Validation of Energy and Nutrition Intake in Japanese Elderly Individuals Estimated Based on a Short Food Frequency Questionnaire Compared against a 7-day Dietary Record: The Kyoto-Kameoka Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Assessment
2.2.1. Food Frequency Questionnaire
2.2.2. Dietary Records
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jakobsen, M.U.; Overvad, K.; Dyerberg, J.; Schroll, M.; Heitmann, B.L. Dietary fat and risk of coronary heart disease: Possible effect modification by gender and age. Am. J. Epidemiol. 2004, 160, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Bhupathiraju, S.N.; Mattei, J.; Fung, T.T.; Li, Y.; Pan, A.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Association of Changes in Diet Quality with Total and Cause-Specific Mortality. N. Engl. J. Med. 2017, 377, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Penalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality from Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Wakai, K. A review of food frequency questionnaires developed and validated in Japan. J. Epidemiol. 2009, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.E.; Burley, V.J.; Warm, D.L.; Thompson, R.L.; Margetts, B.M. Food-frequency questionnaires: A review of their design, validation and utilisation. Nutr. Res. Rev. 2004, 17, 5–22. [Google Scholar] [CrossRef]
- Orfanos, P.; Knuppel, S.; Naska, A.; Haubrock, J.; Trichopoulou, A.; Boeing, H. Evaluating the effect of measurement error when using one or two 24 h dietary recalls to assess eating out: A study in the context of the HECTOR project. Br. J. Nutr. 2013, 110, 1107–1117. [Google Scholar] [CrossRef]
- Pfrimer, K.; Sartorelli, D.S.; Rosa, F.T.; Mendes Resende, C.M.; Viera, D.V.; Rabito, E.I.; Scagliusi, F.B.; Moriguti, E.K.; Monteiro, J.P.; Ferriolli, E. Calibration of the food list and portion sizes of a food frequency questionnaire applied to free-living elderly people. Nutrition 2013, 29, 760–764. [Google Scholar] [CrossRef]
- Bates, C.J.; Prentice, A.; Finch, S. Gender differences in food and nutrient intakes and status indices from the National Diet and Nutrition Survey of people aged 65 years and over. Eur. J. Clin. Nutr. 1999, 53, 694–699. [Google Scholar] [CrossRef]
- Johansson, L.; Solvoll, K.; Bjorneboe, G.E.; Drevon, C.A. Under- and overreporting of energy intake related to weight status and lifestyle in a nationwide sample. Am. J. Clin. Nutr. 1998, 68, 266–274. [Google Scholar] [CrossRef]
- Paul, D.R.; Rhodes, D.G.; Kramer, M.; Baer, D.J.; Rumpler, W.V. Validation of a food frequency questionnaire by direct measurement of habitual ad libitum food intake. Am. J. Epidemiol. 2005, 162, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Geelen, A.; Souverein, O.W.; Busstra, M.C.; de Vries, J.H.; van’t Veer, P. Comparison of approaches to correct intake-health associations for FFQ measurement error using a duplicate recovery biomarker and a duplicate 24 h dietary recall as reference method. Public Health Nutr. 2015, 18, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L.; Tinker, L.; Shaw, P.A.; Schoeller, D.; Bingham, S.A.; Horn, L.V.; Beresford, S.A.; Caan, B.; Thomson, C.; Satterfield, S.; et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 2008, 167, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.J.; Paik, H.Y.; Shim, J.E. Association between family structure and food group intake in children. Nutr. Res. Pract. 2014, 8, 463–468. [Google Scholar] [CrossRef]
