Food and Food Products on the Italian Market for Ketogenic Dietary Treatment of Neurological Diseases
Abstract
:1. Introduction
2. Foods for a Ketogenic Diet
2.1. Commonly-Used Foods
2.2. Sweeteners
2.2.1. Polyols
2.2.2. Artificial Sweeteners
3. Food Products for the Ketogenic Diet
3.1. High-Fat Products
3.2. High-Protein, Low-Carbohydrate Products
3.3. Glucomannan-Based Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia. Open 2018, 3, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Cervenka, M.C.; Kossoff, E.H. Dietary treatment of intractable epilepsy. Continuum (Minneap Minn) 2013, 19, 756–766. [Google Scholar] [CrossRef]
- Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 2008, 49 (Suppl. 8), 46–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masino, S.A.; Rho, J.M. Mechanisms of Ketogenic Diet Action. In Jasper’s Basic Mechanisms of the Epilepsies, 4th ed.; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information (US): Bethesda, Rockville, MD, USA, 2012. [Google Scholar]
- Gano, L.B.; Patel, M.; Rho, J.M. Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res. 2014, 55, 2211–2228. [Google Scholar] [CrossRef] [Green Version]
- Rho, J.M. How does the ketogenic diet induce anti-seizure effects? Neurosci. Lett. 2017, 637, 4–10. [Google Scholar] [CrossRef]
- Lima, P.A.; Sampaio, L.P.; Damasceno, N.R. Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy. Clinics (Sao Paulo) 2014, 69, 699–705. [Google Scholar] [CrossRef]
- Yudkoff, M.; Daikhin, Y.; Nissim, I.; Horyn, O.; Lazarow, A.; Luhovyy, B.; Wehrli, S. Response of brain amino acid metabolism to ketosis. Neurochem. Int. 2005, 47, 119–128. [Google Scholar] [CrossRef]
- Juge, N.; Gray, J.A.; Omote, H.; Miyaji, T.; Inoue, T.; Hara, C.; Uneyama, H.; Edwards, R.H.; Nicoll, R.A.; Moriyama, Y. Metabolic control of vesicular glutamate transport and release. Neuron 2010, 68, 99–112. [Google Scholar] [CrossRef]
- Tanner, G.R.; Lutas, A.; Martinez-Francois, J.R.; Yellen, G. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J. Neurosci. 2011, 31, 8689–8696. [Google Scholar] [CrossRef]
- Ma, W.; Berg, J.; Yellen, G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J. Neurosci. 2007, 27, 3618–3625. [Google Scholar] [CrossRef]
- Masino, S.A.; Geiger, J.D. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci. 2008, 31, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masino, S.A.; Li, T.; Theofilas, P.; Sandau, U.S.; Ruskin, D.N.; Fredholm, B.B.; Geiger, J.D.; Aronica, E.; Boison, D. A ketogenic diet suppresses seizures in mice through adenosine A(1) receptors. J. Clin. Investig. 2011, 121, 2679–2683. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C. Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death. Acta Neurol. Taiwan 2010, 19, 3–15. [Google Scholar]
- Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.; Geiger, J.D.; Dingledine, R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 2006, 60, 223–235. [Google Scholar] [CrossRef]
- Milder, J.; Patel, M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 2012, 100, 295–303. [Google Scholar] [CrossRef]
- Veech, R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Zhang, K.; Yang, W.; Li, B. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms. Curr. Neuropharmacol. 2018, 16, 66–70. [Google Scholar] [CrossRef]
- Giordano, C.; Marchio, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol. 2014, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Prasad, C.; Rupar, T.; Prasad, A.N. Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev. 2011, 33, 856–865. [Google Scholar] [CrossRef]
- Sofou, K.; Dahlin, M.; Hallböök, T.; Lindefeldt, M.; Viggedal, G.; Darin, N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: Short- and long-term outcomes. J. Inherit. Metab. Dis. 2017, 40, 237–245. [Google Scholar] [CrossRef]
- McDonald, T.J.W.; Cervenka, M.C. Ketogenic Diets for Adult Neurological Disorders. Neurotherapeutics 2018, 15, 1018–1031. [Google Scholar] [CrossRef]
- Ruskin, D.N.; Kawamura, M.; Masino, S.A. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS ONE 2009, 4, e8349. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cheng, B. Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J. Mol. Neurosci. 2010, 42, 145–153. [Google Scholar] [CrossRef]
- Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef]
- Paoli, A.; Bianco, A.; Damiani, E.; Bosco, G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed. Res. Int. 2014, 2014, 474296. [Google Scholar] [CrossRef] [PubMed]
