Influence of Genetic and Non-Genetic Risk Factors for Serum Uric Acid Levels and Hyperuricemia in Mexicans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Outcomes
2.3. Assessment of Covariates
2.4. Sample Genotyping and Quality Control
2.5. Selection of SNPs for Validation
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Non-Genetic Risk Factors and Uric Acid Levels
3.3. Genetic Risk Factors-Discovery Sample
3.4. Replication Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brook, R.A.; Forsythe, A.; Smeeding, J.E.; Lawrence-Edwards, N. Chronic gout: Epidemiology, disease progression, treatment and disease burden. Curr. Med. Res. Opin. 2010, 26, 2813–2821. [Google Scholar] [CrossRef] [PubMed]
- Kei, A.; Koutsouka, F.; Makri, A.; Elisaf, M. Uric acid and cardiovascular risk: What genes can say. Int. J. Clin. Pract. 2018, 72. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 2013, 62, 3307–3315. [Google Scholar] [CrossRef] [PubMed]
- Soltani, Z.; Rasheed, K.; Kapusta, D.R.; Reisin, E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: Is it time for reappraisal? Curr. Hypertens. Rep. 2013, 15, 175–181. [Google Scholar] [CrossRef]
- Maloberti, A.; Maggioni, S.; Occhi, L.; Triglione, N.; Panzeri, F.; Nava, S.; Signorini, S.; Falbo, R.; Casati, M.; Grassi, G.; et al. Sex-related relationships between uric acid and target organ damage in hypertension. J. Clin. Hypertens. 2018, 20, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef]
- You, L.; Liu, A.; Wuyun, G.; Wu, H.; Wang, P. Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area. J. Atheroscler. Thromb. 2014, 21, 355–365. [Google Scholar] [CrossRef]
- Nan, H.; Qiao, Q.; Dong, Y.; Gao, W.; Tang, B.; Qian, R.; Tuomilehto, J. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J. Rheumatol. 2006, 33, 1346–1350. [Google Scholar]
- Meneses-Leon, J.; Denova-Gutiérrez, E.; Castañón-Robles, S.; Granados-García, V.; Talavera, J.O.; Rivera-Paredez, B.; Huitrón-Bravo, G.G.; Cervantes-Rodríguez, M.; Quiterio-Trenado, M.; Rudolph, S.E.; et al. Sweetened beverage consumption and the risk of hyperuricemia in Mexican adults: A cross-sectional study. BMC Public Health 2014, 14, 445. [Google Scholar] [CrossRef]
- Merriman, T. Genomic Influences on Hyperuricemia and Gout. Rheum. Dis. Clin. N. Am. 2017, 43, 389–399. [Google Scholar] [CrossRef]
- Choi, H.K.; Mount, D.B.; Reginato, A.M.; American College of Physicians; American Physiological Society. Pathogenesis of gout. Ann. Intern. Med. 2005, 143, 499–516. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.P.; Burini, R.C. High plasma uric acid concentration: Causes and consequences. Diabetol. Metab. Syndr. 2012, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.D.; Voruganti, V.S.; Arar, N.H.; Thameem, F.; Lopez-Alvarenga, J.C.; Bauer, R.; Blangero, J.; MacCluer, J.W.; Comuzzie, A.G.; Abboud, H.E. Genome scan for determinants of serum uric acid variability. J. Am. Soc. Nephrol. 2007, 18, 3156–3163. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Guo, C.Y.; Cupples, L.A.; Levy, D.; Wilson, P.W.; Fox, C.S. Genome-wide search for genes affecting serum uric acid levels: The Framingham Heart Study. Metabolism 2005, 54, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Köttgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O’Seaghdha, C.M.; Haller, T.; et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Jiao, H.; Wang, K.; Zhang, C.K.; Glessner, J.T.; de Grant, S.F.; Zhao, H.; Hakonarson, H.; Arlen, P.R. A genome wide association study of plasma uric acid levels in obese cases and never-overweight controls. Obesity 2013, 21, E490–E494. [Google Scholar] [CrossRef]
- Dehghan, A.; Köttgen, A.; Yang, Q.; Hwang, S.J.; Kao, W.L.; Rivadeneira, F.; Boerwinkle, E.; Levy, D.; Hofman, A.; Astor, B.C.; et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet 2008, 372, 1953–1961. [Google Scholar] [CrossRef]
- Voruganti, V.S.; Kent, J.W.; Debnath, S.; Cole, S.A.; Haack, K.; Göring, H.H.; Carless, M.A.; Curran, J.E.; Johnson, M.P.; Almasy, L.; et al. Genome-wide association analysis confirms and extends the association of SLC2A9 with serum uric acid levels to Mexican Americans. Front. Genet. 2013, 4, 279. [Google Scholar] [CrossRef]
