The Effect of Serum 25-Hydroxyvitamin D on Serum Ferritin Concentrations: A Longitudinal Study of Participants of a Preventive Health Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Serum Ferritin Concentrations
2.3. Serum 25(OH)D Concentrations
2.4. Potential Confounding Variables
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nairz, M.; Theurl, I.; Wolf, D.; Weiss, G. Iron deficiency or anemia of inflammation? Differential diagnosis and mechanisms of anemia of inflammation. Wien. Med. Wochenschr. 2016, 166, 411–423. [Google Scholar] [CrossRef]
- Smith, E.M.; Tangpricha, V. Vitamin D and anemia: Insights into an emerging association. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 432–438. [Google Scholar] [CrossRef]
- Kell, D.B.; Pretorius, E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014, 6, 748–773. [Google Scholar] [CrossRef] [Green Version]
- Langer, A.L.; Ginzburg, Y.Z. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation. Hemodial. Int. 2017, 21, S37–S46. [Google Scholar] [CrossRef]
- Pan, Y.; Jackson, R.T. Ethnic difference in the relationship between acute inflammation and serum ferritin in US adult males. Epidemiol. Infect. 2008, 136, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, A.A.; Leitzel, K.; Ali, S.M.; Campbell-Baird, C.; Evans, M.; Fuchs, E.M.; Kostler, W.J.; Lipton, A.; Connor, J. Elevation in inflammatory serum biomarkers predicts response to trastuzumab-containing therapy. PLoS ONE 2012, 7, e51379–e51384. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Ser. A Biomed. Sci. Med Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Shacter, E.; Weitzman, S.A. Chronic inflammation and cancer. Oncology 2002, 16, 217–229. [Google Scholar]
- Gonzalez, A.S.; Guerrero, D.B.; Soto, M.B.; Diaz, S.P.; Martinez-Olmos, M.; Vidal, O. Metabolic syndrome, insulin resistance and the inflammation markers C-reactive protein and ferritin. Eur. J. Clin. Nutr. 2006, 60, 802–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiechl, S.; Willeit, J.; Egger, G.; Poewe, W.; Oberhollenzer, F. Body Iron Stores and the Risk of Carotid Atherosclerosis: Prospective Results from the Bruneck Study. Circulation 1997, 96, 3300–3307. [Google Scholar] [CrossRef]
- Cutler, P. Deferoxamine therapy in high-ferritin diabetes. Diabetes 1989, 38, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.; Biddulph, J.P.; Hirani, V.; Schneider, I.J.C. Vitamin D and inflammatory markers: Cross-sectional analyses using data from the English Longitudinal Study of Ageing (ELSA). J. Nutr. Sci. 2017, 6, e1–e6. [Google Scholar] [CrossRef]
- Azizieh, F.; Alyahya, K.O.; Raghupathy, R. Association between levels of vitamin D and inflammatory markers in healthy women. J. Inflamm. Res. 2016, 9, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastroeni, S.S.; Munasinghe, L.L.; Pham, T.M.; Loehr, S.A.; Ekwaru, J.P.; Mastroeni, M.F.; Veugelers, P.J. The Effect of Serum 25-Hydroxyvitamin D Concentrations on Elevated Serum C-Reactive Protein Concentrations in Normal Weight, Overweight and Obese Participants of a Preventive Health Program. Nutrients 2016, 8, 696. [Google Scholar] [CrossRef]
- Yin, K.; Agrawal, D.K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [PubMed] [Green Version]
- Malczewska-Lenczowska, J.; Sitkowski, D.; Surala, O.; Orysiak, J.; Szczepanska, B.; Witek, K. The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients 2018, 10, 167. [Google Scholar] [CrossRef]
- Seong, J.M.; Yoon, Y.S.; Lee, K.S.; Bae, N.Y.; Gi, M.Y.; Yoon, H. Gender difference in relationship between serum ferritin and 25-hydroxyvitamin D in Korean adults. PLoS ONE 2017, 12, e0177722–e30177735. [Google Scholar] [CrossRef]
