Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents
Abstract
:1. Introduction
1.1. A Brief Overview on Prostate Cancer
1.2. Prostate Cancer: Main Risk Factors
1.2.1. Non-Modified Risk Factors
1.2.2. Modified Risk Factors
2. Therapeutic Strategies: A Brief Summary
3. Plant Extracts and Plant-Derived Bioactives in Prostate Cancer
3.1. Plant Extracts with Anti-Prostate Cancer Potential
3.1.1. Annonaceae Plants
3.1.2. Apocynaceae Plants
3.1.3. Asteraceae Plants
3.1.4. Combretaceae Plants
3.1.5. Euphorbiaceae Plants
3.1.6. Fabaceae Plants
3.1.7. Lamiaceae Plants
3.1.8. Malvaceae Plants
3.1.9. Phyllanthaceae Plants
3.1.10. Poaceae Plants
3.1.11. Rutaceae Plants
3.1.12. Solanaceae Plants
3.1.13. Zingiberaceae Plants
3.1.14. Other Plants
3.2. Plant-Derived Bioactives with Anti-Prostate Cancer Potential
3.2.1. Alkaloids
3.2.2. Phenolic Compounds
Flavonoids
Anthocyanidins
Phenols
Lignans
Naphthoquinones
Tannins
Coumarins
Polyphenols
Xanthones
Chalcones
Carotenoids
3.2.3. Terpenoids
Sesquiterpenes
Diterpenoids
Triterpenoids
3.2.4. Steroids
3.2.5. Proteins
3.2.6. Fatty Acids
4. Evidence from Clinical Studies
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Etemadi, A.; Sadjadi, A.; Semnani, S.; Nouraie, S.M.; Khademi, H.; Bahadori, M. Cancer registry in Iran: A brief overview. Arch. Iran. Med. 2008, 11, 577–580. [Google Scholar] [PubMed]
- Casey, S.C.; Amedei, A.; Aquilano, K.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.E.; Boosani, C.S.; Chen, S.; Ciriolo, M.R.; et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin. Cancer Biol. 2015, 35, S199–S223. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Fedewa, S.A.; Miller, K.D.; Goding-Sauer, A.; Pinheiro, P.S.; Martinez-Tyson, D.; Jemal, A. Cancer statistics for hispanics/latinos, 2015. CA Cancer J. Clin. 2015, 65, 457–480. [Google Scholar] [CrossRef] [PubMed]
- Shokoohinia, Y.; Jafari, F.; Mohammadi, Z.; Bazvandi, L.; Hosseinzadeh, L.; Chow, N.; Bhattacharyya, P.; Farzaei, M.H.; Farooqi, A.A.; Nabavi, S.M.; et al. Potential anticancer properties of osthol: A comprehensive mechanistic review. Nutrients 2018, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for prevention and treatment of cancer: An update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Novio, S.; Cartea, M.E.; Soengas, P.; Freire-Garabal, M.; Nunez-Iglesias, M.J. Effects of Brassicaceae isothiocyanates on prostate cancer. Molecules 2016, 21, 626. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Prev. Biomark. 2015, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. CA Cancer J. Clin. 2010, 60, 207–221. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.; Forman, D.; Bray, F. Globocan 2012 v1.0, Cancer Incidence and Mortality Worldwide: Iarc Cancerbase No. 11; International Agency for Research on Cancer: Lyon, France, 2015. [Google Scholar]
- Attard, G.; Parker, C.; Eeles, R.A.; Schroder, F.; Tomlins, S.A.; Tannock, I.; Drake, C.G.; de Bono, J.S. Prostate cancer. Lancet 2016, 387, 70–82. [Google Scholar] [CrossRef]
- Klotz, L.; Vesprini, D.; Sethukavalan, P.; Jethava, V.; Zhang, L.; Jain, S.; Yamamoto, T.; Mamedov, A.; Loblaw, A. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 272–277. [Google Scholar] [CrossRef]
- Abedi, A.-R.; Fallah-Karkan, M.; Allameh, F.; Ranjbar, A.; Shadmehr, A. Incidental prostate cancer: A 10-year review of a tertiary center, Tehran, Iran. Res. Rep. Urol. 2018, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Daniyal, M.; Siddiqui, Z.A.; Akram, M.; Asif, H.; Sultana, S.; Khan, A. Epidemiology, etiology, diagnosis and treatment of prostate cancer. Asian Pac. J. Cancer Prev. 2014, 15, 9575–9578. [Google Scholar] [CrossRef] [PubMed]
- Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med. 2018, 3, a030361. [Google Scholar] [CrossRef] [PubMed]
- Barve, A.; Khor, T.O.; Hao, X.; Keum, Y.S.; Yang, C.S.; Reddy, B.; Kong, A.N. Murine prostate cancer inhibition by dietary phytochemicals—Curcumin and phenyethylisothiocyanate. Pharm. Res. 2008, 25, 2181–2189. [Google Scholar] [CrossRef]
- Dunn, M.W.; Kazer, M.W. Prostate cancer overview. Semin. Oncol. Nurs. 2011, 27, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.N. Epidemiology of prostate cancer. Asian Pac. J. Cancer Prev. 2015, 16, 5137–5141. [Google Scholar] [CrossRef]
- American Cancer Society. Key Statistics for Prostate Cancer; American Cancer Society: Atlanta, GA, USA, 2018. [Google Scholar]
- Packer, J.R.; Maitland, N.J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta 2016, 1863, 1238–1260. [Google Scholar] [CrossRef]
- Mills, P.K.; Beeson, W.L.; Phillips, R.L.; Fraser, G.E. Cohort study of diet, lifestyle, and prostate cancer in adventist men. Cancer 1989, 64, 598–604. [Google Scholar] [CrossRef]
- Chan, J.M.; Stampfer, M.J.; Giovannucci, E.L. What causes prostate cancer? A brief summary of the epidemiology. Semin. Cancer Biol. 1998, 8, 263–273. [Google Scholar] [CrossRef]
- Pandey, M.K.; Gupta, S.C.; Nabavizadeh, A.; Aggarwal, B.B. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin. Cancer Biol. 2017, 46, 158–181. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.; Sharp, D. Symptomatic diagnosis of prostate cancer in primary care: A structured review. Br. J. Gen. Pr. 2004, 54, 617–621. [Google Scholar]
- Young, S.-M.; Bansal, P.; Vella, E.T.; Finelli, A.; Levitt, C.; Loblaw, A. Systematic review of clinical features of suspected prostate cancer in primary care. Can. Fam. Physician 2015, 61, e26–e35. [Google Scholar] [PubMed]
- Quinlan, M.; O’Daly, B.; O’Brien, M.; Gardner, S.; Lennon, G.; Mulvin, D.; Quinlan, D. The value of appropriate assessment prior to specialist referral in men with prostatic symptoms. Ir. J. Med Sci. 2009, 178, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Nam, R.K.; Kattan, M.W.; Chin, J.L.; Trachtenberg, J.; Singal, R.; Rendon, R.; Klotz, L.H.; Sugar, L.; Sherman, C.; Izawa, J. Prospective multi-institutional study evaluating the performance of prostate cancer risk calculators. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 2959–2964. [Google Scholar] [CrossRef]
- Brown, M.L.; Potosky, A.L.; Thompson, G.B.; Kessler, L.K. The knowledge and use of screening tests for colorectal and prostate cancer: Data from the 1987 national health interview survey. Prev. Med. 1990, 19, 562–574. [Google Scholar] [CrossRef]
- Barry, M.J. Screening for Prostate Cancer—The Controversy That Refuses to Die; Massachusetts Medical Society: Waltham, MA, USA, 2009. [Google Scholar]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [Green Version]
- Center, M.M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International variation in prostate cancer incidence and mortality rates. Eur. Urol. 2012, 61, 1079–1092. [Google Scholar] [CrossRef]
- Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter. N. Engl. J. Med. 2004, 350, 2239–2246. [Google Scholar] [CrossRef]
- Ghai, S.; Haider, M.A. Multiparametric-mri in diagnosis of prostate cancer. Indian J. Urol. Iju J. Urol. Soc. India 2015, 31, 194. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.J.; Azad, G.; Padhani, A.R. Bone imaging in prostate cancer: The evolving roles of nuclear medicine and radiology. Clin. Transl. Imaging 2016, 4, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-Y.; Zhang, P.; Xie, L.-P.; You, Q.-H.; Cai, B.-S.; Qin, J. Prostate-specific antigen velocity (PSAV) and PSAV per initial volume (PSAVD) for early detection of prostate cancer in Chinese men. Asian Pac. J. Cancer Prev. 2012, 13, 5529–5533. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.H.; Barry, M.J. Screening for prostate cancer with the prostate-specific antigen test: A review of current evidence. JAMA 2014, 311, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Eggener, S.E.; Cifu, A.S.; Nabhan, C. Prostate cancer screening. JAMA 2015, 314, 825–826. [Google Scholar] [CrossRef]
- Prensner, J.R.; Rubin, M.A.; Wei, J.T.; Chinnaiyan, A.M. Beyond psa: The next generation of prostate cancer biomarkers. Sci. Transl. Med. 2012, 4, rv123–rv127. [Google Scholar] [CrossRef]
- Cuzick, J.; Thorat, M.A.; Andriole, G.; Brawley, O.W.; Brown, P.H.; Culig, Z.; Eeles, R.A.; Ford, L.G.; Hamdy, F.C.; Holmberg, L. Prevention and early detection of prostate cancer. Lancet Oncol. 2014, 15, e484–e492. [Google Scholar] [CrossRef] [Green Version]
- Jahn, J.L.; Giovannucci, E.L.; Stampfer, M.J. The high prevalence of undiagnosed prostate cancer at autopsy: Implications for epidemiology and treatment of prostate cancer in the prostate-specific antigen-era. Int. J. Cancer 2015, 137, 2795–2802. [Google Scholar] [CrossRef]
- Chan, J.M.; Giovannucci, E.L. Vegetables, fruits, associated micronutrients, and risk of prostate cancer. Epidemiol. Rev. 2001, 23, 82–86. [Google Scholar] [CrossRef]
- Bashir, M.N.; Ahmad, M.R.; Malik, A. Risk factors of prostate cancer: A case-control study in Faisalabad, Pakistan. Asian Pac. J. Cancer Prev. 2014, 15, 10237–10240. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.; Kosary, C.; Yu, M.; Ruhl, J.; Tatalovich, Z. Seer Cancer Statistics Review. 1975–2013. National Cancer Institute: Bethesda, MD, USA. Available online: https://seer.cancer.gov/archive/csr/1975_2013/ (accessed on 10 September 2018).