- McDonald, T.J.W.; Cervenka, M.C. The Expanding Role of Ketogenic Diets in Adult Neurological Disorders. Brain Sci. 2018, 8, 148. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Flores, R.; Poff, A.M.; D’Agostino, D.P.; Mukherjee, P. Metabolic therapy: A new paradigm for managing malignant brain cancer. Cancer Lett. 2015, 356, 289–300. [Google Scholar] [CrossRef]
- Paoli, A. Ketogenic diet for obesity: Friend or foe? Int. J. Environ. Res. Public Health 2014, 11, 2092–2107. [Google Scholar] [CrossRef]
- Leow, Z.Z.X.; Guelfi, K.J.; Davis, E.A.; Jones, T.W.; Fournier, P.A. The glycaemic benefits of a very-low-carbohydrate ketogenic diet in adults with Type 1 diabetes mellitus may be opposed by increased hypoglycaemia risk and dyslipidaemia. Diabet. Med. 2018. [Google Scholar] [CrossRef]
- Gupta, L.; Khandelwal, D.; Kalra, S.; Gupta, P.; Dutta, D.; Aggarwal, S. Ketogenic diet in endocrine disorders: Current perspectives. J. Postgrad. Med. 2017, 63, 242–251. [Google Scholar]
- Roehl, K.; Sewak, S.L. Practice Paper of the Academy of Nutrition and Dietetics: Classic and Modified Ketogenic Diets for Treatment of Epilepsy. J. Acad. Nutr. Diet. 2017, 117, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Società Italiana di Nutrizione Umana. Livelli di assunzione di riferimento di nutrienti ed energia per la popolazione italiana, 2nd ed.; SICS Editore Srl: Milan (IT), Italy, 2016. [Google Scholar]
- Ye, F.; Li, X.J.; Jiang, W.L.; Sun, H.B.; Liu, J. Efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy: A meta-analysis. J. Clin. Neurol. 2015, 11, 26–31. [Google Scholar] [CrossRef]
- Sampath, A.; Kossoff, E.H.; Furth, S.L.; Pyzik, P.L.; Vining, E.P. Kidney stones and the ketogenic diet: Risk factors and prevention. J. Child. Neurol. 2007, 22, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Kossoff, E.H.; Pyzik, P.L.; Furth, S.L.; Hladky, H.D.; Freeman, J.M.; Vining, E.P. Kidney stones, carbonic anhydrase inhibitors, and the ketogenic diet. Epilepsia 2002, 43, 1168–1171. [Google Scholar] [CrossRef]
- Furth, S.L.; Casey, J.C.; Pyzik, P.L.; Neu, A.M.; Docimo, S.G.; Vining, E.P.; Freeman, J.M.; Fivush, B.A. Risk factors for urolithiasis in children on the ketogenic diet. Pediatr. Nephrol. 2000, 15, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Roehl, K.; Falco-Walter, J.; Ouyang, B.; Balabanov, A. Modified ketogenic diets in adults with refractory epilepsy: Efficacious improvements in seizure frequency, seizure severity, and quality of life. Epilepsy Behav. 2019. [Google Scholar] [CrossRef] [PubMed]
- McNally, M.A.; Pyzik, P.L.; Rubenstein, J.E.; Hamdy, R.F.; Kossoff, E.H. Empiric use of potassium citrate reduces kidney-stone incidence with the ketogenic diet. Pediatrics 2009, 124, e300–e304. [Google Scholar] [CrossRef]
- Couch, S.C.; Schwarzman, F.; Carroll, J.; Koenigsberger, D.; Nordli, D.R.; Deckelbaum, R.J.; DeFelice, A.R. Growth and nutritional outcomes of children treated with the ketogenic diet. J. Am. Diet. Assoc. 1999, 99, 1573–1575. [Google Scholar] [CrossRef]
- Tagliabue, A.; Bertoli, S.; Trentani, C.; Borrelli, P.; Veggiotti, P. Effects of the ketogenic diet on nutritional status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy: A 6-month prospective observational study. Clin. Nutr. 2012, 31, 246–249. [Google Scholar] [CrossRef]
- Liu, Y.M.; Williams, S.; Basualdo-Hammond, C.; Stephens, D.; Curtis, R. A prospective study: Growth and nutritional status of children treated with the ketogenic diet. J. Am. Diet. Assoc. 2003, 103, 707–712. [Google Scholar] [CrossRef]
- Vining, E.P.; Pyzik, P.; McGrogan, J.; Hladky, H.; Anand, A.; Kriegler, S.; Freeman, J.M. Growth of children on the ketogenic diet. Dev. Med. Child. Neurol. 2002, 44, 796–802. [Google Scholar] [CrossRef]
- Williams, S.; Basualdo-Hammond, C.; Curtis, R.; Schuller, R. Growth retardation in children with epilepsy on the ketogenic diet: A retrospective chart review. J. Am. Diet. Assoc. 2002, 102, 405–407. [Google Scholar] [CrossRef]
- Peterson, S.J.; Tangney, C.C.; Pimentel-Zablah, E.M.; Hjelmgren, B.; Booth, G.; Berry-Kravis, E. Changes in growth and seizure reduction in children on the ketogenic diet as a treatment for intractable epilepsy. J. Am. Diet. Assoc. 2005, 105, 718–725. [Google Scholar] [CrossRef]