- Azizi-Soleiman, F.; Vafa, M.; Abiri, B.; Safavi, M. Effects of iron on Vitamin D metabolism: A systematic review. Int. J. Prev. Med. 2016, 7, 126–131. [Google Scholar] [CrossRef]
- Madar, A.A.; Stene, L.C.; Meyer, H.E.; Brekke, M.; Lagerlov, P.; Knutsen, K.V. Effect of vitamin D3 supplementation on iron status: A randomized, double-blind, placebo-controlled trial among ethnic minorities living in Norway. Nutr. J. 2016, 15, 74–84. [Google Scholar] [CrossRef]
- Monlezun, D.J.; Camargo, C.A., Jr.; Mullen, J.T.; Quraishi, S.A. Vitamin D Status and the Risk of Anemia in Community-Dwelling Adults: Results from the National Health and Nutrition Examination Survey 2001–2006. Medicine 2015, 94, e1799–e1805. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rojo, R.; Perez-Granados, A.M.; Toxqui, L.; Zazo, P.; de la Piedra, C.; Vaquero, M.P. Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur. J. Nutr. 2013, 52, 695–703. [Google Scholar] [CrossRef]
- Sim, J.J.; Lac, P.T.; Liu, I.L.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D deficiency and anemia: A cross-sectional study. Ann. Hematol. 2010, 89, 447–452. [Google Scholar] [CrossRef]
- Pure North—2019 Program Options. Available online: http://purenorth.ca (accessed on 10 December 2017).
- Koperdanova, M.; Cullis, J.O. Interpreting raised serum ferritin levels. Br. Med J. 2015, 351, h3692–h3695. [Google Scholar] [CrossRef] [PubMed]
- Bacon, B.R.; Adams, P.C.; Kowdley, K.V.; Powell, L.W.; Tavill, A.S. American Association for the Study of Liver, D., Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011, 54, 328–343. [Google Scholar]
- Pearson, T.A. Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: A Statement for Healthcare Professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (NIH Publication No. 98-4083). 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK2003/pdf/Bookshelf_NBK2003.pdf (accessed on 10 January 2019).
- Cifu, A.S.; Davis, A.M. Prevention, detection, evaluation, and management of high blood pressure in adults. J. Am. Med Assoc. 2017, 318, 2132–2134. [Google Scholar] [CrossRef] [PubMed]
- Perlstein, T.S.; Pande, R.; Berliner, N.; Vanasse, G.J. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: Association with anemia of inflammation. Blood 2011, 117, 2800–2806. [Google Scholar] [CrossRef]
- Coutard, A.; Garlantezec, R.; Estivin, S.; Andro, M.; Gentric, A. Association of vitamin D deficiency and anemia in a hospitalized geriatric population: Denutrition as a confounding factor. Ann. Hematol. 2013, 92, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.D.; Magalhaes, J.; Carvalho, P.B.; Moreira, M.J.; Mota, P.; Cotter, J. Lower Levels of Vitamin D Correlate with Clinical Disease Activity and Quality of Life in Inflammatory Bowel Disease. Arch. Gastroenterol. 2015, 52, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Andiran, N.; Celik, N.; Akca, H.; Dogan, G. Vitamin D deficiency in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2012, 4, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Shim, J.Y. Low vitamin D levels increase anemia risk in Korean women. Int. J. Clin. Chem. 2013, 421, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Munasinghe, L.L.; Ekwaru, J.P.; Mastroeni, M.F.; Mastroeni, S.S.; Veugelers, P.J. The association of serum 25-hydroxyvitamin D concentrations with elevated serum ferritin levels in normal weight, overweight and obese Canadians. PLoS ONE 2019, 14, e0213260–e0213274. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Regulations. C.R.C., c.870 (B.13.001). 2018. Available online: https://laws-lois.justice.gc.ca/PDF/C.R.C.,_c._870.pdf (accessed on 5 January 2019).