- Goggins, W.B.; Wong, G. Cancer among asian indians/pakistanis living in the united states: Low incidence and generally above average survival. Cancer Causes Control. 2009, 20, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Ankerst, D.P.; Sundquist, J.; Mousavi, S.M. Prostate cancer incidence and survival in immigrants to Sweden. World J. Urol. 2013, 31, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Kiciński, M.; Vangronsveld, J.; Nawrot, T.S. An epidemiological reappraisal of the familial aggregation of prostate cancer: A meta-analysis. PLoS ONE 2011, 6, e27130. [Google Scholar] [CrossRef] [PubMed]
- Eeles, R.A.; Al Olama, A.A.; Benlloch, S.; Saunders, E.J.; Leongamornlert, D.A.; Tymrakiewicz, M.; Ghoussaini, M.; Luccarini, C.; Dennis, J.; Jugurnauth-Little, S. Identification of 23 new prostate cancer susceptibility loci using the icogs custom genotyping array. Nat. Genet. 2013, 45, 385. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.J.; Van Den Eeden, S.K.; Sakoda, L.C.; Jorgenson, E.; Habel, L.A.; Graff, R.E.; Passarelli, M.N.; Cario, C.L.; Emami, N.C.; Chao, C.R. A large multi-ethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences. Cancer Discov. 2015, 5, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Czene, K. Attributable risks of familial cancer from the family-cancer database. Cancer Epidemiol. Prev. Biomark. 2002, 11, 1638–1644. [Google Scholar]
- Möller, E.; Wilson, K.M.; Batista, J.L.; Mucci, L.A.; Bälter, K.; Giovannucci, E. Body size across the life course and prostate cancer in the health professionals follow-up study. Int. J. Cancer 2016, 138, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Zuccolo, L.; Harris, R.; Gunnell, D.; Oliver, S.; Lane, J.A.; Davis, M.; Donovan, J.; Neal, D.; Hamdy, F.; Beynon, R. Height and prostate cancer risk: A large nested case-control study (protect) and meta-analysis. Cancer Epidemiol. Prev. Biomark. 2008, 17, 2325–2336. [Google Scholar] [CrossRef]
- Anuurad, E.; Shiwaku, K.; Nogi, A.; Kitajima, K.; Enkhmaa, B.; Shimono, K.; Yamane, Y. The new bmi criteria for asians by the regional office for the western pacific region of who are suitable for screening of overweight to prevent metabolic syndrome in elder Japanese workers. J. Occup. Health 2003, 45, 335–343. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, J. Body-mass index, prostate cancer-specific mortality and biochemical recurrence: A systematic review and meta-analysis. Cancer Prev. Res. 2011, 4, 486–501. [Google Scholar] [CrossRef]
- Ma, J.; Li, H.; Giovannucci, E.; Mucci, L.; Qiu, W.; Nguyen, P.L.; Gaziano, J.M.; Pollak, M.; Stampfer, M.J. Prediagnostic body-mass index, plasma c-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: A long-term survival analysis. Lancet Oncol. 2008, 9, 1039–1047. [Google Scholar] [CrossRef]
- Joshu, C.E.; Mondul, A.M.; Menke, A.; Meinhold, C.L.; Han, M.; Humphreys, E.; Freedland, S.J.; Walsh, P.C.; Platz, E.A. Weight gain is associated with an increased risk of prostate cancer recurrence after prostatectomy in the PSA era. Cancer Prev. Res. 2011, 4, 544–551. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Alcohol and Health; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Kenfield, S.A.; Stampfer, M.J.; Chan, J.M.; Giovannucci, E. Smoking and prostate cancer survival and recurrence. JAMA 2011, 305, 2548–2555. [Google Scholar] [CrossRef] [PubMed]
- Richman, E.L.; Kenfield, S.A.; Stampfer, M.J.; Paciorek, A.; Carroll, P.R.; Chan, J.M. Physical activity after diagnosis and risk of prostate cancer progression: Data from the cancer of the prostate strategic urologic research endeavor. Cancer Res. 2011, 71, 3889–3895. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D.; Kohli, M. Effect of Physical Activity and Sedentary Behavior on Serum Prostate-Specific Antigen Concentrations: Results from the National Health and Nutrition Examination Survey (NHANES), 2003–2006, Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2013; pp. 11–21. [Google Scholar]
- Holt, S.K.; Kwon, E.M.; Koopmeiners, J.S.; Lin, D.W.; Feng, Z.; Ostrander, E.A.; Peters, U.; Stanford, J.L. Vitamin d pathway gene variants and prostate cancer prognosis. Prostate 2010, 70, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Kristal, A.R.; Arnold, K.B.; Neuhouser, M.L.; Goodman, P.; Platz, E.A.; Albanes, D.; Thompson, I.M. Diet, supplement use, and prostate cancer risk: Results from the prostate cancer prevention trial. Am. J. Epidemiol. 2010, 172, 566–577. [Google Scholar] [CrossRef]
- Mahmood, S.; Qasmi, G.; Ahmed, A.; Kokab, F.; Zahid, M.F.; Afridi, M.I.; Razzaq, A. Lifestyle factors associated with the risk of prostate cancer among Pakistani men. J. Ayub Med. Coll. Abbottabad 2012, 24, 122–126. [Google Scholar]
- Butler, L.M.; Wong, A.S.; Koh, W.-P.; Wang, R.; Yuan, J.-M.; Mimi, C.Y. Calcium intake increases risk of prostate cancer among Singapore Chinese. Cancer Res. 2010, 70, 4941–4948. [Google Scholar] [CrossRef]
- De Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012, 13, 607–615. [Google Scholar] [CrossRef]
- Sutcliffe, S.; Platz, E.A. Inflammation and prostate cancer: A focus on infections. Curr. Urol. Rep. 2008, 9, 243. [Google Scholar] [CrossRef]
- Sutcliffe, S.; Neace, C.; Magnuson, N.S.; Reeves, R.; Alderete, J. Trichomonosis, a common curable sti, and prostate carcinogenesis—a proposed molecular mechanism. PLoS Pathog. 2012, 8, e1002801. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.E.; Coker, A.L.; Sanderson, M.; Symanski, E. A case–control study of farming and prostate cancer in African-American and Caucasian men. Occup. Environ. Med. 2007, 64, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Nair-Shalliker, V.; Smith, D.P.; Egger, S.; Hughes, A.M.; Kaldor, J.M.; Clements, M.; Kricker, A.; Armstrong, B.K. Sun exposure may increase risk of prostate cancer in the high UV environment of new south wales, Australia: A case–control study. Int. J. Cancer 2012, 131, E726–E732. [Google Scholar] [CrossRef] [PubMed]
- Myles, P.; Evans, S.; Lophatananon, A.; Dimitropoulou, P.; Easton, D.; Key, T.; Pocock, R.; Dearnaley, D.; Guy, M.; Edwards, S. Diagnostic radiation procedures and risk of prostate cancer. Br. J. Cancer 2008, 98, 1852. [Google Scholar] [CrossRef] [PubMed]
- Zuccolo, L.; Lewis, S.J.; Donovan, J.L.; Hamdy, F.C.; Neal, D.E.; Smith, G.D. Alcohol consumption and PSA-detected prostate cancer risk—A case-control nested in the protect study. Int. J. Cancer 2013, 132, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.E.; Courneya, K.S.; Kopciuk, K.A.; Tosevski, C.; Friedenreich, C.M. Case–control study of lifetime alcohol intake and prostate cancer risk. Cancer Causes Control 2013, 24, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Endogenous Hormones and Prostate Cancer Collaborative Group; Roddam, A.W.; Allen, N.E.; Appleby, P.; Key, T.J. Endogenous sex hormones and prostate cancer: A collaborative analysis of 18 prospective studies. J. Natl. Cancer Inst. 2008, 100, 170–183. [Google Scholar]
- Nelles, J.L.; Hu, W.-Y.; Prins, G.S. Estrogen action and prostate cancer. Expert Rev. Endocrinol. Metab. 2011, 6, 437–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, A.W.; Tilley, W.D.; Neal, D.E.; Carroll, J.S. Estrogen receptor beta in prostate cancer: Friend or foe? Endocr. Relat. Cancer 2014, 21, T219–T234. [Google Scholar]
- Roddam, A.W.; Allen, N.E.; Appleby, P.; Key, T.J.; Ferrucci, L.; Carter, H.B.; Metter, E.J.; Chen, C.; Weiss, N.S.; Fitzpatrick, A. Insulin-like growth factors, their binding proteins, and prostate cancer risk: Analysis of individual patient data from 12 prospective studies. Ann. Intern. Med. 2008, 149, 461–471. [Google Scholar]
- Uzoh, C.; Holly, J.; Biernacka, K.; Persad, R.; Bahl, A.; Gillatt, D.; Perks, C. Insulin-like growth factor-binding protein-2 promotes prostate cancer cell growth via igf-dependent or-independent mechanisms and reduces the efficacy of docetaxel. Br. J. Cancer 2011, 104, 1587. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.J.S.E.A. Epidemiology, etiology, and prevention of prostate cancer. In Campbell-Walsh Urology, 11th ed.; Wein, A.J., Ed.; Elsevier: Philadelphia, PA, USA, 2016; Volume 3, pp. 2543–2564. [Google Scholar]
