Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. Dietary Intervention
2.3. Study Design
2.4. Supplementation Period
2.5. Study Visit Preparation
2.6. Study Visit Protocol
2.7. Blood Sample Preparation
2.8. Ad Libitum Energy Intake
2.9. Visual Analogue Scales
2.10. Energy Expenditure and Substrate Oxidation Measurement
2.11. Metabolic and Hormone Analysis
2.12. Statistics
3. Results
3.1. Participant Characteristics
3.2. Ad Libitum Energy Intake, Gut Hormone Concentrations and Composite Appetite Score
3.3. Food Product Taste and Appearance Ratings and Side Effects
3.4. Resting Energy Expenditure and Substrate Oxidation
3.5. Breath H2
3.6. Blood Hormones and Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, H.; Boshuizen, H.C.; Forouhi, N.G.; Wareham, N.J.; Halkjær, J.; Tjønneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; Buijsse, B. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 2010, 91, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Pereira, M.A.; Kroenke, C.H.; Hilner, J.E.; Van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA 1999, 282, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar] [CrossRef]
- Cani, P.D.; Neyrinck, A.M.; Maton, N.; Delzenne, N.M. Oligofructose Promotes Satiety in Rats Fed a High-Fat Diet: Involvement of Glucagon-Like Peptide-1. Obes. Res. 2005, 13, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- Delmée, E.; Cani, P.D.; Gual, G.; Knauf, C.; Burcelin, R.; Maton, N.; Delzenne, N.M. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci. 2006, 79, 1007–1013. [Google Scholar] [CrossRef]
- Psichas, A.; Sleeth, M.; Murphy, K.; Brooks, L.; Bewick, G.; Hanyaloglu, A.; Ghatei, M.; Bloom, S.; Frost, G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 2014, 39, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, C.; Chambers, E.; Morrison, D.; Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 2015, 39, 1331–1338. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.; Lefevre, S.; Peters, V.; Patterson, M.; Ghatei, M.A.; Morgan, L.M.; Frost, G.S. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake. A dose-escalation study. Appetite 2013, 66, 44–53. [Google Scholar] [CrossRef]
- Cummings, J.; Pomare, E.; Branch, W.; Naylor, C.; Macfarlane, G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2014, 64, 1744–1754. [Google Scholar] [CrossRef] [Green Version]
- Den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.-J. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Byrne, C.S.; Aspey, K.; Chen, Y.; Khan, S.; Morrison, D.J.; Frost, G. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 2018, 20, 1034–1039. [Google Scholar] [CrossRef]
- Polyviou, T.; MacDougall, K.; Chambers, E.; Viardot, A.; Psichas, A.; Jawaid, S.; Harris, H.; Edwards, C.; Simpson, L.; Murphy, K. Randomised clinical study: Inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon. Aliment. Pharmacol. Ther. 2016, 44, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Chandarana, K.; Drew, M.E.; Emmanuel, J.; Karra, E.; Gelegen, C.; Chan, P.; Cron, N.J.; Batterham, R.L. Subject standardization, acclimatization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology 2009, 136, 2115–2126. [Google Scholar] [CrossRef]