- Van der Meij, B.S.; Wijnhoven, H.A.H.; Lee, J.S.; Houston, D.K.; Hue, T.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Visser, M. Poor Appetite and Dietary Intake in Community-Dwelling Older Adults. J. Am. Geriatr. Soc. 2017, 65, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
- Sura, L.; Madhavan, A.; Carnaby, G.; Crary, M.A. Dysphagia in the elderly: Management and nutritional considerations. Clin. Interv. Aging 2012, 7, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Tokudome, S.; Goto, C.; Imaeda, N.; Tokudome, Y.; Ikeda, M.; Maki, S. Development of a data-based short food frequency questionnaire for assessing nutrient intake by middle-aged Japanese. Asian Pac. J. Cancer Prev. 2004, 5, 40–43. [Google Scholar]
- Date, C.; Fukui, M.; Yamamoto, A.; Wakai, K.; Ozeki, A.; Motohashi, Y.; Adachi, C.; Okamoto, N.; Kurosawa, M.; Tokudome, Y.; et al. Reproducibility and validity of a self-administered food frequency questionnaire used in the JACC study. J. Epidemiol. 2005, 15 (Suppl. 1), S9–S23. [Google Scholar] [CrossRef]
- Imaeda, N.; Goto, C.; Tokudome, Y.; Hirose, K.; Tajima, K.; Tokudome, S. Reproducibility of a short food frequency questionnaire for Japanese general population. J. Epidemiol. 2007, 17, 100–107. [Google Scholar] [CrossRef]
- Tokudome, Y.; Goto, C.; Imaeda, N.; Hasegawa, T.; Kato, R.; Hirose, K.; Tajima, K.; Tokudome, S. Relative validity of a short food frequency questionnaire for assessing nutrient intake versus three-day weighed diet records in middle-aged Japanese. J. Epidemiol. 2005, 15, 135–145. [Google Scholar] [CrossRef]
- Chiho Goto, Y.T.; Imaeda, N.; Takekuma, K.; Kuriki, K.; Igarashi, F.; Ikeda, M.; Tokudome, S. Validation study of fatty acid consumption assessed with a short food frequency questionnaire against plasma concentration in middle-aged Japanese people. Scand. J Nutr. 2006, 50, 77–82. [Google Scholar] [CrossRef]
- Umesawa, M.; Iso, H.; Date, C.; Yamamoto, A.; Toyoshima, H.; Watanabe, Y.; Kikuchi, S.; Koizumi, A.; Kondo, T.; Inaba, Y.; et al. Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: The Japan Collaborative Cohort Study for Evaluation of Cancer Risks. Am. J. Clin. Nutr. 2008, 88, 195–202. [Google Scholar] [CrossRef]
- Yamagishi, K.; Iso, H.; Yatsuya, H.; Tanabe, N.; Date, C.; Kikuchi, S.; Yamamoto, A.; Inaba, Y.; Tamakoshi, A.; Group, J.S. Dietary intake of saturated fatty acids and mortality from cardiovascular disease in Japanese: The Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC) Study. Am. J. Clin. Nutr. 2010, 92, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Nanri, H.; Yamada, Y.; Itoi, A.; Yamagata, E.; Watanabe, Y.; Yoshida, T.; Miyake, M.; Date, H.; Ishikawa-Takata, K.; Yoshida, M.; et al. Frequency of Fruit and Vegetable Consumption and the Oral Health-Related Quality of Life among Japanese Elderly: A Cross-Sectional Study from the Kyoto-Kameoka Study. Nutrients 2017, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Yamada, Y.; Nanri, H.; Nozawa, Y.; Itoi, A.; Yoshimura, E.; Watanabe, Y.; Yoshida, T.; Yokoyama, K.; Goto, C.; et al. Association between the Frequency of Protein-Rich Food Intakes and Kihon-Checklist Frailty Indices in Older Japanese Adults: The Kyoto-Kameoka Study. Nutrients 2018, 10, 84. [Google Scholar] [CrossRef]
- Park, Y.; Dodd, K.W.; Kipnis, V.; Thompson, F.E.; Potischman, N.; Schoeller, D.A.; Baer, D.J.; Midthune, D.; Troiano, R.P.; Bowles, H.; et al. Comparison of self-reported dietary intakes from the Automated Self-Administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. Am. J. Clin. Nutr. 2018, 107, 80–93. [Google Scholar] [CrossRef]