- Sun, F.; Oyesanmi, O.; Fontanarosa, J.; Reston, J.; Guzzo, T.; Schoelles, K. Therapies for Clinically Localized Prostate Cancer: Update of a 2008 Systematic Review; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2014. [Google Scholar]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur. Urol. 2017, 71, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hu, F.B.; Mistry, K.B.; Zhang, C.; Ren, F.; Huo, Y.; Paige, D.; Bartell, T.; Hong, X.; Caruso, D.; et al. Association between maternal prepregnancy body mass index and plasma folate concentrations with child metabolic health. JAMA Pediatrics 2016, 170, e160845. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Young, H.H. The early diagnosis and radical cure of carcinoma of the prostate: Being a study of 40 cases and presentation of a radical operation which was carried out in four cases. Johns Hopkins Hosp. Bull. 1905, 16, 315–321. [Google Scholar]
- Ramsay, C.; Pickard, R.; Robertson, C.; Close, A.; Vale, L.; Armstrong, N.; Barocas, D.; Eden, C.; Fraser, C.; Gurung, T. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol. Assess. 2012, 16, 1. [Google Scholar] [CrossRef]
- Keyes, M.; Crook, J.; Morton, G.; Vigneault, E.; Usmani, N.; Morris, W.J. Treatment options for localized prostate cancer. Can. Fam. Physician 2013, 59, 1269–1274. [Google Scholar]
- Litwin, M.S.; Tan, H.-J. The diagnosis and treatment of prostate cancer: A review. JAMA 2017, 317, 2532–2542. [Google Scholar] [CrossRef]
- Bayoumi, A.M.; Brown, A.D.; Garber, A.M. Cost-effectiveness of androgen suppression therapies in advanced prostate cancer. J. Natl. Cancer Inst. 2000, 92, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Oefelein, M.G.; Feng, A.; Scolieri, M.J.; Ricchiutti, D.; Resnick, M.I. Reassessment of the definition of castrate levels of testosterone: Implications for clinical decision making. Urology 2000, 56, 1021–1024. [Google Scholar] [CrossRef]
- Seidenfeld, J.; Samson, D.J.; Hasselblad, V.; Aronson, N.; Albertsen, P.C.; Bennett, C.L.; Wilt, T.J. Single-therapy androgen suppression in men with advanced prostate cancer: A systematic review and meta-analysis. Ann. Intern. Med. 2000, 132, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Crawford, E.D.; Shore, N.D.; Moul, J.W.; Tombal, B.; Schröder, F.H.; Miller, K.; Boccon-Gibod, L.; Malmberg, A.; Olesen, T.K.; Persson, B.-E. Long-term tolerability and efficacy of degarelix: 5-year results from a phase iii extension trial with a 1-arm crossover from leuprolide to degarelix. Urology 2014, 83, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Magsanoc, J.M.; Pei, X.; Schechter, M.; Kollmeier, M.; Cox, B.; Scardino, P.T.; Eastham, J.A.; Zelefsky, M.J. Long-term outcomes after high-dose postprostatectomy salvage radiation treatment. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.; Weinberg, V.; Shinohara, K.; Roach, M., III; Nash, M.; Gottschalk, A.; Chang, A.J.; Hsu, I.-C. Salvage HDR brachytherapy for recurrent prostate cancer after previous definitive radiation therapy: 5-year outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 324–329. [Google Scholar] [CrossRef]
- Karnes, R.J.; Murphy, C.R.; Bergstralh, E.J.; DiMonte, G.; Cheville, J.C.; Lowe, V.J.; Mynderse, L.A.; Kwon, E.D. Salvage lymph node dissection for prostate cancer nodal recurrence detected by 11c-choline positron emission tomography/computerized tomography. J. Urol. 2015, 193, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Allameh, F.; Rahavian, A.H.; Ghiasy, S. Prevalence of castration success rate in Iranian metastatic prostate cancer patients: A referral center statistics. Int. J. Cancer Manag. 2018, 11, e83613. [Google Scholar] [CrossRef]
- Beer, T.; Garzotto, M.; Henner, W.; Eilers, K.; Wersinger, E. Multiple cycles of intermittent chemotherapy in metastatic androgen-independent prostate cancer. Br. J. Cancer 2004, 91, 1425. [Google Scholar] [CrossRef] [PubMed]
- Dy, S.M.; Asch, S.M.; Naeim, A.; Sanati, H.; Walling, A.; Lorenz, K.A. Evidence-based standards for cancer pain management. J. Clin. Oncol. 2008, 26, 3879–3885. [Google Scholar] [CrossRef]
- Esper, P.; Pienta, K. Supportive Care in the Patient with Hormone Refractory Prostate Cancer. Semin. Urol. Oncol. 1997, 15, 56–64. [Google Scholar] [PubMed]
- Roehrborn, C.G.; Black, L.K. The economic burden of prostate cancer. BJU Int. 2011, 108, 806–813. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Online Summary of Trends in Us Cancer Control Measures. Available online: https://progressreport.cancer.gov/after/economic_burden (accessed on 12 September 2018).
- Moghadam, M.F.; Rangchian, M.; Ayati, M.; Pourmand, G.; Zeinali, L.; Rasekh, H. Economic burden of prostate cancer in Iran. Value Health 2016, 19, A147. [Google Scholar] [CrossRef]
- Restelli, U.; Ceresoli, G.L.; Croce, D.; Evangelista, L.; Maffioli, L.S.; Gianoncelli, L.; Bombardieri, E. Economic burden of the management of metastatic castrate-resistant prostate cancer in Italy: A cost of illness study. Cancer Manag. Res. 2017, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of medicinal plants for secondary metabolites. Middle-East. J. Sci. Res. 2011, 8, 579–584. [Google Scholar]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural product drug discovery in the next millennium. Pharm. Biol. 2001, 39 (Suppl. 1), 8–17. [Google Scholar]
- Bodeker, G. Traditional health system: Valuing biodiversity for human health and wellbeing. In Cultural and Spiritual Values in Biodiversity; Posey, D.A., Ed.; Intermediate Technology Publications: London, UK, 2000; pp. 261–284. [Google Scholar]
- Choi, Y.J.; Choi, Y.K.; Lee, K.M.; Cho, S.G.; Kang, S.Y.; Ko, S.G. Sh003 induces apoptosis of du145 prostate cancer cells by inhibiting ERK-involved pathway. BMC Complement. Altern. Med. 2016, 16, 507. [Google Scholar] [CrossRef]
- Diab, K.A.; Guru, S.K.; Bhushan, S.; Saxena, A.K. In vitro anticancer activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna Indian plants. Asian Pac. J. Cancer Prev. 2015, 16, 6423–6428. [Google Scholar] [CrossRef]
- Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. A screening of growth inhibitory activity of iranian medicinal plants on prostate cancer cell lines. BioMedicine 2018, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Bali, E.B.; Acik, L.; Elci, P.; Sarper, M.; Avcu, F.; Vural, M. In vitro anti-oxidant, cytotoxic and pro-apoptotic effects of Achillea teretifolia willd extracts on human prostate cancer cell lines. Pharmacogn. Mag. 2015, 11, S308–S315. [Google Scholar] [PubMed]
- Bhandari, J.; Muhammad, B.; Thapa, P.; Shrestha, B.G. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii. BMC Complement. Altern. Med. 2017, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Al-Oqail, M.M.; El-Shaibany, A.; Al-Jassas, E.; Al-Sheddi, E.S.; Al-Massarani, S.M.; Farshori, N.N. In vitro anti-proliferative activities of aloe perryi flowers extract on human liver, colon, breast, lung, prostate and epithelial cancer cell lines. Pak. J. Pharm. Sci. 2016, 29, 723–729. [Google Scholar] [PubMed]
- de Alencar, D.C.; Pinheiro, M.L.; Pereira, J.L.; de Carvalho, J.E.; Campos, F.R.; Serain, A.F.; Tirico, R.B.; Hernandez-Tasco, A.J.; Costa, E.V.; Salvador, M.J. Chemical composition of the essential oil from the leaves of Anaxagorea brevipes (Annonaceae) and evaluation of its bioactivity. Nat. Prod. Res. 2016, 30, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Zhang, Y.; Li, L.; Tang, S.; Xing, C.; Kim, S.H.; Jiang, C.; Lu, J. Chemopreventive effect of Korean angelica root extract on tramp carcinogenesis and integrative “omic” profiling of affected neuroendocrine carcinomas. Mol. Carcinog. 2015, 54, 1567–1583. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-N.; Zhang, J.; Wu, W.; Jiang, P.; Puppala, M.; Zhang, Y.; Xing, C.; Kim, S.-H.; Jiang, C.; Lü, J. Chemopreventive effects of Korean angelica vs. Its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis. Cancer Prev. Res. 2015, 8, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Deep, G.; Kumar, R.; Jain, A.K.; Dhar, D.; Panigrahi, G.K.; Hussain, A.; Agarwal, C.; El-Elimat, T.; Sica, V.P.; Oberlies, N.H.; et al. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity. Sci. Rep. 2016, 6, 23135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.P.; Ho, T.M.; Yang, C.W.; Chang, Y.J.; Chen, J.F.; Shaw, N.S.; Horng, J.C.; Hsu, S.L.; Liao, M.Y.; Wu, L.C.; et al. Chemopreventive potential of ethanolic extracts of luobuma leaves (Apocynum venetum L.) in androgen insensitive prostate cancer. Nutrients 2017, 9, 948. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yan, F.; Chen, W.; Zhao, L.; Zhang, J.; Lu, Q.; Liu, R. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells du145. Chem. Biol. Interact. 2018, 288, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Cherian, A.M.; Snima, K.S.; Kamath, C.R.; Nair, S.V.; Lakshmanan, V.K. Effect of Baliospermum montanum nanomedicine apoptosis induction and anti-migration of prostate cancer cells. Biomed. Pharmacother. Biomed. Pharmacother. 2015, 71, 201–209. [Google Scholar] [CrossRef] [PubMed]