- Giri, A.K.; Banerjee, P.; Chakraborty, S.; Kauser, Y.; Undru, A.; Roy, S.; Parekatt, V.; Ghosh, S.; Tandon, N.; Bharadwaj, D. Genome wide association study of uric acid in Indian population and interaction of identified variants with Type 2 diabetes. Sci. Rep. 2016, 6, 21440. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, H.; Yamamoto, K.; Nakaoka, H.; Nakayama, A.; Sakiyama, M.; Chiba, T.; Takahashi, A.; Nakamura, T.; Nakashima, H.; Takada, Y.; et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann. Rheum Dis. 2016, 75, 652–659. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Hou, X.; Lu, D.; Yuan, X.; Lu, J.; Wang, C.; Han, L.; Cui, L.; Liu, Z.; et al. Replication of Gout/Urate Concentrations GWAS Susceptibility Loci Associated with Gout in a Han Chinese Population. Sci. Rep. 2017, 7, 4094. [Google Scholar] [CrossRef] [PubMed]
- Macias-Kauffer, L.R.; Villamil-Ramírez, H.; León-Mimila, P.; Jacobo-Albavera, L.; Posadas-Romero, C.; Posadas-Sánchez, R.; López-Contreras, B.E.; Morán-Ramos, S.; Romero-Hidalgo, S.; Acuña-Alonzo, V.; et al. Genetic contributors to serum uric acid levels in Mexicans and their effect on premature coronary artery disease. Int. J. Cardiol. 2019, 279, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Denova-Gutiérrez, E.; Flores, Y.N.; Gallegos-Carrillo, K.; Ramírez-Palacios, P.; Rivera-Paredez, B.; Muñoz-Aguirre, P.; Velázquez-Cruz, R.; Torres-Ibarra, L.; Meneses-León, J.; Méndez-Hernández, P.; et al. Health workers cohort study: Methods and study design. Salud Publica Mex. 2016, 58, 708–716. [Google Scholar] [CrossRef] [PubMed]
- León-Mimila, P.; Villamil-Ramírez, H.; Villalobos-Comparán, M.; Villarreal-Molina, T.; Romero-Hidalgo, S.; López-Contreras, B.; Gutiérrez-Vidal, R.; Vega-Badillo, J.; Jacobo-Albavera, L.; Posadas-Romeros, C.; et al. Contribution of common genetic variants to obesity and obesity-related traits in Mexican children and adults. PLoS ONE 2013, 8, e70640. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Nagai, A.; Tang, L.; Tokuda, M. Investigation on hyperuricemia in children with obesity or various pediatric disorders. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1051–1059. [Google Scholar] [CrossRef]
- Katon, J.G.; Flores, Y.N.; Salmerón, J. Sexual maturation and metabolic profile among adolescents and children of the Health Worker Cohort Study in Mexico. Salud Publica Mex. 2009, 51, 219–226. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.M.; Serrano-Ríos, M. A new International Diabetes Federation worldwide definition of the metabolic syndrome: The rationale and the results. Rev. Esp. Cardiol. 2005, 58, 1371–1376. [Google Scholar] [CrossRef]
- International Diabetes Federation. Available online: https://www.idf.org/e-library/consensus-statements/61-idf-consensus-definition-of-metabolic-syndrome-in-children-and-adolescents (accessed on 3 February 2019).
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Grundy, S.; Sullivan, L.M.; Wilson, P.; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001, 286, 180–187. [Google Scholar] [CrossRef]
- Villalobos-Comparán, M.; Jiménez-Ortega, R.F.; Estrada, K.; Parra-Torres, A.Y.; González-Mercado, A.; Patiño, N.; Castillejos-López, M.; Quiterio, M.; Fernandez-López, J.C.; Ibarra, B.; et al. A Pilot Genome-Wide Association Study in Postmenopausal Mexican-Mestizo Women Implicates the RMND1/CCDC170 Locus Is Associated with Bone Mineral Density. Int. J. Genom. 2017, 2017, 5831020. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, P.R.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; Reshef, Y.A.; Finucane, H.K.; Schoenherr, S.; Forer, L.; McCarthy, S.; Abecasis, G.R.; et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 2016, 48, 1443–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPACTS: Efficient and Parallelizable Association Container Toolbox. Available online: http://genome.sph.umich.edu/wiki/EPACTS (accessed on 3 February 2019).
- Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef]
- StataCorp. Stata Stastical Software: Release 9; StataCorp LP: College Station, TX, USA, 2005. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- López-Molina, R.; Parra-Cabrera, S.; López-Ridaura, R.; González-Villalpando, M.E.; Ferrannini, E.; González-Villalpando, C. Sweetened beverages intake, hyperuricemia and metabolic syndrome: The Mexico City Diabetes Study. Salud Publica Mex. 2013, 55, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Redon, P.; Maloberti, A.; Facchetti, R.; Redon, J.; Lurbe, E.; Bombelli, M.; Mancia, G.; Grassi, G. Gender-related differences in serum uric acid in treated hypertensive patients from central and east European countries: Findings from the Blood Pressure control rate and CArdiovascular Risk profilE study. J. Hypertens. 2019, 37, 380–388. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Grandi, E.; D’Addato, S.; Borghi, C.; Brisighella Heart Study Group. Interaction between low-density lipoprotein-cholesterolaemia, serum uric level and incident hypertension: Data from the Brisighella Heart Study. J. Hypertens. 2019, 37, 728–731. [Google Scholar] [CrossRef]
- Matsuura, F.; Yamashita, S.; Nakamura, T.; Nishida, M.; Nozaki, S.; Funahashi, T.; Matsuzawa, Y. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998, 47, 929–933. [Google Scholar] [CrossRef]
- Dong, B.; Arnold, L.W.; Peng, Y.; Wang, Z. Ethnic differences in cardiometabolic risk among adolescents across the waist–height ratio spectrum: National Health and Nutrition Examination Surveys (NHANES). Int. J. Cardiol. 2016, 222, 622–628. [Google Scholar] [CrossRef]
- Dong, H.; Xu, Y.; Zhang, X.; Tian, S. Visceral adiposity index is strongly associated with hyperuricemia independently of metabolic health and obesity phenotypes. Sci. Rep. 2017, 7, 8822. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kang, J.; Kim, G.T. Prevalence of hyperuricemia and its associated factors in the general Korean population: An analysis of a population-based nationally representative sample. Clin. Rheumatol. 2018, 37, 2529–2538. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.S.; Medina, M.A.G.; Lomeli, M.L.; González, V.T.; Pérez, J.Z.V.; Lavalle-González, F.J.; Imrhan, V.; Juma, S.; Vijayagopal, P.; Boonme, K.; et al. Association between serum uric acid and metabolic syndrome components in prepubertal obese children (Tanner Stage I) from Nuevo León, Mexico—A preliminary study. BMC Obes. 2017, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Guerra, A.F.; Morales-López, H.; Garro-Almendaro, A.K.; Vargas-Ayala, G.; Durán-Salgado, M.B.; Huerta-Ramírez, S.; Lozano-Nuevo, J.J. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome. Curr. Diabetes Rev. 2017, 13, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Grandi, E.; Rosticci, M.; D’Addato, S.; Borghi, C. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study. Sci. Rep. 2018, 8, 11529. [Google Scholar] [CrossRef]