- Lee, H.; Kang, M.; Song, W.O.; Shim, J.E.; Paik, H.Y. Gender analysis in the development and validation of FFQ: A systematic review. Br. J. Nutr. 2016, 115, 666–671. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yoshida, T.; Yamada, Y.; Watanabe, Y.; Nanri, H.; Yokoyama, K.; Date, H.; Miyake, M.; Itoi, A.; Yamagata, E.; et al. Sociodemographic and physical predictors of non-participation in community based physical checkup among older neighbors: A case-control study from the Kyoto-Kameoka longitudinal study, Japan. BMC Public Health 2018, 18, 568. [Google Scholar] [CrossRef]
- Watanabe, Y.; Yamada, Y.; Yokoyama, K.; Yoshida, T.; Yoshinaka, Y.; Yoshimoto, M.; Tanaka, Y.; Itoi, A.; Yamagata, E.; Ebine, N.; et al. Comprehensive geriatric intervention program with and without weekly class-style exercise: Research protocol of a cluster randomized controlled trial in Kyoto-Kameoka Study. Clin. Interv. Aging 2018, 13, 1019–1033. [Google Scholar] [CrossRef]
- Nanri, H.; Yamada, Y.; Yoshida, T.; Okabe, Y.; Nozawa, Y.; Itoi, A.; Yoshimura, E.; Watanabe, Y.; Yamaguchi, M.; Yokoyama, K.; et al. Sex Difference in the Association Between Protein Intake and Frailty: Assessed Using the Kihon Checklist Indexes Among Older Adults. J. Am. Med. Dir. Assoc. 2018, 19, 801–805. [Google Scholar] [CrossRef]
- Yamada, Y.; Nanri, H.; Watanabe, Y.; Yoshida, T.; Yokoyama, K.; Itoi, A.; Date, H.; Yamaguchi, M.; Miyake, M.; Yamagata, E.; et al. Prevalence of Frailty Assessed by Fried and Kihon Checklist Indexes in a Prospective Cohort Study: Design and Demographics of the Kyoto-Kameoka Longitudinal Study. J Am Med Dir Assoc 2017, 18, 733.e7–733.e15. [Google Scholar] [CrossRef]
- Science and Technology Agency of Japan. Standard Tables of Food Composition in Japan, 5th rev. ed.; JPB, Ministry of Finance: Tokyo, Janpan, 2001. (In Japanese)
- Science and Technology Agency of Japan. Standard Tables of Food Composition in Japan, 7th rev. ed.; JPB, Ministry of Finance: Tokyo, Janpan, 2015. (In Japanese)
- Okada, C.; Iso, H.; Ishihara, J.; Maruyama, K.; Sawada, N.; Tsugane, S.; Group, J.F.V.S. Validity and reliability of a self-administered food frequency questionnaire for the JPHC study: The assessment of amino acid intake. J. Epidemiol. 2017, 27, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Rubin, D.; Meng, X.-L. Comparing Correlated Correlation Coefficients. Psychol. Bull. 1992, 111, 172–175. [Google Scholar]
- Tsuji, T. Cross-boundary cancer studies at the University of Tokyo: Current status and outlook for Japan’s healthcare system: Focus on the response to the aging society. Jpn. J. Clin. Oncol. 2014, 44 (Suppl. 1), i22–i27. [Google Scholar] [CrossRef]
- Bazelmans, C.; Matthys, C.; De Henauw, S.; Dramaix, M.; Kornitzer, M.; De Backer, G.; Leveque, A. Predictors of misreporting in an elderly population: The ‘Quality of life after 65’ study. Public Health Nutr. 2007, 10, 185–191. [Google Scholar] [CrossRef]
