 | −1.61 a | −1.10 | 27 | 9.69 | 27 | 15.36 a |
(0.94) | (0.78) | (1.33) | (13.14) | ||||
≥2.5 | 304 | −1.05 b | −0.73 | 260 | 9.98 | 266 | 23.37 b |
(1.17) | (1.02) | (1.72) | (22.86) | ||||
Caregiver characteristics | |||||||
Education level (years) | |||||||
None | 95 | −1.15 | −0.70 | 80 | 9.98 | 82 | 20.87 |
(1.12) | (0.92) | (1.25) | (16.97) | ||||
1–6 | 174 | −1.03 | −0.78 | 151 | 9.84 | 152 | 23.57 |
(1.19) | (0.98) | (2.02) | (24.53) | ||||
≥7 | 75 | −1.09 | −0.84 | 64 | 10.17 | 67 | 22.39 |
(1.5) | (1.14) | (1.13) | (21.63) | ||||
Body-mass index | |||||||
<18.5 | 29 | −1.30 | −1.15 a | 27 | 9.89 | 27 | 19.41 |
(0.99) | (1.04) | (1.22) | (14.98) | ||||
≥18.5 | 235 | −1.10 | −0.74 b | 202 | 9.99 | 202 | 22.71 |
(1.18) | (0.98) | (1.19) | (21.35) | ||||
Household characteristics | |||||||
Household size (persons) | |||||||
1–3 | 84 | −1.14 | −0.75 | 77 | 9.56 | 78 | 19.85 |
(1.01) | (1.04) | (2.54) | (16.25) | ||||
4–6 | 196 | −1.05 | −0.80 | 162 | 10.09 | 167 | 23.65 |
(1.33) | (1.03) | (1.18) | (24.88) | ||||
≥7 | 65 | −1.07 | −0.72 | 57 | 10.11 | 57 | 22.88 |
(1.26) | (0.82) | (1.28) | (19.75) | ||||
Socioeconomic quintile | |||||||
−1.20 | −0.64 | 9.84 | 22.58 | ||||
Lowest | 67 | (0.96) | (1.09) | 58 | (1.18) | 59 | (25.57) |
−1.14 | −0.73 | 9.62 | 19.83 | ||||
Second | 67 | (1.09) | (0.9) | 57 | (2.89) | 57 | (16.21) |
−1.09 | −0.87 | 9.94 | 19.95 | ||||
Middle | 67 | (0.96) | (0.85) | 55 | (1.3) | 56 | (17.26) |
−0.95 | −0.91 | 10.15 | 24.85 | ||||
Fourth | 66 | (1.19) | (0.98) | 61 | (1.19) | 62 | (19.63) |
−1.00 | −0.70 | 10.18 | 24.87 | ||||
Highest | 67 | (1.44) | (1.16) | 55 | (1.17) | 58 | (29.41) |
LAZ | WLZ | HB | FER | DSER | DSPR | DSIR | DSZR | DSCR | HS1 | HS2 | FS | IMM | MAD | BF | AHE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LAZ | 1 | |||||||||||||||
WLZ | 0.194 † | 1 | ||||||||||||||
HB | −0.130 | −0.023 | 1 | |||||||||||||
FER | −0.034 | −0.068 | 0.381 † | 1 | ||||||||||||
DSER | 0.112 † | 0.072 | 0.074 | 0.106 | 1 | |||||||||||
DSPR | −0.174 † | −0.206 † | 0.168 † | 0.032 | 0.483 † | 1 | ||||||||||
DSIR | −0.099 | −0.056 | 0.164 † | 0.014 | 0.147 † | 0.702 † | 1 | |||||||||
DSZR | −0.008 | −0.030 | 0.100 | −0.023 | 0.596 † | 0.827 † | 0.724 † | 1 | ||||||||
DSCR | 0.047 | 0.027 | −0.030 | 0.096 | 0.011 | 0.267 † | 0.266 † | 0.368 † | 1 | |||||||
HS1 | −0.018 | −0.195 † | −0.067 | 0.117 | −0.013 | −0.020 | −0.027 | −0.028 | 0.082 | 1 | ||||||
HS2 | −0.242 † | 0.017 | 0.065 | 0.011 | −0.109 | −0.050 | 0.002 | −0.063 | −0.105 | −0.045 | 1 | |||||
FS | 0.011 | 0.041 | 0.016 | 0.013 | 0.011 | −0.076 | −0.097 | −0.071 | −0.089 | 0.156 † | 0.053 | 1 | ||||
IMM | −0.066 | −0.107 | 0.000 | −0.023 | −0.035 | 0.185 † | 0.164 | 0.110 | 0.023 | −0.032 | −0.142 | 0.072 | 1 | |||
MAD | 0.012 | −0.067 | −0.040 | −0.117 | 0.103 | 0.174 † | 0.208 † | 0.241 † | 0.297 † | 0.011 | −0.076 | −0.210 † | 0.060 | 1 | ||
BF | 0.138 | 0.081 | −0.213 † | −0.025 | 0.443 † | −0.189 † | −0.455 † | −0.063 | 0.551 † | 0.004 | −0.185 | −0.039 | −0.142 | 0.325 † | 1 | |