- Woodend, D.M.; Anderson, G.H. Effect of sucrose and safflower oil preloads on short term appetite and food intake of young men. Appetite 2001, 37, 185–195. [Google Scholar] [CrossRef]
- Simonson, D.C.; DeFronzo, R.A. Indirect calorimetry: Methodological and interpretative problems. Am. J. Physiol. Endocrinol. Metab. 1990, 258, E399–E412. [Google Scholar] [CrossRef] [PubMed]
- Adrian, T.; Ferri, G.; Bacarese-Hamilton, A.; Fuessl, H.; Polak, J.; Bloom, S. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985, 89, 1070–1077. [Google Scholar] [CrossRef]
- Kreymann, B.; Ghatei, M.; Williams, G.; Bloom, S. Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet 1987, 330, 1300–1304. [Google Scholar] [CrossRef]
- Moreau, N.; Goupry, S.; Antignac, J.; Monteau, F.; Le Bizec, B.; Champ, M.; Martin, L.; Dumon, H. Simultaneous measurement of plasma concentrations and 13 C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by gas chromatography coupled to mass spectrometry. J. Chromatogr. B 2003, 784, 395–403. [Google Scholar] [CrossRef]
- Byrne, C.S.; Chambers, E.S.; Alhabeeb, H.; Chhina, N.; Morrison, D.J.; Preston, T.; Tedford, C.; Fitzpatrick, J.; Irani, C.; Busza, A.; et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am. J. Clin. Nutr. 2016, 104, 5–14. [Google Scholar] [CrossRef]
- Spreckley, E.; Murphy, K.G. The L-cell in nutritional sensing and the regulation of appetite. Front. Nutr. 2015, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Anastasovska, J.; Arora, T.; Canon, G.J.S.; Parkinson, J.R.; Touhy, K.; Gibson, G.R.; Nadkarni, N.A.; So, P.W.; Goldstone, A.P.; Thomas, E.L. Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity 2012, 20, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- So, P.-W.; Yu, W.-S.; Kuo, Y.-T.; Wasserfall, C.; Goldstone, A.P.; Bell, J.D.; Frost, G. Impact of resistant starch on body fat patterning and central appetite regulation. PLoS ONE 2007, 2, e1309. [Google Scholar] [CrossRef]
- Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014, 5, 3611. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, K.; Gotoh, K.; Chiba, S.; Masaki, T.; Katsuragi, I.; Kakuma, T.; Yoshimatsu, H. Intraportal administration of DPP-IV inhibitor regulates insulin secretion and food intake mediated by the hepatic vagal afferent nerve in rats. J. Neurochem. 2012, 121, 66–76. [Google Scholar] [CrossRef]
- Lal, S.; Kirkup, A.J.; Brunsden, A.M.; Thompson, D.G.; Grundy, D. Vagal afferent responses to fatty acids of different chain length in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G907–G915. [Google Scholar] [CrossRef]
- Kentish, S.J.; Page, A.J. The role of gastrointestinal vagal afferent fibres in obesity. J. Physiol. 2015, 593, 775–786. [Google Scholar] [CrossRef]
- Anil, M.; Forbes, J. Feeding in sheep during intraportal infusions of short-chain fatty acids and the effect of liver denervation. J. Physiol. 1980, 298, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Anil, M.; Forbes, J. The roles of hepatic nerves in the reduction of food intake as a consequence of intraportal sodium propionate administration in sheep. Q. J. Exp. Physiol. 1988, 73, 539–546. [Google Scholar] [CrossRef]