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Aspray, T.J.; Bowring, C.; Fraser, W.; Gittoes, N.; Javaid, M.K.; Macdonald, H.; Patel, S.; Selby, P.; Tanna, N.; Francis, R.M.; National Osteoporosis Society. National Osteoporosis Society Vitamin D guideline summary. Age Ageing 2014, 43, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Hanley, D.A.; Cranney, A.; Jones, G.; Whiting, S.J.; Leslie, W.D.; Cole, D.E.; Atkinson, S.A.; Josse, R.G.; Feldman, S.; Kline, G.A.; et al. Vitamin D in adult health and disease: A review and guideline statement from Osteoporosis Canada. Can. Med. Assoc. J. 2010, 182, E610–E618. [Google Scholar] [CrossRef] [PubMed]
- Multiple Sclerosis Society of Canada. Vitamin D and Multiple Sclerosis Recommendations. Available online: https://mssociety.ca/library/document/Vka6RXcnOizNm9sIwuWvroxejlhLqTJ8/original.pdf (accessed on 30 January 2019).
- American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. J. Am. Geriatr. Soc. 2014, 62, 147–152. [Google Scholar]
Characteristic | At Baseline | At Follow-Up |
---|---|---|
Serum 25(OH)D, nmol/L | ||
Mean (SD) | 87.2 (41.6) | 121.4 (48.9) |
Median (IQR) | 80.7 (59.5–106.0) | 115.0 (88.0–148.0) |
Serum ferritin, µg/L | ||
Mean (SD) | 160.6 (139.5) | 132.3 (126.0) |
Median (IQR) | 122.0 (64.0–212.0) | 92.0 (47.0–174.0) |
Elevated serum ferritin, % | ||
No | 83.7 | 88.5 |
Yes (≥300 ng/mL for males and ≥200 ng/mL for females) | 16.3 | 11.5 |
Characteristics | |
---|---|
Age, years | |
Mean (SD) | 50.6 (15.2) |
Gender (%) | |
Female | 51.8 |
Male | 48.2 |
Body weight status, % | |
Under weight | 1.2 |
Normal weight | 34.4 |
Overweight | 38.0 |
Obesity | 26.4 |
Blood pressure, % | |
Normal (<120/80 mmHg) | 31.1 |
Elevated (≥120/80 mmHg or anti-hypertensive medication use) | 65.4 |
Missing | 3.4 |
Smoking status, % | |
Never smoker | 39.7 |
Ex-smoker | 21.8 |
Current smoker | 9.3 |
Missing | 29.2 |
Alcohol consumption status, % | |
Non-drinker | 31.1 |
Drinker | 36.4 |
Missing | 32.4 |
Physical activity level, % | |
Low | 28.6 |
Moderate | 21.5 |
High | 20.9 |
Missing | 28.9 |
Ethnicity | |
White | 63.4 |
Non-white | 36.6 |
Use of vitamin D-containing supplements, % | |
No | 35.3 |
Yes | 46.9 |
Missing | 17.8 |
Vitamin D dose of the supplements, Median (IQR) IU/day | 3000 (2000–5000) |
Number of Observations | All Participants | Under/Normal Body Weight | Overweight and Not Obese | Obesity | |||||
---|---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | ||
All observations (n = 13624) | |||||||||
25(OH)D, nmol/L | |||||||||
<50 | 1289 | ref | ref | ref | ref | ||||