AHE | 0.092 | 0.008 | 0.017 | −0.039 | −0.044 | 0.143 † | 0.104 | 0.053 | −0.012 | −0.098 | 0.009 | −0.203 † | 0.190 † | 0.094 | −0.017 | 1 |
LAZ | WLZ | Hb | Ferritin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R Change | Beta | p | R Change | Beta | p | R Change | Beta | p | R Change | Beta | p | |
Constant | - | 2.622 | 0.001 | - | 2.686 | 0.001 | - | 97.269 | 0.000 | - | 1.193 | 0.000 |
DSER | - | −0.002 | 0.983 | 0.008 | 0.188 | 0.014 | - | 0.066 | 0.298 | - | 0.074 | 0.228 |
DSPR | 0.010 | −0.622 | 0.000 | 0.067 | −0.690 | 0.000 | - | 0.061 | 0.319 | - | 0.001 | 0.988 |
DSZR | 0.070 | 0.550 | 0.000 | 0.061 | 0.252 | 0.037 | - | 0.068 | 0.264 | - | −0.018 | 0.765 |
DSIR | - | 0.105 | 0.265 | 0.009 | 0.180 | 0.063 | - | 0.025 | 0.694 | - | 0.016 | 0.792 |
DSCR | - | 0.035 | 0.595 | - | −0.054 | 0.394 | - | 0.006 | 0.929 | - | 0.046 | 0.453 |
HS1 | - | 0.013 | 0.808 | 0.023 | −0.160 | 0.002 | - | −0.052 | 0.396 | 0.016 | 0.125 | 0.038 |
AHE | 0.016 | 0.129 | 0.014 | - | 0.056 | 0.286 | - | 0.024 | 0.690 | - | −0.035 | 0.559 |
FS | - | −0.005 | 0.926 | - | 0.077 | 0.142 | - | 0.037 | 0.543 | - | 0.047 | 0.439 |
BF | 0.015 | −0.171 | 0.007 | - | −0.063 | 0.308 | - | −0.051 | 0.479 | - | −0.025 | 0.675 |
MAD | - | −0.012 | 0.824 | - | −0.022 | 0.680 | - | 0.036 | 0.553 | - | −0.068 | 0.263 |
Sex (male) | 0.025 | −0.158 | 0.003 | - | −0.063 | 0.239 | - | - | - | 0.025 | −0.158 | 0.009 |
Aged 18–23 months | - | - | - | - | - | - | 0.046 | 0.215 | 0.000 | - | - | - |
Age | 0.050 | −0.248 | 0.000 | - | - | - | - | - | - | - | - | - |
LBW | - | - | - | - | - | - | - | - | - | 0.011 | −0.104 | 0.084 |
R2 | 0.186 | - | - | 0.168 | - | - | 0.046 | - | - | 0.052 | - | - |
R2 adj. | 0.170 | - | - | 0.155 | - | - | 0.043 | - | - | 0.041 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaney, S.; Menasria, L.; Main, B.; Chhorvann, C.; Vong, L.; Chiasson, L.; Hun, V.; Raminashvili, D. Determinants of Undernutrition among Young Children Living in Soth Nikum District, Siem Reap, Cambodia. Nutrients 2019, 11, 685. https://doi.org/10.3390/nu11030685
Blaney S, Menasria L, Main B, Chhorvann C, Vong L, Chiasson L, Hun V, Raminashvili D. Determinants of Undernutrition among Young Children Living in Soth Nikum District, Siem Reap, Cambodia. Nutrients. 2019; 11(3):685. https://doi.org/10.3390/nu11030685
Chicago/Turabian StyleBlaney, Sonia, Lylia Menasria, Barbara Main, Chhea Chhorvann, Lenin Vong, Lucie Chiasson, Vannary Hun, and David Raminashvili. 2019. "Determinants of Undernutrition among Young Children Living in Soth Nikum District, Siem Reap, Cambodia" Nutrients 11, no. 3: 685. https://doi.org/10.3390/nu11030685
APA StyleBlaney, S., Menasria, L., Main, B., Chhorvann, C., Vong, L., Chiasson, L., Hun, V., & Raminashvili, D. (2019). Determinants of Undernutrition among Young Children Living in Soth Nikum District, Siem Reap, Cambodia. Nutrients, 11(3), 685. https://doi.org/10.3390/nu11030685