- He, S.J.; Chan, C.; Xie, Z.D.; Shi, D.; Hu, X.B.; Li, H.Y.; Wang, D.; Wang, M.Z.; Bai, Y.N. The relationship between serum uric acid and metabolic syndrome in premenopausal and postmenopausal women in the Jinchang Cohort. Gynecol. Endocrinol. 2017, 33, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Park, H.T.; Cho, G.J.; Yi, K.W.; Ahn, K.H.; Shin, J.H.; Kim, T.; Kim, Y.T.; Hur, J.Y.; Kim, S.H. Relationship between uric acid and metabolic syndrome according to menopausal status. Gynecol. Endocrinol. 2011, 27, 406–411. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Shao, X.; Guo, J.; Liu, X.; Liu, A.; Zhang, Y.; Wang, H.; Li, B.; Deng, K.; et al. Association of Uric Acid with Metabolic Syndrome in Men, Premenopausal Women and Postmenopausal Women. Int. J. Environ. Res. Public Health 2014, 11, 2899–2910. [Google Scholar] [CrossRef] [Green Version]
- Lanaspa, M.A.; Tapia, E.; Soto, V.; Sautin, Y.; Sánchez-Lozada, L.G. Uric Acid and Fructose: Potential Biological Mechanisms. Semin. Nephrol. 2011, 31, 426–432. [Google Scholar] [CrossRef]
- Kolz, M.; Johnson, T.; Sanna, S.; Teumer, A.; Vitart, V.; Perola, M.; Mangino, M.; Albrecht, E.; Wallace, C.; Farrall, M.; et al. Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations. PLoS Genet. 2009, 5, e1000504. [Google Scholar] [CrossRef]
- Wei, W.H.; Guo, Y.; Kindt, A.S.; Merriman, T.R.; Semple, C.A.; Wang, K.; Haley, C.S. Abundant local interactions in the 4p16.1 region suggest functional mechanisms underlying SLC2A9 associations with human serum uric acid. Hum. Mol. Genet. 2014, 23, 5061–5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voruganti, V.S.; Laston, S.; Haack, K.; Mehta, N.R.; Cole, S.A.; Butte, N.F.; Comuzzie, A.G. Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: The Viva La Familia Study. Am. J. Clin. Nutr. 2015, 101, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Brandstätter, A.; Kiechl, S.; Kollerits, B.; Hunt, S.C.; Heid, I.M.; Coassin, S.; Willeit, J.; Adams, T.D.; Illig, T.; Hopkins, P.N.; et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care 2008, 31, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; House, M.E.; Gamble, G.D.; Horne, A.; Pool, B.; Purvis, L.; Stewart, A.; Merriman, M.; Cadzow, M.; Phipps-Green, A.; et al. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann. Rheum. Dis. 2013, 72, 1868–1873. [Google Scholar] [CrossRef] [PubMed]
- Jeroncić, I.; Mulić, R.; Klišmanić, Z.; Rudan, D.; Boban, M.; Zgaga, L. Interactions between Genetic Variants in Glucose Transporter Type 9 (SLC2A9) and Dietary Habits in Serum Uric Acid Regulation. Croat. Med. J. 2010, 5, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Canas, J.A.; Fanelli-Kuczmarski, M.T.; Tajuddin, S.M.; Evans, M.K.; Zonderman, A.B. Genetic risk scores, sex and dietary factors interact to alter serum uric acid trajectory among African-American urban adults. Br. J. Nutr. 2017, 117, 686–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batt, C.; Phipps-Green, A.J.; Black, M.A.; Cadzow, M.; Merriman, M.E.; Topless, R.; Gow, P.; Harrison, A.; Highton, J.; Jones, P.; et al. Sugar-sweetened beverage consumption: A risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 2014, 73, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Spencer, K.L.; Voruganti, V.S.; Jorgensen, N.W.; Fornage, M.; Best, L.G.; Brown-Gentry, K.D.; Cole, S.A.; Crawford, D.C.; Deelman, E.; et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: The PAGE Study. Am. J. Epidemiol. 2013, 177, 923–932. [Google Scholar] [CrossRef]