50 to <75 | 2729 | −3.36 (−9.60, 2.88) | 0.291 | 1.75 (−8.76, 12.26) | 0.744 | 0.97 (−10.53, 12.47) | 0.869 | −6.77 (−18.00, 4.45) | 0.237 |
75 to <100 | 3193 | −13.00 (−19.34, −6.65) | <0.001 | −1.56 (−11.82, 8.70) | 0.765 | −11.90 (−23.47, −0.33) | 0.044 | −15.27 (−27.43, −3.10) | 0.014 |
100 to <125 | 2574 | −23.15 (−29.91, −16.39) | <0.001 | −8.46 (−19.05, 2.14) | 0.118 | −17.68 (−29.95, −5.40) | 0.005 | −40.19 (−53.67, −26.70) | <0.001 |
≥125 | 3839 | −27.59 (−34.68, −20.51) | <0.001 | −12.39 (−23.25, −1.53) | 0.025 | −27.60 (−40.51, −14.68) | <0.001 | −33.02 (−47.51, −18.53) | <0.001 |
Among females (n = 7062) | |||||||||
25(OH)D, nmol/L | |||||||||
<50 | 412 | ref | ref | ref | ref | ||||
50 to <75 | 1207 | −6.51 (−12.85, −0.17) | 0.044 | 2.43 (−8.21, 13.07) | 0.654 | −6.54 (−19.26, 6.17) | 0.313 | −11.63 (−23.00, −0.26) | 0.045 |
75 to <100 | 1722 | −13.67 (−20.02, −7.32) | <0.001 | 1.37 (−8.95, 11.69) | 0.795 | −14.98 (−27.55, −2.42) | 0.019 | −23.35 (−35.66, −11.05) | <0.001 |
100 to <125 | 1484 | −14.38 (−21.03, −7.73) | <0.001 | −0.57 (−11.11, 9.98) | 0.916 | −13.94 (−26.98, −0.90) | 0.036 | −26.85 (−40.34, −13.36) | <0.001 |
≥125 | 2237 | −20.65 (−27.56, −13.75) | <0.001 | −4.75 (−15.35, 5.85) | 0.38 | −22.71 (−36.52, −8.90) | 0.001 | −31.26 (−45.87, −16.65) | <0.011 |
Among males (n = 6562) | |||||||||
25(OH)D, nmol/L | |||||||||
<50 | 877 | ref | ref | ref | ref | ||||
50 to <75 | 1522 | 1.71 (−8.92, 12.34) | 0.753 | 7.46 (−14.67, 29.59) | 0.509 | 5.81 (−11.11, 22.74) | 0.501 | −2.32 (−20.89, 16.25) | 0.807 |
75 to <100 | 1471 | −8.97 (−19.98, 2.05) | 0.111 | 2.13 (−19.82, 24.09) | 0.849 | −8.96 (−26.24, 8.32) | 0.31 | −11.64 (−31.86, 8.58) | 0.259 |
100 to <125 | 1090 | −32.22 (−44.20, −20.25) | <0.001 | −16.49 (−39.88, 6.89) | 0.167 | −21.35 (−40.06, −2.64) | 0.025 | −52.99 (−75.41, −30.58) | <0.001 |
≥125 | 1602 | −34.75 (−47.45, −22.04) | <0.001 | −22.91 (−48.07, 2.24) | 0.074 | −31.27 (−50.82, −11.73) | 0.002 | −32.94 (−56.78, −9.11) | 0.007 |
Number of Participants | All Participants | Under/Normal Body Weight | Overweight and Not Obese | Obesity | |||||
---|---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | ||
All observations (n = 6812) | |||||||||
Change in 25(OH)D, nmol/L | |||||||||
No improvement | 1390 | ref | ref | ref | ref | ||||
Increase by <25 | 1667 | 1.85 (−3.04, 6.74) | 0.458 | 0.43 (−5.71, 6.58) | 0.889 | 3.62 (−4.58, 11.82) | 0.386 | −1.90 (−13.30, 9.49) | 0.743 |
Increase by 25 to <50 | 1562 | −2.23 (−7.35, 2.89) | 0.394 | −1.96 (−8.41, 4.49) | 0.551 | −0.88 (−9.35, 7.60) | 0.839 | −5.60 (−17.62, 6.41) | 0.360 |