- El-Merahbi, R.; Liu, Y.N.; Eid, A.; Daoud, G.; Hosry, L.; Monzer, A.; Mouhieddine, T.H.; Hamade, A.; Najjar, F.; Abou-Kheir, W. Berberis libanotica ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells. PLoS ONE 2014, 9, e112453. [Google Scholar] [CrossRef] [PubMed]
- Fort, R.; Trinidad Barnech, J.; Dourron, J.; Colazzo, M.; Aguirre-Crespo, F.; Duhagon, M.; Álvarez, G. Isolation and structural characterization of bioactive molecules on prostate cancer from Mayan traditional medicinal plants. Pharmaceuticals 2018, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Adaramoye, O.; Erguen, B.; Oyebode, O.; Nitzsche, B.; Hopfner, M.; Jung, K.; Rabien, A. Antioxidant, antiangiogenic and antiproliferative activities of root methanol extract of Calliandra portoricensis in human prostate cancer cells. J. Integr. Med. 2015, 13, 185–193. [Google Scholar] [CrossRef]
- Pandey, S.; Walpole, C.; Cabot, P.J.; Shaw, P.N.; Batra, J.; Hewavitharana, A.K. Selective anti-proliferative activities of carica papaya leaf juice extracts against prostate cancer. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 89, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Silva, A.; Tavares-Carreon, F.; Figueroa, M.; De la Torre-Zavala, S.; Gastelum-Arellanez, A.; Rodriguez-Garcia, A.; Galan-Wong, L.J.; Aviles-Arnaut, H. Anticancer potential of Thevetia peruviana fruit methanolic extract. BMC Complement. Altern. Med. 2017, 17, 241. [Google Scholar] [CrossRef]
- Podolak, I.; Olech, M.; Galanty, A.; Zaluski, D.; Grabowska, K.; Sobolewska, D.; Michalik, M.; Nowak, R. Flavonoid and phenolic acid profile by lc-ms/ms and biological activity of crude extracts from Chenopodium hybridum aerial parts. Nat. Prod. Res. 2016, 30, 1766–1770. [Google Scholar] [CrossRef]
- Yousefi, B.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti-proliferative properties of cornus mass fruit in different human cancer cells. Asian Pac. J. Cancer Prev. 2015, 16, 5727–5731. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Zapata-Morales, J.R.; Gonzalez-Chavez, M.M.; Carranza-Alvarez, C.; Hernandez-Benavides, D.M.; Hernandez-Morales, A. Pharmacological effects and toxicity of Costus pulverulentus c. Presl (Costaceae). J. Ethnopharmacol. 2016, 180, 124–130. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, S.O.; Kim, K.R.; Lee, H.J. Sphingosine kinase-1 involves the inhibitory action of hif-1alpha by Chlorogenic acid in hypoxic du145 cells. Int. J. Mol. Sci. 2017, 18, 325. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for prevention and treatment of cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.M.; Mancini, A.; Lizzi, A.R.; De Simone, A.; Marroccella, C.E.; Gravina, G.L.; Tatone, C.; Festuccia, C. Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr. Cancer 2013, 65, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Festuccia, C.; Mancini, A.; Gravina, G.L.; Scarsella, L.; Llorens, S.; Alonso, G.L.; Tatone, C.; Di Cesare, E.; Jannini, E.A.; Lenzi, A.; et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res. Int. 2014, 2014, 135048. [Google Scholar] [CrossRef]
- Irshad, S.; Ashfaq, A.; Muazzam, A.; Yasmeen, A. Antimicrobial and anti-prostate cancer activity of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) used in typical pakistani cuisine. Pak. J. Zool. 2017, 49, 1665–1669. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.N.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.A. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie 2018, 153, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Tong, K.L.; Chan, K.L.; AbuBakar, S.; Low, B.S.; Ma, H.Q.; Wong, P.F. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on lncap human prostate cancer cells. PLoS ONE 2015, 10, e0121752. [Google Scholar] [CrossRef] [PubMed]
- Kassim, O.O.; Copeland, R.L.; Kenguele, H.M.; Nekhai, S.; Ako-Nai, K.A.; Kanaan, Y.M. Antiproliferative activities of Fagara xanthoxyloides and Pseudocedrela kotschyi against prostate cancer cell lines. Anticancer Res. 2015, 35, 1453–1458. [Google Scholar] [PubMed]
- Lin, H.C.; Lin, J.Y. Immune cell-conditioned media suppress prostate cancer pc-3 cell growth correlating with decreased proinflammatory/anti-inflammatory cytokine ratios in the media using 5 selected crude polysaccharides. Integr. Cancer Ther. 2016, 15, Np13–Np25. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, M.M.M.; Afzan, A.; Yaakob, H.; Aziz, R.; Sarmidi, M.R.; Wolfender, J.L.; Prieto, J.M. In vitro pro-apoptotic and anti-migratory effects of Ficus deltoidea L. Plant extracts on the human prostate cancer cell lines pc3. Front. Pharmacol. 2017, 8, 895. [Google Scholar] [CrossRef] [PubMed]
- Rayaprolu, S.J.; Hettiarachchy, N.S.; Horax, R.; Phillips, G.K.; Mahendran, M.; Chen, P. Soybean peptide fractions inhibit human blood, breast and prostate cancer cell proliferation. J. Food Sci. Technol. 2017, 54, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Kwon, S.J.; Lim, S.S.; Kim, J.K.; Lee, K.W.; Park, J.H. Licoricidin, an active compound in the hexane/ethanol extract of Glycyrrhiza uralensis, inhibits lung metastasis of 4t1 murine mammary carcinoma cells. Int. J. Mol. Sci. 2016, 17, 934. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.N.T.; Sakoff, J.A.; Bond, D.R.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. In vitro antibacterial and anticancer properties of Helicteres hirsuta lour. Leaf and stem extracts and their fractions. Mol. Biol. Rep. 2018, 45, 2125–2133. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.T.; Chen, J.H.; Chou, F.P.; Lin, H.H. Hibiscus sabdariffa leaf extract inhibits human prostate cancer cell invasion via down-regulation of akt/nf-kb/mmp-9 pathway. Nutrients 2015, 7, 5065–5087. [Google Scholar] [CrossRef] [PubMed]
- Koczurkiewicz, P.; Kowolik, E.; Podolak, I.; Wnuk, D.; Piska, K.; Labedz-Maslowska, A.; Wojcik-Pszczola, K.; Pekala, E.; Czyz, J.; Michalik, M. Synergistic cytotoxic and anti-invasive effects of mitoxantrone and triterpene saponins from Lysimachia ciliata on human prostate cancer cells. Planta Med. 2016, 82, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.; Syed, D.N.; Lall, R.K.; Khan, M.R.; Mukhtar, H. Potent anti-proliferative, pro-apoptotic activity of the maytenus royleanus extract against prostate cancer cells: Evidence in in-vitro and in-vivo models. PLoS ONE 2015, 10, e0119859. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, R.; Seidi, K.; Monfaredan, A.; Shafie-Irannejad, V.; Abbasi, M.M.; Karimian, A.; Yousefi, B. The herbal medicine melissa officinalis extract effects on gene expression of p53, bcl-2, her2, vegf-a and htert in human lung, breast and prostate cancer cell lines. Gene 2017, 613, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, A.; Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti proliferative properties of Melissa officinalis in different human cancer cells. Asian Pac. J. Cancer Prev. 2015, 16, 5703–5707. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Hussain, S.; Gupta, M.; Saxena, A.K. In vitro anticancer activity of extracts of Mentha spp. Against human cancer cells. Indian J. Biochem. Biophys. 2014, 51, 416–419. [Google Scholar]
- Emami, S.A.; Asili, J.; Hossein Nia, S.; Yazdian-Robati, R.; Sahranavard, M.; Tayarani-Najaran, Z. Growth inhibition and apoptosis induction of essential oils and extracts of Nepeta cataria L. On human prostatic and breast cancer cell lines. Asian Pac. J. Cancer Prev. 2016, 17, 125–130. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Afshari, A.R.; Hosseinzadeh, H. Review on the potential therapeutic roles of nigella sativa in the treatment of patients with cancer: Involvement of apoptosis: Black cumin and cancer. J. Pharmacopunct. 2017, 20, 158–172. [Google Scholar]
- Uttama, S.; Itharat, A.; Rattarom, R.; Makchuchit, S.; Panthong, S.; Sakpakdeejaroen, I. Biological activities and chemical content of sung yod rice bran oil extracted by expression and soxhlet extraction methods. J. Med Assoc. Thail. Chotmaihet Thangphaet 2014, 97 (Suppl. 8), S125–S132. [Google Scholar]