- Volkert, D.; Kreuel, K.; Heseker, H.; Stehle, P. Energy and nutrient intake of young-old, old-old and very-old elderly in Germany. Eur. J. Clin. Nutr. 2004, 58, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, A.; Asakura, K.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Todoriki, H.; Miura, A.; Fukui, M.; et al. Within- and between-individual variation in energy and nutrient intake in Japanese adults: Effect of age and sex differences on group size and number of records required for adequate dietary assessment. J. Epidemiol. 2013, 23, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Machida, S.; Matsumoto, N.; Shibagaki, Y.; Sakurada, T. Age Modifies the Association of Dietary Protein Intake with All-Cause Mortality in Patients with Chronic Kidney Disease. Nutrients 2018, 10, 1744. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Mossavar-Rahmani, Y.; Huang, Y.; Van Horn, L.; Beresford, S.A.; Caan, B.; Tinker, L.; Schoeller, D.; Bingham, S.; Eaton, C.B.; et al. Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am. J. Epidemiol. 2011, 174, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Pennington, J.A.; Stumbo, P.J.; Murphy, S.P.; McNutt, S.W.; Eldridge, A.L.; McCabe-Sellers, B.J.; Chenard, C.A. Food composition data: The foundation of dietetic practice and research. J. Am. Diet. Assoc. 2007, 107, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Yuan, X.; Sasaki, S.; Osawa, Y.; Hirata, T.; Abe, Y.; Takayama, M.; Arai, Y.; Masui, Y.; Ishizaki, T. Relative validity of brief-type self-administered diet history questionnaire among very old Japanese aged 80 years or older. Public Health Nutr. 2019, 22, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.; Wilson, A.; Gliksman, M.; Aiken, J. Repeatability of nutrient intakes estimated by a semiquantitative food frequency questionnaire in elderly subjects. Ann. Epidemiol. 1995, 5, 65–68. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Beaton, G.H.; Milner, J.; McGuire, V.; Feather, T.E.; Little, J.A. Source of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. Am. J. Clin. Nutr. 1983, 37, 986–995. [Google Scholar] [CrossRef]
- Gazan, R.; Vieux, F.; Darmon, N.; Maillot, M. Structural Validation of a French Food Frequency Questionnaire of 94 Items. Front. Nutr. 2017, 4, 62. [Google Scholar] [CrossRef] [PubMed]
- Molag, M.L.; de Vries, J.H.; Ocke, M.C.; Dagnelie, P.C.; van den Brandt, P.A.; Jansen, M.C.; van Staveren, W.A.; van’t Veer, P. Design characteristics of food frequency questionnaires in relation to their validity. Am. J. Epidemiol. 2007, 166, 1468–1478. [Google Scholar] [CrossRef]
- Fowke, J.H.; Schlundt, D.; Gong, Y.; Jin, F.; Shu, X.O.; Wen, W.; Liu, D.K.; Gao, Y.T.; Zheng, W. Impact of season of food frequency questionnaire administration on dietary reporting. Ann. Epidemiol. 2004, 14, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Alonso-Calleja, C. Differences in reported winter and summer dietary intakes in young adults in Spain. Int. J. Food Sci. Nutr. 2005, 56, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Tokudome, Y.; Imaeda, N.; Nagaya, T.; Ikeda, M.; Fujiwara, N.; Sato, J.; Kuriki, K.; Kikuchi, S.; Maki, S.; Tokudome, S. Daily, weekly, seasonal, within- and between-individual variation in nutrient intake according to four season consecutive 7 day weighed diet records in Japanese female dietitians. J. Epidemiol. 2002, 12, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Pollard, T.M.; Steptoe, A.; Wardle, J. Motives underlying healthy eating: Using the Food Choice Questionnaire to explain variation in dietary intake. J. Biosoc. Sci. 1998, 30, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Mennen, L.I.; Bertrais, S.; Galan, P.; Arnault, N.; Potier de Couray, G.; Hercberg, S. The use of computerised 24 h dietary recalls in the French SU.VI.MAX Study: Number of recalls required. Eur. J. Clin. Nutr. 2002, 56, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Tinker, L.F.; Sarto, G.E.; Howard, B.V.; Huang, Y.; Neuhouser, M.L.; Mossavar-Rahmani, Y.; Beasley, J.M.; Margolis, K.L.; Eaton, C.B.; Phillips, L.S.; et al. Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am. J. Clin. Nutr. 2011, 94, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