- Groleau, V.; Schall, J.I.; Stallings, V.A.; Bergqvist, C.A. Long-term impact of the ketogenic diet on growth and resting energy expenditure in children with intractable epilepsy. Dev. Med. Child. Neurol. 2014, 56, 898–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spulber, G.; Spulber, S.; Hagenas, L.; Amark, P.; Dahlin, M. Growth dependence on insulin-like growth factor-1 during the ketogenic diet. Epilepsia 2009, 50, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nation, J.; Humphrey, M.; MacKay, M.; Boneh, A. Linear growth of children on a ketogenic diet: Does the protein-to-energy ratio matter? J. Child. Neurol. 2014, 29, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Neal, E.G.; Chaffe, H.M.; Edwards, N.; Lawson, M.S.; Schwartz, R.H.; Cross, J.H. Growth of children on classical and medium-chain triglyceride ketogenic diets. Pediatrics 2008, 122, e334–e340. [Google Scholar] [CrossRef]
- Bertoli, S.; Battezzati, A.; Tagliabue, A. Ketogenic diet in children with intractable epilepsy: What about resting energy expenditure and growth? Dev. Med. Child. Neurol. 2014, 56, 806–807. [Google Scholar] [CrossRef] [PubMed]
- Marchio, M.; Roli, L.; Giordano, C.; Trenti, T.; Guerra, A.; Biagini, G. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet. Clin. Nutr. 2019, 38, 954–957. [Google Scholar] [CrossRef] [PubMed]
- Kwiterovich, P.O., Jr.; Vining, E.P.; Pyzik, P.; Skolasky, R., Jr.; Freeman, J.M. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 2003, 290, 912–920. [Google Scholar] [CrossRef]
- Nizamuddin, J.; Turner, Z.; Rubenstein, J.E.; Pyzik, P.L.; Kossoff, E.H. Management and risk factors for dyslipidemia with the ketogenic diet. J. Child. Neurol. 2008, 23, 758–761. [Google Scholar] [CrossRef]
- Azevedo de Lima, P.; Baldini Prudencio, M.; Murakami, D.K.; Pereira de Brito Sampaio, L.; Figueiredo Neto, A.M.; Teixeira Damasceno, N.R. Effect of classic ketogenic diet treatment on lipoprotein subfractions in children and adolescents with refractory epilepsy. Nutrition 2017, 33, 271–277. [Google Scholar] [CrossRef]
- Klein, P.; Janousek, J.; Barber, A.; Weissberger, R. Ketogenic diet treatment in adults with refractory epilepsy. Epilepsy Behav. 2010, 19, 575–579. [Google Scholar] [CrossRef]
- Mosek, A.; Natour, H.; Neufeld, M.Y.; Shiff, Y.; Vaisman, N. Ketogenic diet treatment in adults with refractory epilepsy: A prospective pilot study. Seizure 2009, 18, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Groesbeck, D.K.; Bluml, R.M.; Kossoff, E.H. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev. Med. Child. Neurol. 2006, 48, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Heussinger, N.; Della Marina, A.; Beyerlein, A.; Leiendecker, B.; Hermann-Alves, S.; Dalla Pozza, R.; Klepper, J. 10 patients, 10 years—Long term follow-up of cardiovascular risk factors in Glut1 deficiency treated with ketogenic diet therapies: A prospective, multicenter case series. Clin. Nutr. 2018, 37, 2246–2251. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, M.C.; Patton, K.; Eloyan, A.; Henry, B.; Kossoff, E.H. The impact of the modified Atkins diet on lipid profiles in adults with epilepsy. Nutr. Neurosci. 2016, 19, 131–137. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Rowley, H.; Sinha, S.R.; Vining, E.P. A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia 2008, 49, 316–319. [Google Scholar] [CrossRef]
- Lambrechts, D.A.; de Kinderen, R.J.; Vles, H.S.; de Louw, A.J.; Aldenkamp, A.P.; Majoie, M.J. The MCT-ketogenic diet as a treatment option in refractory childhood epilepsy: A prospective study with 2-year follow-up. Epilepsy Behav. 2015, 51, 261–266. [Google Scholar] [CrossRef]
- Willmott, N.S.; Bryan, R.A. Case report: Scurvy in an epileptic child on a ketogenic diet with oral complications. Eur. Arch. Paediatr. Dent. 2008, 9, 148–152. [Google Scholar] [CrossRef]
- Bergqvist, A.G.; Schall, J.I.; Stallings, V.A. Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet. Epilepsia 2007, 48, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N.; Kose, E.; Guzel, O. The Effect of Ketogenic Diet on serum selenium levels in patients with intractable epilepsy. Biol. Trace Elem. Res. 2017, 178, 1–6. [Google Scholar] [CrossRef]
- Bergqvist, A.G.; Chee, C.M.; Lutchka, L.; Rychik, J.; Stallings, V.A. Selenium deficiency associated with cardiomyopathy: A complication of the ketogenic diet. Epilepsia 2003, 44, 618–620. [Google Scholar] [CrossRef]
- Christodoulides, S.S.; Neal, E.G.; Fitzsimmons, G.; Chaffe, H.M.; Jeanes, Y.M.; Aitkenhead, H.; Cross, J.H. The effect of the classical and medium chain triglyceride ketogenic diet on vitamin and mineral levels. J. Hum. Nutr. Diet. 2012, 25, 16–26. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Salvini, S.; Parpinel, M. Food Composition Database for Epidemiological Studies in Italy. Available online: http://www.bda-ieo.it/ (accessed on 5 March 2019).