- Yang, B.; Mo, Z.; Wu, C.; Yang, H.; Yang, X.; He, Y.; Gui, L.; Zhou, L.; Guo, H.; Zhang, X.; et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med. Genom. 2014, 7, 10. [Google Scholar] [CrossRef]
- Kamatani, Y.; Matsuda, K.; Okada, Y.; Kubo, M.; Hosono, N.; Daigo, Y.; Nakamura, Y.; Kamatani, N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 2010, 42, 210–215. [Google Scholar] [CrossRef]
- Sun, D.; Li, S.; Zhang, X.; Fernandez, C.; Chen, W.; Srinivasan, S.R.; Berenson, G.S. Uric Acid Is Associated with Metabolic Syndrome in Children and Adults in a Community: The Bogalusa Heart Study. PLoS ONE 2014, 9, e89696. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- SIGMA Type 2 Diabetes Consortium; Williams, A.L.; Jacobs, S.B.; Moreno-Macías, H.; Huerta-Chagoya, A.; Churchhouse, C.; Márquez-Luna, C.; García-Ortíz, H.; Gómez-Vázquez, M.J.; Burtt, N.P.; et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 2014, 506, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.; Pasqualetti, S.; Ferraro, S.; Panteghini, M. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2016, 54, 7–15. [Google Scholar] [CrossRef]
- Han, X.; Gui, L.; Liu, B.; Wang, J.; Li, Y.; Dai, X.; Li, J.; Yang, B.; Qiu, G.; Feng, J.; et al. Associations of the uric acid related genetic variants in SLC2A9 and ABCG2 loci with coronary heart disease risk. BMC Genet. 2015, 16, 4. [Google Scholar] [CrossRef] [PubMed]
Health Workers Cohort Study (27.8%) *** | Case-Control Study–Adults (22.7%) *** | Case-Control study–Children (20.2%) *** | ||||
---|---|---|---|---|---|---|
Without Hyperuricemia n = 1400 | With Hyperuricemia n = 539 | Without Hyperuricemia n = 829 | With Hyperuricemia n = 244 | Without Hyperuricemia n = 862 | With Hyperuricemia n = 218 | |
Age (years) * | 51 (39–61) | 54 (42–63) λ | 44 (35–52) | 39 (31–50) λ | 9 (7–10) | 10 (8–11) λ |
Sex | ||||||
Female ** | 70.6 (68.3–73.0) | 67.0 (63.0–71.0) | 74.6 (71.7–77.6) | 64.3 (58.2–70.4) λ | 45.2 (41.9–48.6) | 44.5 (38.1–51.0) |
BMI (kg/m2) * | 26.2 (23.6–29.2) | 27.9 (25.5–31.6) λ | 24.91 (23.14–33.8) | 33.35 (30.0–36.1) λ | 64.5 (42.4–96.7) | 96.9 (95.2–98.6) λ |
Overweight ** | 42.4 (39.8–44.9) | 44.3 (0.40–48.5) | 0.24 (0–0.6) | –– | 2.5 (1.4–3.5) | 3.9 (1.4–6.5) λ |
Obese ** | 20.3 (18.1–22.3) | 34.3 (30.0–38.3) λ | 48.5 (45.1–51.9) | 76.1 (70.6–81.5) λ | 38.4 (35.2–41.7) | 76.9 (71.4–82.3) λ |
Visceral adiposity index * | 2.6 (1.6–3.8) | 3.3 (2.3–4.7) λ | 2.2 (1.4–3.4) | 3.3 (2.1–4.8) λ | 1.1 (0.6–1.9) | 1.9 (1.2–3.2) λ |
Metabolic Syndrome ** | 53.6 (51.0–56.3) | 75.6 (72.1–79.3) λ | 33.1 (29.8–36.3) | 61.9 (55.7–68.0) λ | 13.8 (11.5–16.1) | 40.8 (34.2–47.0) λ |
Waist circumference (cm) * | 92 (85–99) | 97 (90–104) λ | 94.0 (82.0–106.0) | 104.0 (94.0–115.0) λ | 56.3 (31.3–86.3) | 86.25 (77.8–86.3) λ |
Systolic blood pressure (mmHg) * | 116 (106–128) | 121 (111–133) λ | 110 (100–120) | 110 (104–120) λ | 44 (20–71) | 58.3 (33–79.7) λ |