- Zhang, Z.H.; Xie, D.D.; Xu, S.; Xia, M.Z.; Zhang, Z.Q.; Geng, H.; Chen, L.; Wang, D.M.; Wei, W.; Yu, D.X.; et al. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells. PLoS ONE 2017, 12, e0182584. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Sakoff, J.A.; Scarlett, C.J. Physicochemical properties, antioxidant and anti-proliferative capacities of dried leaf and its extract from xao tam phan (Paramignya trimera). Chem. Biodivers. 2017, 14, e1600498. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Jaganath, I.B.; Manikam, R.; Sekaran, S.D. Phyllanthus spp. Exerts anti-angiogenic and anti-metastatic effects through inhibition on matrix metalloproteinase enzymes. Nutr. Cancer 2015, 67, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.A.; Snima, K.S.; Kamath, R.C.; Nair, S.V.; Lakshmanan, V.K. Plumbagin nanoparticles induce dose and PH dependent toxicity on prostate cancer cells. Curr. Drug Deliv. 2015, 12, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Hu, M.H.; Qi, G.Y.; Ma, C.X.; Wang, Y.Y.; Ma, F.L.; Tao, N.; Qin, Z.H. Polysaccharides from polygonatum inhibit the proliferation of prostate cancer-associated fibroblasts. Asian Pac. J. Cancer Prev. 2016, 17, 3829–3833. [Google Scholar] [PubMed]
- Peng, C.-C.; Peng, C.-H.; Chen, K.-C.; Hsieh, C.-L.; Peng, R.Y. The aqueous soluble polyphenolic fraction of Psidium guajava leaves exhibits potent anti-angiogenesis and anti-migration actions on du145 cells. Evid. Based Complement. Altern. Med. 2011, 2011, 219069. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.C.; Peng, C.C.; Chiu, W.T.; Cheng, Y.T.; Huang, G.T.; Hsieh, C.L.; Peng, R.Y. Action mechanism and signal pathways of Psidium guajava L. Aqueous extract in killing prostate cancer lncap cells. Nutr. Cancer 2010, 62, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Jiang, W.; Kumi-Diaka, J.; Lansky, E.P.; Gommersall, L.M.; Patel, A.; Mansel, R.E.; Neeman, I.; Geldof, A.A.; Campbell, M.J. Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells. J. Med. Food 2004, 7, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, A.J.; Pettaway, C.A.; Dreicer, R.; Corman, J.; Katz, A.; Ho, A.; Aronson, W.; Clark, W.; Simmons, G.; Heber, D. A randomized, double-blind, placebo-controlled study of the effects of pomegranate extract on rising psa levels in men following primary therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2015, 18, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Seidi, K.; Jahanban-Esfahlan, R.; Abasi, M.; Abbasi, M.M. Anti tumoral properties of Punica granatum (Pomegranate) seed extract in different human cancer cells. Asian Pac. J. Cancer Prev. 2016, 17, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Ub Wijerathne, C.; Park, H.S.; Jeong, H.Y.; Song, J.W.; Moon, O.S.; Seo, Y.W.; Won, Y.S.; Son, H.Y.; Lim, J.H.; Yeon, S.H.; et al. Quisqualis indica improves benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. Biol. Pharm. Bull. 2017, 40, 2125–2133. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Im, M.; Ma, J.Y. Ethanol extract of remotiflori radix induces endoplasmic reticulum stress-mediated cell death through ampk/mtor signaling in human prostate cancer cells. Sci. Rep. 2015, 5, 8394. [Google Scholar] [CrossRef] [PubMed]
- Atmaca, H.; Bozkurt, E. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 3639–3646. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Hsu, H.F.; Huang, K.H.; Wu, J.M.; Kuo, S.M.; Ling, X.H.; Houng, J.Y. Anti-proliferative effects of Siegesbeckia orientalis ethanol extract on human endometrial rl-95 cancer cells. Molecules 2014, 19, 19980–19994. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Jackson, G.A.; Lu, Y.; Drenkhahn, S.K.; Brownstein, K.J.; Starkey, N.J.; Lamberson, W.R.; Fritsche, K.L.; Mossine, V.V.; Besch-Williford, C.L.; et al. Inhibition of gli/hedgehog signaling in prostate cancer cells by “cancer bush” Sutherlandia frutescens extract. Cell Biol. Int. 2016, 40, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Mansoori, B.; Aghapour, M.; Baradaran, B. Urtica dioica dichloromethane extract induce apoptosis from intrinsic pathway on human prostate cancer cells (pc3). Cell. Mol. Biol. 2016, 62, 78–83. [Google Scholar]
- Burton, L.J.; Rivera, M.; Hawsawi, O.; Zou, J.; Hudson, T.; Wang, G.; Zhang, Q.; Cubano, L.; Boukli, N.; Odero-Marah, V. Muscadine grape skin extract induces an unfolded protein response-mediated autophagy in prostate cancer cells: A tmt-based quantitative proteomic analysis. PLoS ONE 2016, 11, e0164115. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Tzeng, S.F.; Hsieh, S.C.; Tsai, C.J.; Yang, Y.C.; Tsai, M.H.; Hsiao, P.W. A standardized Wedelia chinensis extract overcomes the feedback activation of her2/3 signaling upon androgen-ablation in prostate cancer. Front. Pharmacol. 2017, 8, 721. [Google Scholar] [CrossRef]
- Tsai, C.H.; Tzeng, S.F.; Hsieh, S.C.; Lin, C.Y.; Tsai, C.J.; Chen, Y.R.; Yang, Y.C.; Chou, Y.W.; Lee, M.T.; Hsiao, P.W. Development of a standardized and effect-optimized herbal extract of Wedelia chinensis for prostate cancer. Phytomed. Int. J. Phytother. Phytopharm. 2015, 22, 406–414. [Google Scholar] [CrossRef]
- Sarbishegi, M.; Khani, M.; Salimi, S.; Valizadeh, M.; Sargolzaei Aval, F. Antiproliferative and antioxidant effects of Withania coagulans extract on benign prostatic hyperplasia in rats. Nephro-Urol. Mon. 2016, 8, e33180. [Google Scholar] [CrossRef]
- Adaramoye, O.; Erguen, B.; Nitzsche, B.; Hopfner, M.; Jung, K.; Rabien, A. Antioxidant and antiproliferative potentials of methanol extract of Xylopia aethiopica (dunal) a. Rich in pc-3 and lncap cells. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ikezoe, T.; Takeuchi, T.; Adachi, Y.; Ohtsuki, Y.; Koeffler, H.P.; Taguchi, H. Zanthoxyli fructus induces growth arrest and apoptosis of lncap human prostate cancer cells in vitro and in vivo in association with blockade of the akt and ar signal pathways. Oncol. Rep. 2006, 15, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Karna, P.; Chagani, S.; Gundala, S.R.; Rida, P.C.G.; Asif, G.; Sharma, V.; Gupta, M.V.; Aneja, R. Benefits of whole ginger extract in prostate cancer. Br. J. Nutr. 2012, 107, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Brahmbhatt, M.; Gundala, S.R.; Asif, G.; Shamsi, S.A.; Aneja, R. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation. Nutr. Cancer 2013, 65, 263–272. [Google Scholar] [CrossRef]
- Khorasanchi, Z.; Shafiee, M.; Kermanshahi, F.; Khazaei, M.; Ryzhikov, M.; Parizadeh, M.R.; Kermanshahi, B.; Ferns, G.A.; Avan, A.; Hassanian, S.M. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomed. Int. J. Phytother. Phytopharm. 2018, 43, 21–27. [Google Scholar] [CrossRef]
- Chen, K.C.; Hsieh, C.L.; Peng, C.C.; Hsieh-Li, H.M.; Chiang, H.S.; Huang, K.D.; Peng, R.Y. Brain derived metastatic prostate cancer du-145 cells are effectively inhibited in vitro by guava (Psidium gujava L.) leaf extracts. Nutr. Cancer 2007, 58, 93–106. [Google Scholar] [CrossRef]
- Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti tumoral properties of Punica granatum (Pomegranate) peel extract on different human cancer cells. Asian Pac. J. Cancer Prev. 2015, 16, 5697–5701. [Google Scholar] [CrossRef]
- Mohan, A.; Nair, S.V.; Lakshmanan, V.K. Leucas aspera nanomedicine shows superior toxicity and cell migration retarded in prostate cancer cells. Appl. Biochem. Biotechnol. 2017, 181, 1388–1400. [Google Scholar] [CrossRef]
- Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Anwar, Y.; Khan, S.B. Antiproliferation and antibacterial effect of biosynthesized agnps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J. Photochem. Photobiol. Biol. 2017, 175, 99–108. [Google Scholar] [CrossRef]
- Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Mirza, M.B.; Shah, L.; Khan, S.B. Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun. 2017, 490, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Kao, C.L.; Wu, H.M.; Li, W.J.; Huang, C.T.; Li, H.T.; Chen, C.Y. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera gaertn. Cv. Rosa-plena. Molecules 2014, 19, 17829–17838. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.A.; Akamine, R.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M. Hedgehog/gli-mediated transcriptional activity inhibitors from Crinum asiaticum. J. Nat. Med. 2015, 69, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Torres, A.; Bort, A.; Morell, C.; Rodriguez-Henche, N.; Diaz-Laviada, I. The pepper’s natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget 2016, 7, 1569–1583. [Google Scholar] [CrossRef] [PubMed]