Women (n = 65) | Men (n = 78) | Total (n = 143) | |||||||
---|---|---|---|---|---|---|---|---|---|
Age (years) a | 72.5 | ± 4.8 | 73.8 | ± 5.6 | 73.2 | ± 5.3 | |||
≥75 years b | 22 | (33.8) | 31 | (39.7) | 53 | (37.0) | |||
Body height (cm) | 150 | ± 5.1 | 164 | ± 5.4 | 158 | ± 5.3 | |||
Body weight (kg) | 51.1 | ± 7.6 | 61.9 | ± 8.8 | 57.0 | ± 8.3 | |||
BMI (kg/m2) a,c | 22.6 | ± 3.5 | 22.9 | ± 2.9 | 22.8 | ± 3.2 | |||
<18.5 b | 7 | (10.8) | 6 | (7.7) | 13 | (9.1) | |||
18.6–24.9 | 42 | (64.6) | 49 | (62.8) | 91 | (63.6) | |||
≥25.0 | 16 | (24.6) | 23 | (29.5) | 39 | (27.3) | |||
Change in body weight in past 3 month b,d | |||||||||
No change | 46 | (70.8) | 53 | (67.9) | 99 | (69.2) | |||
Socioeconomic status b,e | |||||||||
High | 34 | (52.3) | 41 | (52.5) | 75 | (52.4) | |||
Low | 29 | (44.6) | 36 | (46.2) | 65 | (45.5) | |||
Family status b,f | |||||||||
Single | 11 | (16.9) | 4 | (5.1) | 15 | (10.5) | |||
Co-habiting | 53 | (81.6) | 74 | (94.9) | 127 | (88.8) | |||
Appetite b,g | |||||||||
Good | 62 | (95.4) | 76 | (97.4) | 138 | (96.5) | |||
Poor | 1 | (1.5) | 2 | (2.6) | 3 | (2.1) | |||
Swallowing function b,e | |||||||||
Good | 6 | (9.2) | 4 | (5.1) | 10 | (7.0) | |||
Poor | 57 | (87.7) | 73 | (93.6) | 130 | (90.9) |
Nutrients | Unit | Current Study (C) (n = 65) | Tokudome et al. Study [21] (T) (n = 129) | Ratio | Spearman’s | p Value d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7-day DR | FFQ | 3-day DR | FFQ | C a | T b | C r c | T r c | |||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||||||||
Energy | (kcal) | 1790 | ± | 220 | 1562 | ± | 343 | 1924 | ± | 332 | 1639 | ± | 186 | 0.87 | 0.85 | 0.40 | 0.37 | 0.422 |
Protein | (g) | 69.3 | ± | 10.8 | 52.8 | ± | 13.2 | 74.5 | ± | 16.3 | 55.2 | ± | 7.8 | 0.76 | 0.74 | 0.29 | 0.30 | 0.463 |
Fat | (g) | 52.2 | ± | 11.7 | 52.9 | ± | 17.0 | 59.2 | ± | 16.5 | 48.4 | ± | 9.6 | 1.01 | 0.82 | 0.08 | 0.22 | 0.183 |
Carbohydrate | (g) | 256 | ± | 35 | 216 | ± | 58 | 265 | ± | 50 | 227 | ± | 36 | 0.85 | 0.86 | 0.38 | 0.45 | 0.285 |
Protein e | (%) | 15.5 | ± | 1.7 | 13.7 | ± | 2.3 | 15.5 | ± | 2.0 | 13.5 | ± | 1.5 | 0.88 | 0.87 | 0.29 | 0.37 | 0.285 |
Fat e | (%) | 26.2 | ± | 4.5 | 31.0 | ± | 9.0 | 27.5 | ± | 5.1 | 26.7 | ± | 4.9 | 1.18 | 0.97 | 0.04 | 0.33 | 0.024 |
Carbohydrate e | (%) | 57.2 | ± | 4.7 | 54.8 | ± | 6.7 | 55.2 | ± | 6.1 | 55.2 | ± | 5.0 | 0.96 | 1.00 | 0.23 | 0.45 | 0.050 |
SFA | (g) | 13.2 | ± | 3.6 | 12.2 | ± | 2.9 | 16.0 | ± | 5.5 | 12.4 | ± | 2.5 | 0.93 | 0.78 | 0.11 | 0.35 | 0.053 |
MUFA | (g) | 16.5 | ± | 4.4 | 19.9 | ± | 6.8 | 19.8 | ± | 6.2 | 16.9 | ± | 3.4 | 1.21 | 0.85 | 0.05 | 0.12 | 0.319 |
PUFA | (g) | 11.9 | ± | 2.7 | 16.6 | ± | 6.4 | 14.0 | ± | 4.1 | 13.5 | ± | 2.9 | 1.40 | 0.97 | 0.08 | 0.05 | 0.420 |
n-6 PUFA | (g) | 9.6 | ± | 2.3 | 14.7 | ± | 5.9 | 11.0 | ± | 3.4 | 11.5 | ± | 2.6 | 1.53 | 1.04 | 0.01 | 0.20 | 0.106 |
n-3 PUFA | (g) | 2.2 | ± | 0.7 | 2.4 | ± | 0.9 | 2.8 | ± | 1.1 | 2.2 | ± | 0.5 | 1.09 | 0.80 | 0.19 | 0.17 | 0.442 |
MO n-3 PUFA f | (g) | 0.8 | ± | 0.5 | 0.5 | ± | 0.2 | 0.9 | ± | 0.7 | 0.7 | ± | 0.2 | 0.61 | 0.78 | 0.31 | 0.29 | 0.457 |