Diastolic blood pressure (mmHg) * | 73 (67–80) | 76 (69–83) λ | 70 (66–80) | 78 (70–80) λ | 65 (43–82.6) | 68 (45.6–85) λ |
Fasting glucose (mg/dL) * | 96 (90–105) | 99 (93–108) λ | 91 (85–98) | 96 (89–103.75) λ | 90 (85–95) | 90 (86–96) λ |
Total cholesterol (mg/dL) * | 147 (90–219) | 127 (83–206) λ | 185 (163–211) | 192 (170.2–214) λ | 172 (153–192) | 179 (160–202) λ |
HDL–C(mg/dL) * | 44.7 (38.0–52.7) | 42.0 (36.0–49.5) λ | 46 (38.8–55) | 40 (35–46.77) λ | 48 (41–56) | 43 (36–50) λ |
Triglyceride (mg/dL) * | 145 (105–195.5) | 179 (135–243) λ | 130 (97–182.5) | 171 (121.58–233.7) λ | 89 (63–132) | 133 (91–185) λ |
LDL–C(mg/dL) * | 118 (97–143) | 126 (103–151) λ | 109.4 (91.2–131.08) | 112.8 (94.8–130.38) λ | 101 (86–118.5) | 108 (93–123) λ |
Insulin (μU/mL) α | 8.1 (4.3–13.3) | 12.0 (6.5–18.7) λ | 9.9 (6.7–14.6) | 13.4 (8.9–18.3) λ | 5.9 (3.9–9.7) | 9.6 (6.5–15.9) λ |
HOMA α* | 1.9 (1.0–3.5) | 3.0 (1.6–5.0) λ | 2.26 (1.45–3.4) | 3.22 (2–4.43) λ | 1.33 (0.84–2.15) | 2.32 (1.41–3.72) λ |
ALT (U/L) | 21 (16–29) | 25 (18–35) λ | 20 (15–28) | 28 (19–44) λ | 30 (26–34) | 32 (26–39) λ |
AST (U/L) | 23 (19–29) | 27 (23–34) λ | 21 (18–26) | 24 (20–32) λ | 19 (16–25) | 25 (19–38) λ |
Uric acid (mg/dL) * | 4.9(4.2–5.5) | 6.9(6.2–7.5) λ | 4.8 (4.11–5.4) | 6.75 (6.1–7.5) λ | 4.7 (4.1–5.2) | 6.5 (6.2–6.9) λ |
Health Workers Cohort Study * | Case-Control Study-Adults *** | Case-Control Study-Children *** | ||||
---|---|---|---|---|---|---|
Males Beta (mg/dL, 95% CI) | Females Beta (mg/dL, 95% CI) | Males Beta (mg/dL, 95% CI) | Females Beta (mg/dL, 95% CI) | Boys Beta (mg/dL, 95% CI) | Girls Beta (mg/dL, 95% CI) | |
Metabolic syndrome | 0.53 (0.31,0.75) | 0.57 (0.44,0.71) | 0.77 (0.44,1.11) | 0.57 (0.43,0.73) | 0.76 (0.57,0.94) | 0.91 (0.71,1.1) |
Metabolic syndrome components | ||||||
Waist circumference | 0.60 (0.35,0.86) | 0.64 (0.43,0.85) | 0.99 (0.70,1.30) | 0.77 (0.62–0.92) | 0.93 (0.77,1.1) | 1.08 (0.9,1.25) |
Triglycerides (≥ 150 mg/dL) | 0.54 (0.33,0.76) | 0.47 (0.35,0.60) | 0.77 (0.62,0.92) | 0.31 (0.16,0.45) | 0.29 (0.1,0.47) | 0.16 (−0.03,0.35) |
HDL-C α | 0.16 (−0.05,0.37) | 0.34 (0.21,0.47) | 0.38 (0.08,0.7) | 0.27 (0.11,0.43) | 0.09 (−0.09,0.27) | −0.02 (−0.21,0.17) |
Blood pressure (≥ 130/85 mmHg, >90th percentile in children) | 0.41 (0.19,0.64) | 0.26 (0.11,0.41) | −0.12 (−0.53,0.27) | −0.003 (−0.24,0.23) | 0.06 (−0.15,0.27) | −0.04 (−0.27,0.19) |
Fasting blood glucose (≥ 100 mg/dL, ≥ 110 mg/dL in children) | −0.09 (−0.31,0.14) | 0.38 (0.24,0.51) | −0.27 (−0.62,0.06) | 0.37 (0.2,0.54) | 1.01 (0.42,1.6) | 0.94 (0.36,1.52) |
Visceral adiposity index | 0.05 (0.009,0.09) | 0.08 (0.06,0.11) | 0.08 (0.05,0.11) | 0.05 (0.04,0.07) | ||
BMI (kg/m2) or BMI percentile | 0.07(0.05,0.10) | 0.06 (0.05,0.08) | 0.09 (0.07,0.12) | 0.06 (0.05,0.07) | 0.01 (0.01,0.02) | 0.02(0.01,0.02) |
Soda (servings/day) ** | 0.04 (−0.09,0.18) | 0.08 (−0.03,0.19) | -- | -- | -- | -- |
Diet soda(servings/day) ** | 0.14 (−0.93,1.21) | 0.06 (−0.05,0.18) | -- | -- | -- | -- |
Smoking status | ||||||
Non-smokers | 0.0 | 0.0 | ||||
Past smokers | 0.09 (−0.15,0.33) | 0.03 (−0.12,0.18) | -- | -- | -- | -- |