- Scazzina, F.; Dall’Asta, M.; Casiraghi, M.C.; Sieri, S.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Glycemic index and glycemic load of commercial Italian foods. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 419–429. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef]
- Freeman, J.; Veggiotti, P.; Lanzi, G.; Tagliabue, A.; Perucca, E. The ketogenic diet: From molecular mechanisms to clinical effects. Epilepsy Res. 2006, 68, 145–180. [Google Scholar] [PubMed]
- Liu, Y.M.; Lowe, H.; Zak, M.M.; Kobayashi, J.; Chan, V.W.; Donner, E.J. Can children with hyperlipidemia receive ketogenic diet for medication-resistant epilepsy? J. Child. Neurol. 2013, 28, 479–483. [Google Scholar] [CrossRef]
- Guzel, O.; Yilmaz, U.; Uysal, U.; Arslan, N. The effect of olive oil-based ketogenic diet on serum lipid levels in epileptic children. Neurol. Sci. 2016, 37, 465–470. [Google Scholar] [CrossRef]
- Fuehrlein, B.S.; Rutenberg, M.S.; Silver, J.N.; Warren, M.W.; Theriaque, D.W.; Duncan, G.E.; Stacpoole, P.W.; Brantly, M.L. Differential metabolic effects of saturated versus polyunsaturated fats in ketogenic diets. J. Clin. Endocrinol. Metab. 2004, 89, 1641–1645. [Google Scholar] [CrossRef]
- Lucchi, C.; Costa, A.M.; Giordano, C.; Curia, G.; Piat, M.; Leo, G.; Vinet, J.; Brunel, L.; Fehrentz, J.-A.; Martinez, J.; et al. Involvement of PPARγ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor Antagonist. Front. Pharmacol. 2017, 8, 676. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity: A meta-analysis of prospective cohort studies and randomized trials. Nutr. Metab. 2018, 15, 46. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice Bran Oil Containing Gamma-Oryzanol Improves Lipid Profiles and Antioxidant Status in Hyperlipidemic Subjects: A Randomized Double-Blind Controlled Trial. J. Altern. Complement Med. 2018. [Google Scholar] [CrossRef]
- Neal, E.G. Ketogenic dietary therapy for epilepsy and other disorders: Current perspectives. Nutr. Diet. Suppl. 2014, 6, 25–33. [Google Scholar] [CrossRef]
- Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv. Nutr. 2017, 8, 587–596. [Google Scholar]
- Grembecka, M. Sugar alcohols—their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Hiele, M.; Ghoos, Y.; Rutgeerts, P.; Vantrappen, G. Metabolism of erythritol in humans: Comparison with glucose and lactitol. Br. J. Nutr. 1993, 69, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, K.; Nakayama, K.; Modderman, J. Fate of erythritol after single oral administration to rats and dogs. Regul. Toxicol. Pharmacol. 1996, 24, S206–S213. [Google Scholar] [CrossRef]
- Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, A.; Shelke, K.; Vuksan, V.; Wolever, T.M.; Campbell, J.; Ezatagha, A. Glycemic and insulinemic response to four different sweeteners in healthy individuals: A double blind, randomized controlled trial. FASEB J. 2013, 27, lb303. [Google Scholar]
- Jacqz-Aigrain, E.; Kassai, B.; Cornu, C.; Cazaubiel, J.M.; Housez, B.; Cazaubiel, M.; Prevel, J.M.; Bell, M.; Boileau, A.; de Cock, P. Gastrointestinal tolerance of erythritol-containing beverage in young children: A double-blind, randomised controlled trial. Eur. J. Clin. Nutr. 2015, 69, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Ylikahri, R. Metabolic and nutritional aspects of xylitol. Adv. Food Res. 1979, 25, 159–180. [Google Scholar] [PubMed]
- Natah, S.S.; Hussien, K.R.; Tuominen, J.A.; Koivisto, V.A. Metabolic response to lactitol and xylitol in healthy men. Am. J. Clin. Nutr. 1997, 65, 947–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassler, K.H.; Dreiss, G. Antiketogenic effect of xylitol in alloxan-diabetic rats. Klin. Wochenschr. 1963, 41, 593–595. [Google Scholar]
- Yamagata, S.; Goto, Y.; Ohneda, A.; Anzai, M.; Kawashima, S.; Kikuchi, J.; Chiba, M.; Maruhama, Y.; Yamauchi, Y.; Toyota, T. Clinical Application of Xylitol in Diabetes. In Proceedings of the International Symposium on Metabolism, Physiology, and Clinical Use of Pentoses and Pentitols, Hakone, Japan, 27–29 August 1967; Springer: Berlin/Heidelberg, Germany, 1969; pp. 316–325. [Google Scholar]
- Jakob, A.; Williamson, J.R.; Asakura, T. Xylitol metabolism in perfused rat liver. Interactions with gluconeogenesis and ketogenesis. J. Biol. Chem. 1971, 246, 7623–7631. [Google Scholar] [PubMed]