- Sahuri-Arisoylu, M.; Brody, L.; Parkinson, J.; Parkes, H.; Navaratnam, N.; Miller, A.D.; Thomas, E.; Frost, G.; Bell, J. Reprogramming of hepatic fat accumulation and’browning’of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes. 2016, 40, 955–963. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Canfora, E.E.; van der Beek, C.M.; Jocken, J.W.; Goossens, G.H.; Holst, J.J.; Damink, S.W.O.; Lenaerts, K.; Dejong, C.H.; Blaak, E.E. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: A randomized crossover trial. Sci. Rep. 2017, 7, 2360. [Google Scholar] [CrossRef]
- Hill, J.O. Understanding and addressing the epidemic of obesity: An energy balance perspective. Endocr. Rev. 2006, 27, 750–761. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef]
- Johnstone, A.M.; Murison, S.D.; Duncan, J.S.; Rance, K.A.; Speakman, J.R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 2005, 82, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Van der Beek, C.M.; Bloemen, J.G.; van den Broek, M.A.; Lenaerts, K.; Venema, K.; Buurman, W.A.; Dejong, C.H. Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J. Nutr. 2015, 145, 2019–2024. [Google Scholar] [CrossRef]
- Bloemen, J.G.; Venema, K.; van de Poll, M.C.; Olde Damink, S.W.; Buurman, W.A.; Dejong, C.H. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 2009, 28, 657–661. [Google Scholar] [CrossRef]
- Neis, E.P.; van Eijk, H.M.; Lenaerts, K.; Damink, S.W.O.; Blaak, E.E.; Dejong, C.H.; Rensen, S.S. Distal versus proximal intestinal short-chain fatty acid release in man. Gut 2019, 68, 764–765. [Google Scholar] [CrossRef]
- Den Besten, G.; Lange, K.; Havinga, R.; van Dijk, T.H.; Gerding, A.; van Eunen, K.; Müller, M.; Groen, A.K.; Hooiveld, G.J.; Bakker, B.M. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G900–G910. [Google Scholar] [CrossRef]
- Robertson, M.D.; Bickerton, A.S.; Dennis, A.L.; Vidal, H.; Frayn, K.N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr. 2005, 82, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Parnell, J.A.; Reimer, R.A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 2009, 89, 1751–1759. [Google Scholar] [CrossRef]
- Kristensen, M.; Toubro, S.; Jensen, M.G.; Ross, A.B.; Riboldi, G.; Petronio, M.; Bügel, S.; Tetens, I.; Astrup, A. Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women. J. Nutr. 2012, 142, 710–716. [Google Scholar] [CrossRef]
- Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [Google Scholar] [CrossRef] [Green Version]
Control-FP 4 | Inulin-FP 5 | IPE-FP 6 | P 7 | |
---|---|---|---|---|
Male n (%) | 9/21 (43%) | |||
Age (year) | 60 [53, 64] | |||
Weight (kg) | 80.2 [76.1, 88.4] | 80.5 [75.9, 88.5] | 81.7 [76.2, 89.5] # $ | 0.023 |
FFM (kg) | 51.5 [46.2, 66.0] | 50.9 [46.5, 67.2] | 51.6 [47.3, 67.5] ## | 0.024 |
FM (kg) | 29.1 [23.3, 33.7] | 28.8 [23.3, 32.8] | 29.2 [24.2, 32.8] | 0.48 |
% FFM | 65 [59.9, 74.0] | 65.5 [60.3, 74.9] | 64.8 [60.1, 74.3] | 0.16 |
% FM | 35 [26.0, 40.2] | 34.5 [25.2, 40.0] | 35.2 [25.8, 40.0] | 0.15 |
TBW | 37.7 [33.9. 48.3] | 37.2 [34.1, 49.2] | 37.8 [34.6, 49.4] ## $ | 0.026 |
Fasting cholesterol (mmol/L) | ||||
Total | 5.1 [4.8, 6.4] | 5.0 [4.6, 6.1] | 5.3 [4.7, 5.9] | 0.86 |