Current smokers | 0.33 (0.04,0.62) | 0.41 (0.19,0.63) | -- | -- | -- | -- |
Health Workers Cohort Study | Case-Control Study -Adult | Case-Control Study -Children | Meta-Analysis (All Children and Adults) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SNP | MA | Beta (95% CI) | p Value | Beta (95% CI) | p Value | Beta (95% CI) | p Value | Beta (95% CI) | p Value | p-Value for Heterogeneity |
rs11722228 | T | 0.33 | 1.1 × 10−15 | 0.29 | 1.2 × 10−8 | 0.42 | 1.6 × 10−19 | 0.36 | 1.1 × 10−17 | 0.0813 |
(0.25, 0.41) | (0.19, 0.39) | (0.33, 0.51) | (0.27, 0.44) | |||||||
rs3775948 | G | −0.39 | 3.1 × 10−24 | −0.37 | 2.1 × 10−16 | −0.43 | 1.1 × 10−24 | −0.40 | 8.2 × 10−64 | 0.7389 |
(−0.46, −0.31) | (−0.46, −0.27) | (−0.51, −0.35) | (−0.44, −0.35) | |||||||
rs1014290 | G | −0.40 | 1.5 × 10−25 | −0.31 | 2.3 × 10−10 | −0.43 | 1.0 × 10−24 | −0.40 | 2.3 × 10−64 | 0.6310 |
(−0.48, −0.33) | (−0.41, −0.22) | (−0.51, −0.35) | (−0.44, −0.35) | |||||||
rs2231142 | T | 0.23 | 5.4 × 10−8 | 0.23 | 7.2 × 10−6 | 0.24 | 2.3 × 10−7 | 0.23 | 1.0 × 10−18 | 0.9426 |
(0.15, 0.31) | (0.13, 0.32) | (0.15, 0.33) | (0.18, 0.28) | |||||||
rs3775948 conditioned for rs11722228 | G | −0.31 | 1.2 × 10−14 | −0.32 | 1.1 × 10−6 | −0.32 | 2.9 × 10−13 | −0.31 | 3.2 × 10−35 | 0.9857 |
(−0.39, −0.23) | (−0.41, −0.22) | (−0.42, −0.24) | (−0.36, −0.26) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Paredez, B.; Macías-Kauffer, L.; Fernandez-Lopez, J.C.; Villalobos-Comparán, M.; Martinez-Aguilar, M.M.; de la Cruz-Montoya, A.; Ramírez-Salazar, E.G.; Villamil-Ramírez, H.; Quiterio, M.; Ramírez-Palacios, P.; et al. Influence of Genetic and Non-Genetic Risk Factors for Serum Uric Acid Levels and Hyperuricemia in Mexicans. Nutrients 2019, 11, 1336. https://doi.org/10.3390/nu11061336
Rivera-Paredez B, Macías-Kauffer L, Fernandez-Lopez JC, Villalobos-Comparán M, Martinez-Aguilar MM, de la Cruz-Montoya A, Ramírez-Salazar EG, Villamil-Ramírez H, Quiterio M, Ramírez-Palacios P, et al. Influence of Genetic and Non-Genetic Risk Factors for Serum Uric Acid Levels and Hyperuricemia in Mexicans. Nutrients. 2019; 11(6):1336. https://doi.org/10.3390/nu11061336
Chicago/Turabian StyleRivera-Paredez, Berenice, Luis Macías-Kauffer, Juan Carlos Fernandez-Lopez, Marisela Villalobos-Comparán, Mayeli M. Martinez-Aguilar, Aldo de la Cruz-Montoya, Eric G. Ramírez-Salazar, Hugo Villamil-Ramírez, Manuel Quiterio, Paula Ramírez-Palacios, and et al. 2019. "Influence of Genetic and Non-Genetic Risk Factors for Serum Uric Acid Levels and Hyperuricemia in Mexicans" Nutrients 11, no. 6: 1336. https://doi.org/10.3390/nu11061336
APA StyleRivera-Paredez, B., Macías-Kauffer, L., Fernandez-Lopez, J. C., Villalobos-Comparán, M., Martinez-Aguilar, M. M., de la Cruz-Montoya, A., Ramírez-Salazar, E. G., Villamil-Ramírez, H., Quiterio, M., Ramírez-Palacios, P., Romero-Hidalgo, S., Villarreal-Molina, M. T., Denova-Gutiérrez, E., Flores, Y. N., Canizales-Quinteros, S., Salmerón, J., & Velázquez-Cruz, R. (2019). Influence of Genetic and Non-Genetic Risk Factors for Serum Uric Acid Levels and Hyperuricemia in Mexicans. Nutrients, 11(6), 1336. https://doi.org/10.3390/nu11061336