- Kuzuya, T.; Kanazawa, Y. Studies on the mechanism of xylitol-induced insulin secretion in dogs. Effect of its infusion into the pancreatic artery, and the inhibition by epinephrine and diazoxide of xylitol-induced hyperinsulinaemia. Diabetologia 1969, 5, 248–257. [Google Scholar] [CrossRef]
- Mäkinen, K.K. Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care Professionals. J. Biol. Chem. 2016, 2016, 5967907. [Google Scholar] [CrossRef]
- Livesey, G. The energy values of dietary fibre and sugar alcohols for man. Nutr. Res. Rev. 1992, 5, 61–84. [Google Scholar] [CrossRef]
- Nasrallah, S.M.; Iber, F.L. Mannitol absorption and metabolism in man. Am. J. Med. Sci. 1969, 258, 80–88. [Google Scholar] [CrossRef]
- Ellis, F.W.; Krantz, J.C., Jr. Sugar alcohols. 22. Metabolism and toxicity studies with mannitol and sorbitol in man and animals. J. Biol. Chem. 1941, 141, 147–154. [Google Scholar]
- Adcock, L.H.; Gray, C.H. The metabolism of sorbitol in the human subject. Biochem. J. 1957, 65, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Blakley, R.L. The metabolism and antiketogenic effects of sorbitol; sorbitol dehydrogenase. Biochem. J. 1951, 49, 257–271. [Google Scholar] [CrossRef]
- Rawat, A.K.; Menahan, L.A. Antiketogenic action of fructose, glyceraldehyde, and sorbitol in the rat in vivo. Diabetes 1975, 24, 926–932. [Google Scholar] [CrossRef]
- Exton, J.H.; Edson, N.L. The antiketogenic action of sorbitol. Biochem. J. 1964, 91, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Hyams, J.S. Sorbitol intolerance: An unappreciated cause of functional gastrointestinal complaints. Gastroenterology 1983, 84, 30–33. [Google Scholar] [PubMed]
- Vernia, P.; Frandina, C.; Bilotta, T.; Ricciardi, M.R.; Villotti, G.; Fallucca, F. Sorbitol malabsorption and nonspecific abdominal symptoms in type II diabetes. Metabolism 1995, 44, 796–799. [Google Scholar] [CrossRef]
- Secchi, A.; Pontiroli, A.E.; Cammelli, L.; Bizzi, A.; Cini, M.; Pozza, G. Effects of oral administration of maltitol on plasma glucose, plasma sorbitol, and serum insulin levels in man. Klin. Wochenschr. 1986, 64, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Hongo, R.; Moji, K.; Oku, T. Suppressive effect of partially hydrolyzed guar gum on transitory diarrhea induced by ingestion of maltitol and lactitol in healthy humans. Eur. J. Clin. Nutr. 2007, 61, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Ruskone-Fourmestraux, A.; Attar, A.; Chassard, D.; Coffin, B.; Bornet, F.; Bouhnik, Y. A digestive tolerance study of maltitol after occasional and regular consumption in healthy humans. Eur. J. Clin. Nutr. 2003, 57, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Koutsou, G.A.; Storey, D.M.; Lee, A.; Zumbe, A.; Flourie, B.; leBot, Y.; Olivier, P. Dose-related gastrointestinal response to the ingestion of either isomalt, lactitol or maltitol in milk chocolate. Eur. J. Clin. Nutr. 1996, 50, 17–21. [Google Scholar]
- Nilsson, U.; Jagerstad, M. Hydrolysis of lactitol, maltitol and Palatinit by human intestinal biopsies. Br. J. Nutr. 1987, 58, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Grimble, G.K.; Patil, D.H.; Silk, D.B. Assimilation of lactitol, an ‘unabsorbed’ disaccharide in the normal human colon. Gut 1988, 29, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Metzger, J.; Chollet, C.; Wermeille, M.; Biollaz, J.; Llull, J.B.; Lauterburg, B.H. Lactitol: Gastrointestinal absorption and effect on blood lactate in healthy volunteers and patients with cirrhosis. Eur. J. Clin. Pharmacol. 1988, 35, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Finney, M.; Smullen, J.; Foster, H.A.; Brokx, S.; Storey, D.M. Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. Eur. J. Nutr. 2007, 46, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Soontornchai, S.; Sirichakwal, P.; Puwastien, P.; Tontisirin, K.; Kruger, D.; Grossklaus, R. Lactitol tolerance in healthy Thai adults. Eur. J. Nutr. 1999, 38, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Storey, D.M. Comparative gastrointestinal tolerance of sucrose, lactitol, or D-tagatose in chocolate. Regul. Toxicol. Pharmacol. 1999, 29, S78–S82. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, B.A.; Carakostas, M.C.; Moore, N.H.; Poulos, S.P.; Renwick, A.G. Biological fate of low-calorie sweeteners. Nutr. Rev. 2016, 74, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Hooper, N.M.; Hesp, R.J.; Tieku, S. Metabolism of aspartame by human and pig intestinal microvillar peptidases. Biochem. J. 1994, 298, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, A.K.; Pretorius, E. Revisiting the safety of aspartame. Nutr. Rev. 2017, 75, 718–730. [Google Scholar] [CrossRef]