HDL | 1.5 [1.3, 1.9] | 1.4 [1.2, 1.7] | 1.5 [1.3, 1.8] | 0.92 |
LDL | 3.1 [2.5, 4.1] | 3.0 [2.3, 4.0] | 3.1 [2.5, 3.8] | 0.95 |
Total Chol:HDL | 3.6 [2.8, 4.6] | 3.7 [2.9, 4.6] | 3.8 [2.9, 4.4] | 0.97 |
LDL:HDL | 2.1 [1.6, 3.1] | 2.3 [1.6, 2.9] | 2.4 [1.6, 2.7] | 0.87 |
Fasting TG (mmol/L) | 1.2 [1.0, 1.6] | 1.2 [1.0, 1.7] | 1.3 [0.9, 1.7] | 0.10 |
Power of food scale | 35 [26, 42] | 33 [25, 44] | 33 [24, 46] | 0.68 |
IPAQ 1,2 | 4230 [2025, 6115] | 3570 [2280, 6678] | 3750 [1504, 5190] | 0.85 |
24 h food intake (kcal) 3 | 2250 [1681, 2737] | 1948.5 [1800, 2358] | 2222 [1775, 2547] | 0.95 |
Unit | Value | Control-FP 2 | Inulin-FP 3 | IPE-FP 4 | P 5 | |
---|---|---|---|---|---|---|
Energy intake | kcal | 830.8 [643.7, 1158.3] | 878.5 [415.4, 1112] | 699.2 [398.6, 1053.3] | 0.012 | |
PYY | pmol/L | 0 min | 47.30 [29.35, 57.69] | 44.29 [28.29, 54.91] | 46.16 [29.85, 61.50] | 0.41 |
AUC0-420 | 53.41 [43.6, 70.31] | 58.51 [42.88, 70.80] | 54.86 [44.91, 68.16] | 0.95 | ||
GLP-1 | pmol/L | 0 min | 20.98 [14.72, 28.04] | 18.63 [16.33, 22.50] | 20.08 [13.34, 24.78] | 0.26 |
AUC0-420 | 22.73 [18.55, 26.34] | 22.88 [17.60, 24.94] | 21.77 [17.67, 26.18] | 0.10 | ||
CAS 1 | mm | 0 min | 50.0 [40.0, 70.5] | 58.0 [41.5, 79.0] | 50.0 [37.0, 76.5] | 0.86 |
AUC0-420 | 25.7 [11.8, 43.5] | 23.3 [10.2, 45.0] | 34.9 [15.8, 41.3] | 0.28 |
Food Product | Control-FP 2 | Inulin-FP 3 | IPE-FP 4 | P 5 |
---|---|---|---|---|
Bread | ||||
Overall | 6 [4, 8] | 6 [4, 8] | 6 [4, 8] | 0.70 |
Appearance | 5 [5, 7] | 6 [5, 7] | 6 [5, 7] | 0.46 |
Aroma | 6 [5, 7] | 6 [5, 7] | 6 [5, 7] | 0.85 |
Flavour | 7 [5, 8] | 6 [5, 8] | 6 [4, 8] | 0.29 |
Texture | 5 [4, 7] | 5 [4, 7] | 5 [4, 7] | 0.79 |
Smoothie | ||||
Overall | 7 [7, 8] | 7 [6, 8] | 7 [5, 8] | 0.53 |
Appearance | 6 [5, 8] | 7 [5, 8] | 7 [5, 8] | 0.89 |
Aroma | 6 [5, 8] | 7 [5, 8] | 6 [5, 7] | 0.50 |
Flavour | 7 [7, 8] | 7 [6, 9] | 6 [4, 8] | 0.25 |
Texture | 7 [6, 8] | 7 [4, 7] | 7 [6, 8] | 0.52 |
Unit | Value 1 | Control-FP 2 | Inulin-FP 3 | IPE-FP 4 | P 5 | |
---|---|---|---|---|---|---|
RER | VCO2/VO2 | 0 min | 0.762 [0.725, 0.787] | 0.764 [0.712, 0.824] | 0.766 [0.683, 0.813] | 0.71 |
AUC0-240 | 0.823 [0.756, 0.841] | 0.825 [0.773, 0.875] | 0.842 [0.745, 0.859] | 0.95 | ||
Raw | ||||||
REE | kcal/min | 0 min | 1.031 [0.936, 1.179] | 1.103 [0.909, 1.197] | 1.121 [0.974, 1.276] | 0.051 |
AUC0-240 | 1.144 [1.073, 1.271] | 1.152 [1.056, 1.275] | 1.255 [1.091, 1.321] # $ | 0.018 | ||
CHO Ox. | g/min | 0 min | 0.037 [-0.024, 0.051] | 0.041 [−0.015, 0.083] | 0.042 [−0.058, 0.091] | 0.87 |
AUC0-240 | 0.094 [0.024, 0.136] | 0.097 [0.056, 0.162] | 0.102 [0.013, 0.163] | 0.78 | ||
Lipid Ox. | g/min | 0 min | 0.071 [0.055, 0.089] | 0.076 [0.038, 0.085] | 0.078 [0.046, 0.115] | 0.86 |
AUC0-240 | 0.054 [0.033, 0.072] | 0.050 [0.032, 0.082] | 0.052 [0.032, 0.099] | 0.33 | ||
Protein Ox. | g/min | total | 0.057 [0.049, 0.065] | 0.058 [0.042, 0.062] | 0.057 [0.042, 0.065] | 0.95 |
FFM corr. 6 | ||||||
REE | kcal/min/kg FFM | 0 min | 0.020 [0.016, 0.022] | 0.020 [0.016, 0.022] | 0.021 [0.017, 0.022] | 0.37 |
AUC0-240 | 0.021 [0.017, 0.025] | 0.021 [0.018, 0.024] | 0.022 [0.018, 0.024] | 0.22 | ||