Cholesterol | (mg) | 308 | ± | 89 | 246 | ± | 109 | 345 | ± | 132 | 264 | ± | 64 | 0.80 | 0.76 | 0.17 | 0.15 | 0.439 |
Iron | (mg) | 8.2 | ± | 1.9 | 7.0 | ± | 2.2 | 8.9 | ± | 2.7 | 7.7 | ± | 1.6 | 0.86 | 0.86 | 0.25 | 0.50 | 0.029 |
Calcium | (mg) | 541 | ± | 162 | 556 | ± | 168 | 609 | ± | 231 | 566 | ± | 144 | 1.03 | 0.93 | 0.38 | 0.33 | 0.350 |
Carotene | (µg) | 4157 | ± | 2679 | 2316 | ± | 662 | 4241 | ± | 2103 | 3550 | ± | 1131 | 0.56 | 0.84 | 0.23 | 0.31 | 0.288 |
Vitamin A g | (µg RE) | 602 | ± | 395 | 942 | ± | 611 | 1067 | ± | 832 | 1052 | ± | 422 | 1.57 | 0.99 | 0.16 | 0.22 | 0.340 |
Vitamin D | (µg) | 9.7 | ± | 4.7 | 4.4 | ± | 1.6 | 8.0 | ± | 5.9 | 7.2 | ± | 2.6 | 0.45 | 0.91 | 0.24 | 0.25 | 0.463 |
α-tocopherol | (mg) | 7.8 | ± | 2.0 | 10.5 | ± | 3.6 | 9.4 | ± | 3.0 | 8.6 | ± | 1.8 | 1.36 | 0.92 | 0.31 | 0.00 | 0.019 |
Vitamin B1 | (mg) | 0.92 | ± | 0.22 | 0.68 | ± | 0.11 | 1.04 | ± | 0.30 | 0.70 | ± | 0.10 | 0.74 | 0.65 | 0.15 | 0.13 | 0.451 |
Vitamin B2 | (mg) | 1.15 | ± | 0.25 | 1.18 | ± | 0.34 | 1.38 | ± | 0.43 | 1.20 | ± | 0.20 | 1.03 | 0.89 | 0.40 | 0.38 | 0.426 |
Folate | (µg) | 345 | ± | 96 | 353 | ± | 116 | 409 | ± | 164 | 384 | ± | 93 | 1.02 | 0.94 | 0.31 | 0.29 | 0.448 |
Vitamin C | (mg) | 137 | ± | 59 | 115 | ± | 44 | 136 | ± | 69 | 122 | ± | 34 | 0.84 | 0.90 | 0.36 | 0.43 | 0.288 |
SDF | (g) | 3.0 | ± | 0.7 | 2.0 | ± | 0.6 | 2.4 | ± | 0.7 | 2.3 | ± | 0.5 | 0.66 | 0.96 | 0.13 | 0.28 | 0.161 |
IDF | (g) | 10.8 | ± | 2.5 | 7.9 | ± | 2.1 | 12.0 | ± | 3.7 | 9.0 | ± | 1.9 | 0.74 | 0.75 | 0.32 | 0.32 | 0.491 |
TDF | (g) | 14.7 | ± | 3.3 | 10.7 | ± | 2.9 | 16.6 | ± | 5.1 | 12.4 | ± | 2.7 | 0.73 | 0.75 | 0.28 | 0.34 | 0.330 |
Median | 0.88 | 0.86 | 0.24 | 0.30 | 0.329 |
Nutrients | Unit | Current Study (C) (n = 78) | Tokudome et al. Study [21] (T) (n = 73) | Ratio | Spearman’s | p Value d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7-day DR | FFQ | 3-day DR | FFQ | C a | T b | C r c | T r c | |||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||||||||
Energy | (kcal) | 2070 | ± | 301 | 1863 | ± | 528 | 2342 | ± | 469 | 1987 | ± | 268 | 0.90 | 0.85 | 0.19 | 0.36 | 0.138 |
Protein | (g) | 77.2 | ± | 13.1 | 57.0 | ± | 16.0 | 88.4 | ± | 22.1 | 60.8 | ± | 10.2 | 0.74 | 0.69 | 0.19 | 0.22 | 0.430 |
Fat | (g) | 56.3 | ± | 14.9 | 50.9 | ± | 16.9 | 66.1 | ± | 22.6 | 47.1 | ± | 11.9 | 0.90 | 0.71 | -0.01 | 0.38 | 0.007 |
Carbohydrate | (g) | 286 | ± | 45 | 265 | ± | 100 | 313 | ± | 58 | 293 | ± | 52 | 0.93 | 0.94 | 0.43 | 0.57 | 0.125 |
Protein e | (%) | 14.9 | ± | 1.6 | 12.6 | ± | 2.7 | 15.1 | ± | 2.0 | 12.3 | ± | 1.4 | 0.84 | 0.81 | 0.20 | 0.38 | 0.120 |
Fat e | (%) | 24.4 | ± | 4.9 | 26.5 | ± | 11.2 | 25.1 | ± | 5.4 | 21.4 | ± | 4.6 | 1.09 | 0.85 | 0.15 | 0.49 | 0.011 |
Carbohydrate e | (%) | 55.4 | ± | 5.9 | 54.6 | ± | 10.9 | 53.9 | ± | 6.2 | 58.8 | ± | 4.6 | 0.99 | 1.09 | 0.48 | 0.68 | 0.031 |
SFA | (g) | 14.1 | ± | 4.5 | 11.9 | ± | 3.4 | 16.6 | ± | 6.6 | 11.3 | ± | 2.0 | 0.84 | 0.68 | 0.24 | 0.35 | 0.235 |
MUFA | (g) | 17.8 | ± | 5.1 | 19.1 | ± | 7.1 | 23.1 | ± | 9.3 | 17.5 | ± | 4.4 | 1.07 | 0.76 | -0.01 | 0.12 | 0.214 |
PUFA | (g) | 13.2 | ± | 4.0 | 16.7 | ± | 5.8 | 16.4 | ± | 5.3 | 14.1 | ± | 3.2 | 1.27 | 0.86 | -0.01 | 0.05 | 0.366 |
n-6 PUFA | (g) | 10.8 | ± | 3.6 | 14.8 | ± | 5.6 | 12.8 | ± | 4.5 | 11.8 | ± | 2.7 | 1.37 | 0.92 | -0.02 | 0.20 | 0.090 |
n-3 PUFA | (g) | 2.4 | ± | 0.7 | 2.4 | ± | 0.9 | 3.3 | ± | 1.2 | 2.3 | ± | 0.5 | 1.01 | 0.70 | 0.11 | 0.37 | 0.048 |