Increase by ≥50 | 2193 | −5.71 (−10.61, −0.82) | 0.022 | −3.16 (−9.22, 2.90) | 0.307 | −5.84 (−14.01, 2.33) | 0.161 | −12.62 (−24.16, −1.08) | 0.032 |
Among females (n = 3531) | |||||||||
Change in 25(OH)D, nmol/L | |||||||||
No improvement | 745 | ref | ref | ref | ref | ||||
Increase by <25 | 864 | 0.003 (−3.70, 3.70) | 0.999 | −0.59 (−5.26, 4.08) | 0.804 | −3.47 (−10.90, 3.94) | 0.358 | 4.24 (−4.60, 13.09) | 0.347 |
Increase by 25 to <50 | 824 | −1.84 (−5.73, 2.03) | 0.351 | 0.78 (−4.16, 5.73) | 0.756 | −6.56 (−14.24, 1.13) | 0.095 | 0.67 (−8.48, 9.82) | 0.886 |
Increase by ≥50 | 1098 | −0.94 (−4.69, 2.80) | 0.622 | −0.17 (−4.75, 4.41) | 0.941 | −5.62 (−13.17, 1.93) | 0.144 | 4.20 (−5.06, 13.46) | 0.373 |
Among males (n = 3281) | |||||||||
Change in 25(OH)D, nmol/L | |||||||||
No improvement | 645 | ref | ref | ref | ref | ||||
Increase by <25 | 803 | 2.96 (−6.05, 11.96) | 0.520 | 3.68 (−12.52, 19.88) | 0.656 | 7.89 (−4.77, 20.56) | 0.222 | −4.60 (−23.30, 14.10) | 0.629 |
Increase by 25 to <50 | 738 | −3.19 (−12.62, 6.25) | 0.508 | −3.59 (−20.34, 13.16) | 0.674 | 0.40 (−12.67, 13.47) | 0.952 | −9.06 (−29.12, 10.99) | 0.375 |
Increase by ≥50 | 1095 | −9.75 (−18.69, −0.82) | 0.032 | −7.87 (−24.17, 8.42) | 0.343 | −5.35 (−17.75, 7.04) | 0.397 | −19.77 (−38.22, −1.31) | 0.036 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munasinghe, L.L.; Ekwaru, J.P.; Mastroeni, S.S.B.S.; Mastroeni, M.F.; Veugelers, P.J. The Effect of Serum 25-Hydroxyvitamin D on Serum Ferritin Concentrations: A Longitudinal Study of Participants of a Preventive Health Program. Nutrients 2019, 11, 692. https://doi.org/10.3390/nu11030692
Munasinghe LL, Ekwaru JP, Mastroeni SSBS, Mastroeni MF, Veugelers PJ. The Effect of Serum 25-Hydroxyvitamin D on Serum Ferritin Concentrations: A Longitudinal Study of Participants of a Preventive Health Program. Nutrients. 2019; 11(3):692. https://doi.org/10.3390/nu11030692
Chicago/Turabian StyleMunasinghe, Lalani L., John P. Ekwaru, Silmara S. B. S. Mastroeni, Marco F. Mastroeni, and Paul J. Veugelers. 2019. "The Effect of Serum 25-Hydroxyvitamin D on Serum Ferritin Concentrations: A Longitudinal Study of Participants of a Preventive Health Program" Nutrients 11, no. 3: 692. https://doi.org/10.3390/nu11030692
APA StyleMunasinghe, L. L., Ekwaru, J. P., Mastroeni, S. S. B. S., Mastroeni, M. F., & Veugelers, P. J. (2019). The Effect of Serum 25-Hydroxyvitamin D on Serum Ferritin Concentrations: A Longitudinal Study of Participants of a Preventive Health Program. Nutrients, 11(3), 692. https://doi.org/10.3390/nu11030692