- Bamji, Z.D.; Washington, K.N.; Akinboye, E.; Bakare, O.; Kanaan, Y.M.; Copeland, R.L., Jr. Apoptotic effects of novel dithiocarbamate analogs of emetine in prostate cancer cell lines. Anticancer Res. 2015, 35, 4723–4732. [Google Scholar] [PubMed]
- Akinboye, E.S.; Rosen, M.D.; Bakare, O.; Denmeade, S.R. Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives. Bioorg. Med. Chem. 2017, 25, 6707–6717. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Peng, S.; He, Y.; Qin, M.; Cong, X.; Xing, Y.; Liu, M.; Yi, Z. Lycorine is a novel inhibitor of the growth and metastasis of hormone-refractory prostate cancer. Oncotarget 2015, 6, 15348–15361. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xu, J.; Li, X.; Zhang, D.; Han, Y.; Zhang, X. Comprehensive two-dimensional pc-3 prostate cancer cell membrane chromatography for screening anti-tumor components from radix Sophorae flavescentis. J. Sep. Sci. 2017, 40, 2688–2693. [Google Scholar] [CrossRef]
- Poornima, B.; Siva, B.; Shankaraiah, G.; Venkanna, A.; Nayak, V.L.; Ramakrishna, S.; Venkat Rao, C.; Babu, K.S. Novel sesquiterpenes from Schisandra grandiflora: Isolation, cytotoxic activity and synthesis of their triazole derivatives using “click” reaction. Eur. J. Med. Chem. 2015, 92, 449–458. [Google Scholar] [CrossRef]
- Lan, J.; Huang, L.; Lou, H.; Chen, C.; Liu, T.; Hu, S.; Yao, Y.; Song, J.; Luo, J.; Liu, Y.; et al. Design and synthesis of novel c14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur. J. Med. Chem. 2018, 143, 1968–1980. [Google Scholar] [CrossRef]
- Li, G.; Petiwala, S.M.; Nonn, L.; Johnson, J.J. Inhibition of chop accentuates the apoptotic effect of alpha-mangostin from the Mangosteen fruit (Garcinia mangostana) in 22rv1 prostate cancer cells. Biochem. Biophys. Res. Commun. 2014, 453, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Sato, C.; Kaneko, S.; Sato, A.; Virgona, N.; Namiki, K.; Yano, T. Combination effect of delta-tocotrienol and gamma-tocopherol on prostate cancer cell growth. J. Nutr. Sci. Vitaminol. 2017, 63, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, S.; Steinborn, C.; Klemd, A.; Hattori, F.; Ohmori, K.; Suzuki, K.; Huber, R.; Wolf, P.; Grundemann, C. Impact of green tea catechin ecg and its synthesized fluorinated analogue on prostate cancer cells and stimulated immunocompetent cells. Planta Med. 2018, 84, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Busch, C.; Noor, S.; Leischner, C.; Burkard, M.; Lauer, U.M.; Venturelli, S. Anti-proliferative activity of hop-derived prenylflavonoids against human cancer cell lines. Wien. Med. Wochenschr. 2015, 165, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Afsar, T.; Trembley, J.H.; Salomon, C.E.; Razak, S.; Khan, M.R.; Ahmed, K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci. Rep. 2016, 6, 23077. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.C.; Sun, J.M.; Shen, J.G.; Jin, J.Z.; Liu, F.; Xu, X.L.; Chen, L.; Liu, L.T.; Lv, J.J. Afzelin exhibits anti-cancer activity against androgen-sensitive lncap and androgen-independent pc-3 prostate cancer cells through the inhibition of lim domain kinase 1. Oncol. Lett. 2015, 10, 2359–2365. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Masood, M.; Rasul, A.; Wei, W.; Wang, Y.; Ali, M.; Mustaqeem, M.; Li, J.; Li, X. Altholactone inhibits nf-kappab and stat3 activation and induces reactive oxygen species-mediated apoptosis in prostate cancer du145 cells. Molecules 2017, 22, 240. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Shankar, E.; Fu, P.; MacLennan, G.T.; Gupta, S. Suppression of nf-kappab and nf-kappab-regulated gene expression by apigenin through ikappabalpha and ikk pathway in tramp mice. PLoS ONE 2015, 10, e0138710. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ros and er stress. J. Cell. Physiol. 2017, 232, 3786–3797. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.K.; Sharma, A.K.; Gupta, A.; Kumar, R.; Pandey, A.; Pandey, A.K. Pharmacological activities of cinnamaldehyde and eugenol: Antioxidant, cytotoxic and anti-leishmanial studies. Cell. Mol. Biol. 2017, 63, 73–78. [Google Scholar] [CrossRef]
- Adahoun, M.A.; Al-Akhras, M.H.; Jaafar, M.S.; Bououdina, M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif. CellsNanomed. Biotechnol. 2017, 45, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.H. Curcumin-based anti-prostate cancer agents. Anti-Cancer Agents Med. Chem. 2015, 15, 138–156. [Google Scholar] [CrossRef]
- Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of lncap prostate cancer cells in vivo. Prostate 2001, 47, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; A, D.E.L.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.; Rasool, R.U.; Iqra, Z.; Nalli, Y.; Dutt, P.; Satti, N.K.; Sharma, N.; Gandhi, S.G.; Goswami, A.; Ali, A. Alkyne-azide cycloaddition analogues of dehydrozingerone as potential anti-prostate cancer inhibitors via the pi3k/akt/nf-kb pathway. MedChemComm 2017, 8, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.H.; Ko, H.; Jeon, H.; Sung, G.J.; Park, S.Y.; Jun, W.J.; Lee, Y.H.; Lee, J.; Lee, S.W.; Yoon, H.G.; et al. Delphinidin induces apoptosis via cleaved hdac3-mediated p53 acetylation and oligomerization in prostate cancer cells. Oncotarget 2016, 7, 56767–56780. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, B.B.; Siddiqui, I.A.; Asim, M.; Malik, A.; Afaq, F.; Adhami, V.M.; Saleem, M.; Din, M.; Mukhtar, H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer pc3 cells in vitro and in vivo: Involvement of nuclear factor-κb signaling. Cancer Res. 2008, 68, 8564–8572. [Google Scholar] [CrossRef] [PubMed]
- Naiki-Ito, A.; Chewonarin, T.; Tang, M.; Pitchakarn, P.; Kuno, T.; Ogawa, K.; Asamoto, M.; Shirai, T.; Takahashi, S. Ellagic acid, a component of pomegranate fruit juice, suppresses androgen-dependent prostate carcinogenesis via induction of apoptosis. Prostate 2015, 75, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, E.; Heidarian, E.; Amini, S.A.; Saffari-Chaleshtori, J. Evaluating the effects of ellagic acid on pstat3, pakt, and perk1/2 signaling pathways in prostate cancer pc3 cells. J. Cancer Res. Ther. 2016, 12, 1266–1271. [Google Scholar] [PubMed]
- Lall, R.K.; Syed, D.N.; Khan, M.I.; Adhami, V.M.; Gong, Y.; Lucey, J.A.; Mukhtar, H. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis. Carcinogenesis 2016, 37, 918–928. [Google Scholar] [CrossRef]
- Li, X.; Yokoyama, N.N.; Zhang, S.; Ding, L.; Liu, H.M.; Lilly, M.B.; Mercola, D.; Zi, X. Flavokawain a induces deneddylation and skp2 degradation leading to inhibition of tumorigenesis and cancer progression in the tramp transgenic mouse model. Oncotarget 2015, 6, 41809–41824. [Google Scholar] [CrossRef] [PubMed]
- Drees, M.; Dengler, W.A.; Roth, T.; Labonte, H.; Mayo, J.; Malspeis, L.; Grever, M.; Sausville, E.A.; Fiebig, H.H. Flavopiridol (l86–8275): Selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin. Cancer Res. 1997, 3, 273. [Google Scholar] [PubMed]
- Wang, Y.; Tsai, M.-L.; Chiou, L.-Y.; Ho, C.-T.; Pan, M.-H. Antitumor activity of garcinol in human prostate cancer cells and xenograft mice. J. Agric. Food Chem. 2015, 63, 9047–9052. [Google Scholar] [CrossRef] [PubMed]
- Behera, A.K.; Swamy, M.M.; Natesh, N.; Kundu, T.K. Garcinol and its role in chronic diseases. Adv. Exp. Med. Biol. 2016, 928, 435–452. [Google Scholar] [PubMed]
- Jeon, Y.J.; Jung, S.N.; Yun, J.; Lee, C.W.; Choi, J.; Lee, Y.J.; Han, D.C.; Kwon, B.M. Ginkgetin inhibits the growth of du-145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity. Cancer Sci. 2015, 106, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Shirzad, M.; Heidarian, E.; Beshkar, P.; Gholami-Arjenaki, M. Biological effects of hesperetin on interleukin-6/phosphorylated signal transducer and activator of transcription 3 pathway signaling in prostate cancer pc3 cells. Pharmacogn. Res. 2017, 9, 188–194. [Google Scholar]
- Kang, S.; Kim, J.E.; Li, Y.; Jung, S.K.; Song, N.R.; Thimmegowda, N.R.; Kim, B.Y.; Lee, H.J.; Bode, A.M.; Dong, Z.; et al. Hirsutenone in alnus extract inhibits akt activity and suppresses prostate cancer cell proliferation. Mol. Carcinog. 2015, 54, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.I.C.; Toyang, N.J.; Watson, C.T.; Ayeah, K.N.; Bryant, J. Hlbt-100: A highly potent anti-cancer flavanone from Tillandsia recurvata (L.). Cancer Cell Int. 2017, 17, 38. [Google Scholar] [CrossRef]
- Hahm, E.-R.; Karlsson, A.I.; Bonner, M.Y.; Arbiser, J.L.; Singh, S.V. Honokiol inhibits androgen receptor activity in prostate cancer cells. Prostate 2014, 74, 408–420. [Google Scholar] [CrossRef]