MO n-3 PUFA f | (g) | 0.9 | ± | 0.5 | 0.5 | ± | 0.2 | 1.1 | ± | 0.9 | 0.7 | ± | 0.3 | 0.60 | 0.65 | 0.06 | 0.28 | 0.085 |
Cholesterol | (mg) | 347 | ± | 114 | 215 | ± | 52 | 424 | ± | 176 | 274 | ± | 64 | 0.62 | 0.65 | 0.35 | 0.15 | 0.104 |
Iron | (mg) | 8.5 | ± | 2.0 | 6.8 | ± | 1.7 | 9.8 | ± | 2.4 | 7.7 | ± | 1.9 | 0.80 | 0.79 | 0.32 | 0.38 | 0.348 |
Calcium | (mg) | 526 | ± | 182 | 539 | ± | 184 | 592 | ± | 186 | 508 | ± | 129 | 1.02 | 0.86 | 0.49 | 0.21 | 0.024 |
Carotene | (µg) | 3632 | ± | 2661 | 2630 | ± | 822 | 4244 | ± | 1840 | 3229 | ± | 1285 | 0.72 | 0.76 | 0.27 | 0.18 | 0.283 |
Vitamin A g | (µg RE) | 567 | ± | 536 | 992 | ± | 644 | 989 | ± | 478 | 1052 | ± | 384 | 1.75 | 1.06 | 0.09 | 0.10 | 0.475 |
Vitamin D | (µg) | 8.7 | ± | 4.7 | 4.8 | ± | 2.0 | 9.4 | ± | 5.4 | 7.4 | ± | 3.4 | 0.55 | 0.79 | 0.24 | 0.33 | 0.288 |
α-tocopherol | (mg) | 7.9 | ± | 2.3 | 10.5 | ± | 3.0 | 10.1 | ± | 3.3 | 8.6 | ± | 2.1 | 1.33 | 0.85 | 0.15 | 0.16 | 0.484 |
Vitamin B1 | (mg) | 0.97 | ± | 0.22 | 0.66 | ± | 0.14 | 1.18 | ± | 0.40 | 0.69 | ± | 0.08 | 0.68 | 0.58 | 0.05 | 0.19 | 0.191 |
Vitamin B2 | (mg) | 1.18 | ± | 0.30 | 1.07 | ± | 0.34 | 1.48 | ± | 0.44 | 1.12 | ± | 0.21 | 0.90 | 0.76 | 0.48 | 0.34 | 0.162 |
Folate | (µg) | 337 | ± | 115 | 319 | ± | 84 | 417 | ± | 148 | 357 | ± | 109 | 0.95 | 0.86 | 0.27 | 0.21 | 0.355 |
Vitamin C | (mg) | 122 | ± | 71 | 97 | ± | 33 | 123 | ± | 57 | 103 | ± | 34 | 0.80 | 0.84 | 0.31 | 0.24 | 0.315 |
SDF | (g) | 3.1 | ± | 1.1 | 2.2 | ± | 0.7 | 3.7 | ± | 1.2 | 2.1 | ± | 0.6 | 0.69 | 0.57 | 0.39 | 0.28 | 0.227 |
IDF | (g) | 10.8 | ± | 3.2 | 8.5 | ± | 2.5 | 12.1 | ± | 3.2 | 8.0 | ± | 2.2 | 0.78 | 0.66 | 0.29 | 0.22 | 0.315 |
TDF | (g) | 15.0 | ± | 4.2 | 11.5 | ± | 3.4 | 16.6 | ± | 4.4 | 11.4 | ± | 3.1 | 0.77 | 0.69 | 0.33 | 0.34 | 0.486 |
Median | 0.90 | 0.79 | 0.24 | 0.28 | 0.399 |
Nutrients | Women (n = 65) | Men (n = 78) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | BMI | Weight Change | Economic | Family Status | Appetite | Dysphagia | Age | BMI | Weight Change | Economic | Family Status | Appetite | Dysphagia | |
rb | rb | rb | rb | φc | φc | φc | rb | rb | rb | rb | φc | φc | φc | |
Energy | 0.01 | 0.00 | 0.19 | −0.15 | −0.10 | −0.02 | 0.03 | 0.41 *** | −0.04 | 0.04 | 0.21 | −0.10 | −0.12 | 0.14 |
Protein | 0.12 | 0.12 | 0.11 | −0.14 | −0.15 | 0.04 | 0.09 | 0.34 ** | −0.02 | −0.04 | 0.07 | −0.05 | −0.10 | 0.16 |
Fat | 0.04 | 0.03 | 0.04 | 0.00 | −0.09 | −0.16 | 0.07 | 0.28 ** | −0.04 | −0.11 | 0.00 | 0.10 | 0.02 | 0.14 |
Carbohydrate | −0.11 | 0.01 | 0.19 | −0.23 | −0.13 | 0.05 | −0.01 | 0.38 ** | −0.02 | 0.08 | 0.20 | −0.07 | −0.15 | 0.13 |
Protein d | 0.08 | 0.18 | −0.11 | 0.06 | −0.10 | 0.09 | 0.08 | −0.03 | −0.03 | −0.04 | −0.19 | 0.16 | 0.03 | 0.00 |
Fat d | 0.02 | −0.04 | −0.10 | 0.10 | −0.05 | −0.12 | 0.03 | 0.00 | −0.01 | −0.11 | −0.07 | 0.23* | 0.11 | 0.01 |
Carbohydrate d | −0.16 | 0.03 | 0.10 | −0.23 | −0.09 | 0.10 | −0.04 | 0.07 | 0.07 | 0.03 | 0.10 | −0.04 | −0.12 | 0.07 |
SFA | 0.21 | 0.01 | 0.01 | 0.00 | 0.00 | −0.07 | 0.04 | 0.27 * | 0.04 | −0.11 | 0.05 | 0.01 | 0.11 | 0.05 |
MUFA | −0.02 | −0.03 | −0.06 | 0.01 | −0.10 | −0.16 | 0.01 | 0.33 ** | −0.02 | −0.08 | 0.01 | 0.11 | 0.05 | 0.10 |
PUFA | −0.03 | −0.06 | 0.07 | −0.08 | −0.10 | −0.16 | 0.15 | 0.31 ** | −0.02 | −0.09 | 0.01 | 0.06 | −0.03 | 0.16 |
n−6 PUFA | 0.01 | −0.06 | 0.06 | −0.09 | −0.07 | −0.12 | 0.13 | 0.33 ** | 0.00 | −0.09 | 0.04 | 0.03 | −0.02 | 0.14 |
n−3 PUFA | −0.04 | −0.02 | 0.07 | 0.02 | −0.13 | −0.25 * | 0.12 | 0.14 | −0.06 | 0.05 | −0.17 | 0.04 | −0.12 | 0.12 |