- Renwick, A.G. The metabolism of intense sweeteners. Xenobiotica 1986, 16, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Renwick, A.G.; Sims, J.; Snodin, D.J. Sucralose metabolism and pharmacokinetics in man. Food Chem. Toxicol. 2000, 38 (Suppl. 2), S31–S41. [Google Scholar] [CrossRef]
- Hutapea, A.M.; Toskulkao, C.; Buddhasukh, D.; Wilairat, P.; Glinsukon, T. Digestion of stevioside, a natural sweetener, by various digestive enzymes. J. Clin. Biochem. Nutr. 1997, 23, 177–186. [Google Scholar] [CrossRef]
- Wheeler, A.; Boileau, A.C.; Winkler, P.C.; Compton, J.C.; Prakash, I.; Jiang, X.; Mandarino, D.A. Pharmacokinetics of rebaudioside A and stevioside after single oral doses in healthy men. Food Chem. Toxicol. 2008, 46 (Suppl. 7), S54–S60. [Google Scholar] [CrossRef]
- Carakostas, M.C.; Curry, L.L.; Boileau, A.C.; Brusick, D.J. Overview: The history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem. Toxicol. 2008, 46 (Suppl. 7), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.R.; Hosseini, S.A.; Zamani, G.R.; Mohammadi, M.; Tavassoli, A.; Badv, R.S.; Heidari, M.; Karimi, P.; Malamiri, R.A. The efficacy of the ketogenic diet in infants and young children with refractory epilepsies using a formula-based powder. Acta. Neurol. Belg. 2017, 117, 175–182. [Google Scholar] [CrossRef]
- Sampaio, L.P.B.; Takakura, C.; Manreza, M.L.G. The use of a formula-based ketogenic diet in children with refractory epilepsy. Arq. Neuropsiquiatr. 2017, 75, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Kossoff, E.H.; Dorward, J.L.; Turner, Z.; Pyzik, P.L. Prospective study of the modified atkins diet in combination with a ketogenic liquid supplement during the initial month. J. Child. Neurol. 2011, 26, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Hosain, S.A.; La Vega-Talbott, M.; Solomon, G.E. Ketogenic diet in pediatric epilepsy patients with gastrostomy feeding. Pediatr. Neurol. 2005, 32, 81–83. [Google Scholar] [CrossRef]
- Weijenberg, A.; van Rijn, M.; Callenbach, P.M.C.; de Koning, T.J.; Brouwer, O.F. Ketogenic Diet in Refractory Childhood Epilepsy: Starting With a Liquid Formulation in an Outpatient Setting. Child Neurol. Open 2018, 5, 2329048x18779497. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Ross, R.; Parsons, W.D.; Jones, P.J. Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes. Res. 2003, 11, 395–402. [Google Scholar] [CrossRef]
- CJ, D.C.H.; Schofield, G.M.; Williden, M.; McQuillan, J.A. The Effect of Medium Chain Triglycerides on Time to Nutritional Ketosis and Symptoms of Keto-Induction in Healthy Adults: A Randomised Controlled Clinical Trial. J. Nutr. Metab. 2018, 2018, 2630565. [Google Scholar]
- Harvey, C.; Schofield, G.M.; Williden, M. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: A narrative review. PeerJ 2018, 6, e4488. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia 2008, 49 (Suppl. 8), 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttenlocher, P.R. Ketonemia and seizures: Metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr. Res. 1976, 10, 536–540. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Arya, S.K. Mannans: An overview of properties and application in food products. Int. J. Biol. Macromol. 2018, 119, 79–95. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int. J. Biol. Macromol. 2016, 92, 942–956. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, L.; Liu, X.Q.; Zhao, Z.J.; Lv, L.X. Effect of glucomannan on functional constipation in children: A systematic review and meta-analysis of randomised controlled trials. Asia Pac. J. Clin. Nutr. 2017, 26, 471–477. [Google Scholar] [PubMed]