- Miura, Y.; Oyama, M.; Iguchi, K.; Ito, T.; Baba, M.; Shikama, Y.; Usui, S.; Hirano, K.; Iinuma, M.; Mikamo, H. Anti-androgenic activity of icarisid II from Epimedium herb in prostate cancer lncap cells. J. Nutr. Sci. Vitaminol. 2015, 61, 201–204. [Google Scholar] [CrossRef]
- Park, S.Y.; Lim, S.S.; Kim, J.K.; Kang, I.J.; Kim, J.S.; Lee, C.; Kim, J.; Park, J.H. Hexane-ethanol extract of glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of du145 human prostate cancer cells. Br. J. Nutr. 2010, 104, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Seon, M.R.; Park, S.Y.; Kwon, S.J.; Lim, S.S.; Choi, H.J.; Park, H.; Lim, D.Y.; Kim, J.S.; Lee, C.H.; Kim, J.; et al. Hexane/ethanol extract of glycyrrhiza uralensis and its active compound isoangustone a induce g1 cycle arrest in du145 human prostate and 4t1 murine mammary cancer cells. J. Nutr. Biochem. 2012, 23, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Chen, S.; Ma, J.; Cui, J.; Li, Q.; Meng, G.; Wang, L. Juglone suppresses epithelial-mesenchymal transition in prostate cancer cells via the protein kinase b/glycogen synthase kinase-3beta/snail signaling pathway. Oncol. Lett. 2018, 16, 2579–2584. [Google Scholar] [PubMed]
- McKeown, B.T.; McDougall, L.; Catalli, A.; Hurta, R.A. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins. Nutr. Cancer 2014, 66, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, H.; Yang, L.; Li, P. Mangiferin inhibition of proliferation and induction of apoptosis in human prostate cancer cells is correlated with downregulation of b-cell lymphoma-2 and upregulation of microrna-182. Oncol. Lett. 2016, 11, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Nunez Selles, A.J.; Daglia, M.; Rastrelli, L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 2016, 42, 475–491. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Kim, S.L.; Choi, J.W.; Seo, J.Y.; Choi, D.J.; Park, Y.I. Corn silk maysin induces apoptotic cell death in pc-3 prostate cancer cells via mitochondria-dependent pathway. Life Sci. 2014, 119, 47–55. [Google Scholar] [CrossRef]
- Shokoohinia, Y.; Hosseinzadeh, L.; Alipour, M.; Mostafaie, A.; Mohammadi-Motlagh, H.-R. Comparative evaluation of cytotoxic and apoptogenic effects of several coumarins on human cancer cell lines: Osthole induces apoptosis in p53-deficient h1299 cells. Adv. Pharmacol. Sci. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Kelsang, N.; Tu, G.; Kong, D.; Lu, J.; Zhang, Y.; Liang, H.; Tu, P.; Zhang, Q. Structurally diverse cytotoxic dimeric chalcones from Oxytropis chiliophylla. J. Nat. Prod. 2018, 81, 307–315. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.Y.; Lei, Z.M.; Wan, L.J.; Zhu, X.W.; Ye, F.; Tong, Y.Y. Anti-proliferative effects of paeonol on human prostate cancer cell lines du145 and pc-3. J. Physiol. Biochem. 2017, 73, 157–165. [Google Scholar] [CrossRef]
- Tsai, C.C.; Chuang, T.W.; Chen, L.J.; Niu, H.S.; Chung, K.M.; Cheng, J.T.; Lin, K.C. Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells. World J. Gastroenterol. 2015, 21, 4169–4177. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.P.; Qiu, C.Y.; Yuan, T.; Nie, X.F.; Sun, H.X.; Zhang, Q.; Li, H.X.; Ding, L.Q.; Zhao, F.; Chen, L.X.; et al. Antiproliferative and anti-inflammatory withanolides from Physalis angulata. J. Nat. Prod. 2016, 79, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.H.; Dreckschmidt, N.E.; Verma, A.K. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone refractory prostate cancer. Cancer Res. 2008, 68, 9024–9032. [Google Scholar] [CrossRef] [PubMed]
- Adaramoye, O.; Erguen, B.; Nitzsche, B.; Hopfner, M.; Jung, K.; Rabien, A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human pc-3 and lncap cells. Chem. Biol. Interact. 2017, 274, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabban, S.M.; Zhang, X.; Chen, G.; Mekuria, E.A.; Rakotondraibe, L.H.; Chen, Q.H. Synthesis and anti-proliferative effects of quercetin derivatives. Nat. Prod. Commun. 2015, 10, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, G.; Zhang, X.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. A new class of flavonol-based anti-prostate cancer agents: Design, synthesis, and evaluation in cell models. Bioorg. Med. Chem. Lett. 2016, 26, 4241–4245. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Song, L.; Wang, H.; Wang, J.; Xu, Z.; Xing, N. Quercetin in prostate cancer: Chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential (review). Oncol. Rep. 2015, 33, 2659–2668. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chong, T.; Wang, Z.; Chen, H.; Li, H.; Cao, J.; Zhang, P.; Li, H. A novel anticancer effect of resveratrol: Reversal of epithelialmesenchymal transition in prostate cancer cells. Mol. Med. Rep. 2014, 10, 1717–1724. [Google Scholar] [CrossRef]
- Wang, T.T.Y.; Hudson, T.S.; Wang, T.-C.; Remsberg, C.M.; Davies, N.M.; Takahashi, Y.; Kim, Y.S.; Seifried, H.; Vinyard, B.T.; Perkins, S.N.; et al. Differential effects of resveratrol on androgen-responsive lncap human prostate cancer cells in vitro and in vivo. Carcinogenesis 2008, 29, 2001–2010. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef]
- Lee, C.L.; Hwang, T.L.; Peng, C.Y.; Chen, C.J.; Kuo, C.L.; Chang, W.Y.; Wu, Y.C. Anti-inflammatory and cytotoxic compounds from solanum macaonense. Nat. Prod. Commun. 2015, 10, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Karakurt, S.; Adali, O. Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes. Anti-Cancer Agents Med. Chem. 2016, 16, 781–789. [Google Scholar] [CrossRef]
- Ghasemi, S.; Lorigooini, Z.; Wibowo, J.; Amini-Khoei, H. Tricin isolated from allium atroviolaceum potentiated the effect of docetaxel on pc3 cell proliferation: Role of mir-21. Nat. Prod. Res. 2018, 33, 1828–1831. [Google Scholar] [CrossRef] [PubMed]
- Klosek, M.; Mertas, A.; Krol, W.; Jaworska, D.; Szymszal, J.; Szliszka, E. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol-a natural compound present in Humulus lupulus L. Int. J. Mol. Sci. 2016, 17, 837. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, K.; Shimizu, K.; Ohashi, K.; Takeuchi, Y.; Shimizu, M.; Oku, N. Bauhinia purprea agglutinin-modified liposomes for human prostate cancer treatment. Cancer Sci. 2016, 107, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Wang, D.; Chen, J.; Tao, X. Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int. J. Clin. Exp. Med. 2015, 8, 4059–4065. [Google Scholar] [PubMed]
- Gondim, A.C.S.; Romero-Canelon, I.; Sousa, E.H.S.; Blindauer, C.A.; Butler, J.S.; Romero, M.J.; Sanchez-Cano, C.; Sousa, B.L.; Chaves, R.P.; Nagano, C.S.; et al. The potent anti-cancer activity of Dioclea lasiocarpa lectin. J. Inorg. Biochem. 2017, 175, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Santha, S.; Dwivedi, C. Anticancer effects of sandalwood (Santalum album). Anticancer Res. 2015, 35, 3137–3145. [Google Scholar] [PubMed]
- Farimani, M.M.; Taleghani, A.; Aliabadi, A.; Aliahmadi, A.; Esmaeili, M.A.; Namazi Sarvestani, N.; Khavasi, H.R.; Smiesko, M.; Hamburger, M.; Nejad Ebrahimi, S. Labdane diterpenoids from Salvia leriifolia: Absolute configuration, antimicrobial and cytotoxic activities. Planta Med. 2016, 82, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rayburn, E.R.; Hao, M.; Zhao, Y.; Hill, D.L.; Zhang, R.; Wang, H. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate 2008, 68, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.Y.; Tummala, R.; Nadiminty, N.; Lou, W.; Liu, C.; Yang, J.; Evans, C.P.; Zhou, Q.; Gao, A.C. Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth. Genes Cancer 2010, 1, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, K.; Xiang, Y.; Huang, S.; Tang, Y.; Peng, X.; Wang, X.; Zhu, Y.; Li, J.; Xu, J.; Lin, Z.; et al. Celastrol, an active constituent of the TCM plant Tripterygium wilfordii hook. F. inhibits prostate cancer bone metastasis. Prostate Cancer Prostatic Dis. 2017, 20, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Zhou, J.; Qin, X.; Shi, X.; Zeng, Q.; Liu, J.; Yan, S.; Zhang, L. Diosgenininduced autophagy and apoptosis in a human prostate cancer cell line. Mol. Med. Rep. 2016, 14, 4349–4359. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.A.O.; Rosa, M.N.; Tansini, A.; Oliveira, R.J.S.; Martinho, O.; Lima, J.P.; Pianowski, L.F.; Reis, R.M. In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp. Ther. Med. 2018, 16, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Lin, Z.M.; Wang, M.J.; Dong, Y.W.; Niu, H.M.; Young, C.Y.; Lou, H.X.; Yuan, H.Q. Jungermannenone a and b induce ros-and cell cycle-dependent apoptosis in prostate cancer cells in vitro. Acta Pharmacol. Sin. 2016, 37, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, J.; Zhou, N.; Zhu, W.; Dou, Q.P.; Zhou, K. Isolation of three new annonaceous acetogenins from graviola fruit (Annona muricata) and their anti-proliferation on human prostate cancer cell pc-3. Bioorg. Med. Chem. Lett. 2016, 26, 4382–4385. [Google Scholar] [CrossRef] [PubMed]