MO n−3 PUFA | 0.02 | −0.09 | 0.14 | 0.16 | −0.11 | −0.08 | 0.11 | −0.09 | −0.01 | 0.17 | −0.27 | −0.07 | −0.13 | −0.03 |
Cholesterol | 0.04 | −0.04 | 0.04 | −0.10 | −0.07 | −0.07 | 0.08 | 0.23 * | 0.10 | 0.13 | −0.04 | 0.12 | 0.01 | 0.02 |
Iron | 0.06 | 0.07 | 0.21 | −0.06 | −0.30 * | 0.05 | 0.18 | 0.43 *** | −0.01 | −0.04 | 0.01 | 0.02 | −0.19 | 0.06 |
Calcium | 0.18 | 0.09 | 0.20 | 0.04 | −0.09 | 0.02 | 0.04 | 0.09 | −0.01 | 0.04 | 0.08 | −0.10 | 0.00 | 0.10 |
Carotene | 0.02 | 0.19 | 0.36 ** | −0.03 | −0.28 * | 0.04 | −0.14 | 0.18 | 0.16 | −0.09 | 0.01 | 0.12 | −0.16 | −0.09 |
Vitamin A | 0.09 | 0.09 | 0.17 | −0.02 | −0.20 | 0.05 | 0.12 | 0.00 | 0.10 | −0.04 | −0.01 | 0.04 | 0.00 | −0.05 |
Vitamin D | −0.06 | 0.28 * | 0.06 | 0.07 | −0.25 * | 0.09 | 0.03 | 0.08 | −0.14 | 0.18 | −0.19 | −0.15 | −0.11 | 0.10 |
α-tocopherol | 0.06 | 0.11 | 0.13 | 0.00 | −0.19 | −0.05 | 0.04 | 0.31 ** | 0.06 | −0.11 | −0.07 | 0.15 | −0.17 | 0.06 |
Vitamin B1 | 0.11 | 0.37 ** | 0.19 | 0.16 | −0.24 | 0.02 | −0.01 | 0.28 * | −0.07 | −0.20 | −0.15 | 0.03 | 0.00 | 0.10 |
Vitamin B2 | 0.19 | 0.18 | 0.29 * | 0.08 | −0.14 | 0.04 | 0.07 | 0.22 | 0.02 | −0.03 | −0.02 | 0.02 | −0.20 | 0.07 |
Folate | 0.20 | 0.18 | 0.27 * | 0.14 | −0.15 | −0.07 | 0.09 | 0.23 * | 0.04 | 0.03 | −0.06 | −0.01 | −0.10 | 0.04 |
Vitamin C | 0.08 | 0.03 | 0.28 * | 0.11 | −0.15 | −0.12 | 0.01 | 0.30 ** | 0.15 | 0.12 | 0.05 | 0.05 | −0.04 | 0.10 |
SDF | 0.08 | 0.14 | 0.23 | −0.06 | −0.20 | −0.01 | 0.03 | 0.29 * | −0.07 | −0.11 | 0.07 | −0.01 | −0.16 | 0.19 |
IDF | 0.04 | 0.13 | 0.19 | 0.02 | −0.21 | 0.01 | −0.14 | 0.13 | −0.07 | 0.07 | −0.03 | −0.06 | −0.15 | 0.13 |
TDF | 0.01 | 0.15 | 0.24 | −0.04 | −0.21 | −0.01 | 0.00 | 0.16 | −0.12 | 0.05 | 0.02 | 0.00 | −0.15 | 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, D.; Nanri, H.; Yoshida, T.; Yamaguchi, M.; Sugita, M.; Nozawa, Y.; Okabe, Y.; Itoi, A.; Goto, C.; Yamada, Y.; et al. Validation of Energy and Nutrition Intake in Japanese Elderly Individuals Estimated Based on a Short Food Frequency Questionnaire Compared against a 7-day Dietary Record: The Kyoto-Kameoka Study. Nutrients 2019, 11, 688. https://doi.org/10.3390/nu11030688
Watanabe D, Nanri H, Yoshida T, Yamaguchi M, Sugita M, Nozawa Y, Okabe Y, Itoi A, Goto C, Yamada Y, et al. Validation of Energy and Nutrition Intake in Japanese Elderly Individuals Estimated Based on a Short Food Frequency Questionnaire Compared against a 7-day Dietary Record: The Kyoto-Kameoka Study. Nutrients. 2019; 11(3):688. https://doi.org/10.3390/nu11030688
Chicago/Turabian StyleWatanabe, Daiki, Hinako Nanri, Tsukasa Yoshida, Miwa Yamaguchi, Mayu Sugita, Yoshizu Nozawa, Yuki Okabe, Aya Itoi, Chiho Goto, Yosuke Yamada, and et al. 2019. "Validation of Energy and Nutrition Intake in Japanese Elderly Individuals Estimated Based on a Short Food Frequency Questionnaire Compared against a 7-day Dietary Record: The Kyoto-Kameoka Study" Nutrients 11, no. 3: 688. https://doi.org/10.3390/nu11030688
APA StyleWatanabe, D., Nanri, H., Yoshida, T., Yamaguchi, M., Sugita, M., Nozawa, Y., Okabe, Y., Itoi, A., Goto, C., Yamada, Y., Ishikawa-Takata, K., Kobayashi, H., Kimura, M., & Kyoto-Kameoka Study Group. (2019). Validation of Energy and Nutrition Intake in Japanese Elderly Individuals Estimated Based on a Short Food Frequency Questionnaire Compared against a 7-day Dietary Record: The Kyoto-Kameoka Study. Nutrients, 11(3), 688. https://doi.org/10.3390/nu11030688