CHO Ox. | mg/min/kg FFM | 0 min | 0.718 [−0.346, 0.940] | 0.734 [-0.245, 1.751] | 0.663 [−1.028, 1.364] | 0.95 |
AUC0-240 | 1.849 [0.388, 2.817] | 1.881 [1.087, 3.073] | 1.900 [0.159, 3.011] | 0.83 | ||
Lipid Ox. | mg/min/kg FFM | 0 min | 1.470 [0.934, 1.652] | 1.238 [0.789, 1.634] | 1.345 [0.950, 1.770] | 0.87 |
AUC0-240 | 1.024 [0.638, 1.272] | 1.006 [0.614, 1.365] | 0.921 [0.640, 1.610] | 0.72 | ||
Protein Ox. | mg/min/kg FFM | total | 1.080 [0.869, 1.261] | 0.965 [0.817, 1.216] | 0.978 [0.810, 1.199] | 0.67 |
Unit | Value 1 | Control-FP 2 | Inulin-FP 3 | IPE-FP 4 | P 5 | |
---|---|---|---|---|---|---|
Breath H2 | ppm | 0 min | 4.0 [1.5, 11.0] | 5.0 [2.0, 11.0] | 3.0 [1.5, 11.0] | 0.44 |
AUC0-420 | 11.0 [6.0, 20.5] | 18.4 [7.5, 31.6] ** | 11.7 [6.2, 20.0] $ | 0.010 | ||
AUC0-240 | 6.1 [3.2, 9.3] | 7.4 [5.2, 14.8] | 7.4 [4.6, 13.1] | 0.54 | ||
AUC240–420 | 17.8 [7.9, 27.8] | 32.3 [12.0, 50.6] ** | 16.7 [7.7, 31.6] $ | 0.004 | ||
Glucose | mmol/L | 0 min | 5.43 [5.06, 5.74] | 5.44 [5.25, 5.76] | 5.33 [5.01, 5.70] | 0.87 |
AUC0-420 | 6.00 [5.61, 6.91] | 6.13 [5.63, 6.60] | 6.10 [5.88, 6.81] | 0.17 | ||
Insulin | µU/ml | 0 min | 2.28 [2.04, 2.70] | 2.34 [2.26, 2.71] | 2.37 [2.16, 2.61] | 0.10 |
AUC0-420 | 48.20 [37.44, 57.51] | 51.8 [40.15, 61.10] | 54.49 [39.10, 59.75] | 0.41 | ||
NEFA | mmol/L | 0 min | 0.71 [0.59, 0.83] | 0.66 [0.48, 0.77] | 0.64 [0.40, 0.74] | 0.11 |
AUC0-420 | 0.14 [0.10, 0.18] | 0.11 [0.08, 0.16] | 0.11 [0.08, 0.15] | 0.16 | ||
Acetate | µmol/L | 0 min | 51.75 [41.27, 61.05] | 54.46 [42.50, 74.29] | 54.90 [34.90, 73.19] | 0.95 |
AUC0-420 | 58.72 [36.64, 73.71] | 56.35 [45.23, 72.60] | 57.64 [44.18, 76.70] | 0.18 | ||
Propionate | µmol/L | 0 min | 2.20 [1.53, 2.54] | 2.37 [1.88, 2.88] | 2.30 [1.70, 3.06] | 0.26 |
AUC0-420 | 1.92 [1.68, 2.78] | 2.27 [1.63, 2.53] | 2.38 [2.04, 2.83] | 0.10 | ||
Butyrate | µmol/L | 0 min | 1.17 [0.46, 1.45] | 1.29 [0.94, 1.72] | 1.04 [0.67, 1.64] | 0.41 |
AUC0-420 | 1.21 [0.83, 1.56] | 1.11 [0.96, 1.36] | 1.28 [1.00, 1.62] | 0.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, C.S.; Chambers, E.S.; Preston, T.; Tedford, C.; Brignardello, J.; Garcia-Perez, I.; Holmes, E.; Wallis, G.A.; Morrison, D.J.; Frost, G.S. Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study. Nutrients 2019, 11, 861. https://doi.org/10.3390/nu11040861
Byrne CS, Chambers ES, Preston T, Tedford C, Brignardello J, Garcia-Perez I, Holmes E, Wallis GA, Morrison DJ, Frost GS. Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study. Nutrients. 2019; 11(4):861. https://doi.org/10.3390/nu11040861
Chicago/Turabian StyleByrne, Claire S, Edward S Chambers, Tom Preston, Catriona Tedford, Jerusa Brignardello, Isabel Garcia-Perez, Elaine Holmes, Gareth A Wallis, Douglas J Morrison, and Gary S Frost. 2019. "Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study" Nutrients 11, no. 4: 861. https://doi.org/10.3390/nu11040861
APA StyleByrne, C. S., Chambers, E. S., Preston, T., Tedford, C., Brignardello, J., Garcia-Perez, I., Holmes, E., Wallis, G. A., Morrison, D. J., & Frost, G. S. (2019). Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study. Nutrients, 11(4), 861. https://doi.org/10.3390/nu11040861