- Staiano, A.; Simeone, D.; Del Giudice, E.; Miele, E.; Tozzi, A.; Toraldo, C. Effect of the dietary fiber glucomannan on chronic constipation in neurologically impaired children. J. Pediatr. 2000, 136, 41–45. [Google Scholar] [CrossRef]
- Loening-Baucke, V.; Miele, E.; Staiano, A. Fiber (glucomannan) is beneficial in the treatment of childhood constipation. Pediatrics 2004, 113, e259–e264. [Google Scholar] [CrossRef]
- Passaretti, S.; Franzoni, M.; Comin, U.; Donzelli, R.; Rocca, F.; Colombo, E.; Ferrara, A.; Dinelli, M.; Prada, A.; Curzio, M.; et al. Action of glucomannans on complaints in patients affected with chronic constipation: A multicentric clinical evaluation. Ital. J. Gastroenterol. 1991, 23, 421–425. [Google Scholar]
- Chen, H.L.; Cheng, H.C.; Liu, Y.J.; Liu, S.Y.; Wu, W.T. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition 2006, 22, 1112–1119. [Google Scholar] [CrossRef]
- Chen, H.L.; Cheng, H.C.; Wu, W.T.; Liu, Y.J.; Liu, S.Y. Supplementation of konjac glucomannan into a low-fiber Chinese diet promoted bowel movement and improved colonic ecology in constipated adults: A placebo-controlled, diet-controlled trial. J. Am. Coll. Nutr. 2008, 27, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, A.; Horvath, A.; Dziechciarz, P.; Szajewska, H. Glucomannan is not effective for the treatment of functional constipation in children: A double-blind, placebo-controlled, randomized trial. Clin. Nutr. 2011, 30, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Sood, N.; Baker, W.L.; Coleman, C.I. Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2008, 88, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.V.T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J.L.; Au-Yeung, F.; Jenkins, A.L.; Duvnjak, L.; Leiter, L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am. J. Clin. Nutr. 2017, 105, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Dozieres-Puyravel, B.; Francois, L.; de Lucia, S.; Goujon, E.; Danse, M.; Auvin, S. Ketogenic diet therapies in France: State of the use in 2018. Epilepsy Behav. 2018, 86, 204–206. [Google Scholar] [CrossRef] [PubMed]
Food | CHO (%) | Protein (%) | Lipids (%) | SFA (%) | MUFA (%) | PUFA (%) | KR |
---|---|---|---|---|---|---|---|
Vegetable oils | |||||||
Olive oil | 0.0 | 0.0 | 99.9 | 14.46 | 72.95 | 7.52 | |
Sunflower oil | 0.0 | Tr | 99.9 | 11.24 | 33.37 | 50.22 | |
Wheat germ oil | 0.0 | Tr | 99.9 | 18.5 | 16.70 | 60.40 | |
Rice oil | 0.0 | 0.0 | 100.0 | 19.70 | 39.30 | 35.00 | |
Coconut oil | 0.0 | Tr | 99.9 | 86.80 | 6.25 | 1.60 | |
Nuts | |||||||
Macadamia nut | 5.1 | 8.0 | 76.0 | 12.10 | 59.06 | 1.51 | 5.8:1 |
Nut | 5.1 | 14.3 | 68.1 | 5.57 | 9.54 | 40.66 | 3.5:1 |
Hazelnut | 6.1 | 13.8 | 64.1 | 4.16 | 38.60 | 5.20 | 3.2:1 |
Almond | 4.6 | 22.0 | 55.3 | 4.59 | 39.44 | 10.85 | 2.1:1 |
Pistachio nut | 8.1 | 18.1 | 56.1 | 5.61 | 36.47 | 10.66 | 2.1:1 |
Peanut | 8.5 | 29.0 | 50.0 | 7.13 | 23.05 | 14.19 | 1.3:1 |
Fruit | |||||||
Green olives in brine | 1.0 | 0.8 | 15.0 | 2.10 | 10.47 | 1.68 | 8.3:1 |
Avocado | 1.8 | 4.4 | 23.0 | 2.48 | 18.33 | 1.45 | 3.7:1 |
Coconut | 9.4 | 3.5 | 35.0 | 30.93 | 2.38 | 0.61 | 2.7:1 |
Cheeses | |||||||
Mascarpone | 0.3 | 7.6 | 47.0 | 27.55 | 14.36 | 1.57 | 5.9:1 |
Spreadable cheese | Tr | 8.6 | 31.0 | 18.52 | 9.87 | 0.84 | 3.6:1 |
Brie | Tr | 19.3 | 26.9 | 16.92 | 7.79 | 0.80 | 1.4:1 |
Gorgonzola | 1.0 | 19.1 | 27.1 | 13.10 | 7.10 | 0.73 | 1.3:1 |
Robiola | 2.3 | 20.0 | 27.7 | 16.24 | 8.46 | 0.92 | 1.2:1 |
Cheddar | 0.5 | 25.0 | 31.0 | 18.52 | 8.52 | 0.88 | 1.2:1 |
Fish | |||||||
Eel | 0.7 | 14.6 | 19.6 | 5.27 | 8.58 | 4.56 | 1.3:1 |
Mackerel | 0.5 | 17.0 | 11.1 | 2.61 | 4.13 | 2.46 | 0.6:1 |
Salmon | 1.0 | 18.4 | 12.0 | 2.97 | 4.60 | 3.05 | 0.6:1 |
Sardines, canned in oil, drained | 0.0 | 22.3 | 12.1 | 2.37 | 6.60 | 2.39 | 0.5:1 |
Animal fats | |||||||
Pork lard | 0.0 | Tr | 99.0 | 33.12 | 37.14 | 28.77 | |
Cow butter | 1.1 | 0.8 | 83.4 | 48.78 | 23.72 | 2.75 | |
Cream from cow’s milk with 35% lipids | 3.4 | 2.3 | 35.0 | 20.37 | 10.85 | 0.94 | 6.1:1 |
Processed meat | |||||||
Sausage | 0.6 | 15.4 | 26.7 | 9.44 | 10.44 | 4.15 | 1.7:1 |
Mortadella | 1.5 | 14.7 | 28.1 | 9.25 | 12.80 | 3.94 | 1.7:1 |
Bacon | 0.0 | 15.8 | 23.6 | 7.97 | 9.82 | 3.42 | 1.5:1 |
Wurstel | 1.4 | 13.7 | 23.3 | 6.94 | 10.81 | 4.43 | 1.5:1 |
Eggs | |||||||
Hen’s egg yolk | Tr | 15.8 | 29.1 | 9.82 | 8.29 | 4.63 | 1.8:1 |
Hen’s whole egg | Tr | 12.4 | 8.7 | 3.17 | 2.58 | 1.26 | 0.7:1 |
Miscellaneous | |||||||
Mayonnaise sauce based on sunflower oil | 2.2 | 4.2 | 70.0 | 8.82 | 23.70 | 33.35 | 10.9:1 |
Coconut flour | 6.4 | 5.6 | 62.0 | 53.27 | 4.08 | 1.05 | 5.2:1 |
Tofu | 0.7 | 8.1 | 4.8 | 0.07 | 1.06 | 2.70 | 0.5:1 |
Sugar Alcohol | Absorption, % | Fermentation, % | Urinary Excretion, % | Sweetness Compared with Sucrose, % | Caloric Value, kcal/g | Antiketogenic Effects | Gastrointestinal Symptoms |
---|---|---|---|---|---|---|---|
Erythritol | 90 | 10 | 90 | 60–80 | 0.2 | - | Well tolerated in the usually used doses |
Xylitol | 50 | 50 | 0 | 100 | 2.4 | Low increment of blood glucose Decrement of ketone bodies production | 10–30 g are generally well tolerated without diarrhea |
Mannitol | 25 | 75 | 25 | 50–70 | 1.6 | - | 10–20 g have laxative effects. Higher doses can provoke diarrhea |
Sorbitol | 25 | 75 | 0 | 50–70 | 2.6 | Decrement of the liver production of acetoacetate and β-hydroxybutyrate | 10g can provoke bloating and flatulence. 20 g can lead to abdominal pain and diarrhea |
Maltitol | 45 | 55 | 0 | 75–90 | 2.1–2.4 | Increment of blood glucose also with low doses of maltitol. Sorbitol is released after digestion of maltitol | 30–35 g/day are generally well tolerated. 40 g/day can lead to mild borborygmus and flatus. Higher doses can lead to diarrhea |
Isomalt | 10 | 90 | 0 | 65 | 2.0 | - | Over 40 g/day can lead to several gastrointestinal symptoms, including mild laxation |
Lactitol | 2 | 98 | 0 | 30–40 | 2.4 | - | Up to 10g/day are generally well tolerated Higher doses can lead to flatulence, borborygmus, colic, motion frequency and loose stools |
Artificial Sweeteners | Digestion and Absorption | Metabolism | Sweetness Compared with Sucrose, times | Caloric Value, kcal/g |
---|---|---|---|---|
Aspartame | Completely digested in methanol, aspartic acid, and phenylalanine, which are absorbed in the small intestine | Methanol is excreted with the urine or metabolized to CO2 and excreted with breath Aspartic acid and phenylalanine are used for protein synthesis and gluconeogenesis | 200 | 4 |
Acesulfame K | Almost completely absorbed | Excreted, not-metabolized, into the urine | 200 | 0 |
Saccharin | 85–95% is absorbed | Absorbed saccharin is excreted, not-metabolized, into the urine Unabsorbed saccharin is excreted in the feces | 300–500 | 0 |
Sucralose | Poorly absorbed | Absorbed sucralose is excreted, not-metabolized, into the urine Unabsorbed sucralose is excreted in the feces | 600 | 0 |
Steviol glycosides | Not hydrolyzed by human enzymes | Steviol glycosides are hydrolyzed by gut bacteria in steviol and glucose Steviol is absorbed, glucuronidated in the liver and excreted in the urine Glucose is used by gut bacteria | 200–300 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; De Amicis, R.; Lessa, C.; Tagliabue, A.; Trentani, C.; Ferraris, C.; Battezzati, A.; Veggiotti, P.; Foppiani, A.; Ravella, S.; et al. Food and Food Products on the Italian Market for Ketogenic Dietary Treatment of Neurological Diseases. Nutrients 2019, 11, 1104. https://doi.org/10.3390/nu11051104
Leone A, De Amicis R, Lessa C, Tagliabue A, Trentani C, Ferraris C, Battezzati A, Veggiotti P, Foppiani A, Ravella S, et al. Food and Food Products on the Italian Market for Ketogenic Dietary Treatment of Neurological Diseases. Nutrients. 2019; 11(5):1104. https://doi.org/10.3390/nu11051104
Chicago/Turabian StyleLeone, Alessandro, Ramona De Amicis, Chiara Lessa, Anna Tagliabue, Claudia Trentani, Cinzia Ferraris, Alberto Battezzati, Pierangelo Veggiotti, Andrea Foppiani, Simone Ravella, and et al. 2019. "Food and Food Products on the Italian Market for Ketogenic Dietary Treatment of Neurological Diseases" Nutrients 11, no. 5: 1104. https://doi.org/10.3390/nu11051104
APA StyleLeone, A., De Amicis, R., Lessa, C., Tagliabue, A., Trentani, C., Ferraris, C., Battezzati, A., Veggiotti, P., Foppiani, A., Ravella, S., & Bertoli, S. (2019). Food and Food Products on the Italian Market for Ketogenic Dietary Treatment of Neurological Diseases. Nutrients, 11(5), 1104. https://doi.org/10.3390/nu11051104