- Younis, T.; Khan, M.I.; Khan, M.R.; Rasul, A.; Majid, M.; Adhami, V.M.; Mukhtar, H. Nummularic acid, a triterpenoid, from the medicinal plant Fraxinus xanthoxyloides, induces energy crisis to suppress growth of prostate cancer cells. Mol. Carcinog. 2018, 57, 1267–1277. [Google Scholar] [CrossRef]
- Singh, S.; Dubey, V.; Singh, D.K.; Fatima, K.; Ahmad, A.; Luqman, S. Antiproliferative and antimicrobial efficacy of the compounds isolated from the roots of Oenothera biennis L. J. Pharm. Pharmacol. 2017, 69, 1230–1243. [Google Scholar] [CrossRef]
- Akhtar, N.; Syed, D.N.; Khan, M.I.; Adhami, V.M.; Mirza, B.; Mukhtar, H. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of ampk induces apoptotic death in prostate cancer cells. Oncotarget 2016, 7, 3819–3831. [Google Scholar] [CrossRef]
- Piao, L.; Canguo, Z.; Wenjie, L.; Xiaoli, C.; Wenli, S.; Li, L. Lipopolysaccharides-stimulated macrophage products enhance withaferin a-induced apoptosis via activation of caspases and inhibition of nf-kappab pathway in human cancer cells. Mol. Immunol. 2017, 81, 92–101. [Google Scholar] [CrossRef]
- Panichayupakaranant, P.; Ahmad, M.I. Plumbagin and its role in chronic diseases. Adv. Exp. Med. Biol. 2016, 929, 229–246. [Google Scholar] [PubMed]
- Jiang, C.; Lee, H.J.; Li, G.X.; Guo, J.; Malewicz, B.; Zhao, Y.; Lee, E.O.; Lee, H.J.; Lee, J.H.; Kim, M.S.; et al. Potent antiandrogen and androgen receptor activities of an angelica gigas-containing herbal formulation: Identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer. Cancer Res. 2006, 66, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Katiyar, S.K. Honokiol, an active compound of magnolia plant, inhibits growth, and progression of cancers of different organs. Adv. Exp. Med. Biol. 2016, 928, 245–265. [Google Scholar] [PubMed]
- Dybkowska, E.; Sadowska, A.; Swiderski, F.; Rakowska, R.; Wysocka, K. The occurrence of resveratrol in foodstuffs and its potential for supporting cancer prevention and treatment. A review. Rocz. Panstw. Zakl. Hig. 2018, 69, 5–14. [Google Scholar] [PubMed]
- Perabo, F.G.E.; von Löw, E.C.; Siener, R.; Ellinger, J.; Müller, S.C.; Bastian, P.J. [a critical assessment of phytotherapy for prostate cancer]. Urol. A 2009, 48, 270–271, 274–283. [Google Scholar]
- Wu, C.Y.; Yang, Y.H.; Lin, Y.Y.; Kuan, F.C.; Lin, Y.S.; Lin, W.Y.; Tsai, M.Y.; Yang, J.J.; Cheng, Y.C.; Shu, L.H.; et al. Anti-cancer effect of danshen and dihydroisotanshinone i on prostate cancer: Targeting the crosstalk between macrophages and cancer cells via inhibition of the stat3/ccl2 signaling pathway. Oncotarget 2017, 8, 40246–40263. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Lin, P.-H.; Hsu, R.-J.; Chang, Y.-H.; Cheng, K.-C.; Pang, S.-T.; Lin, S.-K. Complementary traditional chinese medicine therapy improves survival in patients with metastatic prostate cancer. Medicine 2016, 95, e4475. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, A.J.; Leppert, J.T.; Zomorodian, N.; Aronson, W.; Hong, J.; Barnard, R.J.; Seeram, N.; Liker, H.; Wang, H.; Elashoff, R.; et al. Phase ii study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 4018–4026. [Google Scholar] [CrossRef]
- Pantuck, A.J.; Leppert, J.T.; Zomorodian, N.; Seeram, N.; Seiler, D.; Liker, H.; Wang, H.-j.; Elashoff, R.; Heber, D.; Belldegrun, A.S. 831: Phase ii study of pomegranate juice for men with rising PSA following surgery or radiation for prostate cancer. J. Urol. 2005, 173, 225–226. [Google Scholar] [CrossRef]
- Paller, C.J.; Ye, X.; Wozniak, P.J.; Gillespie, B.K.; Sieber, P.R.; Greengold, R.H.; Stockton, B.R.; Hertzman, B.L.; Efros, M.D.; Roper, R.P.; et al. A randomized phase ii study of pomegranate extract for men with rising psa following initial therapy for localized prostate cancer. Prostate Cancer Prostatic Dis. 2013, 16, 50–55. [Google Scholar] [CrossRef]
- Thomas, R.; Williams, M.; Sharma, H.; Chaudry, A.; Bellamy, P. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on psa progression in men with prostate cancer—The UK NCRN pomi-t study. Prostate Cancer Prostatic Dis. 2014, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Alumkal, J.J.; Slottke, R.; Schwartzman, J.; Cherala, G.; Munar, M.; Graff, J.N.; Beer, T.M.; Ryan, C.W.; Koop, D.R.; Gibbs, A.; et al. A phase ii study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investig. New Drugs 2015, 33, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, T.N.; Ornstrup, M.J.; Poulsen, M.M.; Jorgensen, J.O.; Hougaard, D.M.; Cohen, A.S.; Neghabat, S.; Richelsen, B.; Pedersen, S.B. Resveratrol reduces the levels of circulating androgen precursors but has no effect on, testosterone, dihydrotestosterone, psa levels or prostate volume. A 4-month randomised trial in middle-aged men. Prostate 2015, 75, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Paller, C.J.; Rudek, M.A.; Zhou, X.C.; Wagner, W.D.; Hudson, T.S.; Anders, N.; Hammers, H.J.; Dowling, D.; King, S.; Antonarakis, E.S.; et al. A phase i study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: Safety, tolerability, and dose determination. Prostate 2015, 75, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- De La Taille, A.; Buttyan, R.; Hayek, O.; Bagiella, E.; Shabsigh, A.; Burchardt, M.; Burchardt, T.; Chopin, D.K.; Katz, A.E. Herbal therapy pc-spes: In vitro effects and evaluation of its efficacy in 69 patients with prostate cancer. J. Urol. 2000, 164, 1229–1234. [Google Scholar] [CrossRef]
Risk Group | Relative Risk of Prostate Cancer |
---|---|
Father and brother had prostate cancer | 9 |
≥2 first degree relatives having prostate cancer | 4.39 |
Brothers having prostate cancer | 3.14 |
First degree relative with prostate cancer at the age of<65 | 2.87 |
Second degree relative with prostate cancer | 2.52 |
One first degree relative with prostate cancer | 2.48 |
Father having prostate cancer | 2.35 |
First degree relative with prostate cancer at the age of ≥65 | 1.92 |
Risk Group | Clinical Stage | PSA (ng/mL) | Gleason Score | Biopsy Criteria |
---|---|---|---|---|
Low | T1a or T1c | <10 | 2–6 | Unilateral or <50% of core involved |
Intermediate | T1b, T1c, or T2a | <10 | 3 + 4 = 7 | Bilateral |
High | T1b, T1c, T2b, or T3 | 10–20 | 4 + 3 = 7 | >50% of core involved or perineural invasion or ductal differentiation |
Very high | T4 | >20 | 8–10 | Lymphovascular invasion or neuroendocrine differentiation |
Plant Species | Family | In Vitro | In Vivo | References |
---|---|---|---|---|
Acacia catechu | Fabaceae | + | - | [110] |
Achillea santolinoides | Asteraceae | + | - | [111] |
Achillea teretifolia | Asteraceae | + | - | [112] |
Allium wallichii | Amaryllidaceae | + | - | [113] |
Aloe perryi | Xanthorrhoeaceae | + | - | [114] |
Anaxagorea brevipes | Annonaceae | + | - | [115] |
Angelica gigas | Apiaceae | - | + | [116,117] |
Annona muricata | Annonaceae | + | - | [118] |
Anogeissus latifolia | Combretaceae | + | - | [110] |
Apocynum venetum | Apocynaceae | + | - | [119] |
Arachis hypogaea | Fabaceae | + | - | [120] |
Baliospermum montanum | Euphorbiaceae | + | + | [121] |
Berberis libanotica | Berberidaceae | + | - | [122] |
Byrsonima crassifolia | Malpighiaceae | + | - | [123] |
Calliandra portoricensis | Fabaceae | + | - | [124] |
Capsicum chinense | Solanaceae | + | - | [123] |
Carica papaya | Caricaceae | + | - | [125] |
Cascabela peruviana | Apocynaceae | + | - | [126] |
Chenopodium hybridum | Amaranthaceae | + | - | [127] |
Cnidoscolus chayamansa | Euphorbiaceae | + | - | [123] |
Cornus mas | Cornaceae | + | - | [128] |
Costus pulverulentus | Costaceae | + | - | [129] |
Crataegus Pinnatifida | Rosaceae | + | - | [130] |
Crocus sativus | Iridaceae | + | + | [131,132,133] |
Curcuma longa | Zingiberaceae | + | - | [131,134] |
Cymbopogon citratus | Poaceae | + | - | [135] |
Cymbopogon giganteus | Poaceae | + | - | [135] |
Euphorbia microsciadia | Euphorbiaceae | + | - | [111] |
Euphorbia szovitsii | Euphorbiaceae | + | - | [111] |
Eurycoma longifolia | Simaroubaceae | + | + | [136] |
Fagara zanthoxyloides | Rutaceae | + | - | [137] |
Fagopyrum esculentum | Polygonaceae | + | - | [138] |
Fagopyrum tataricum | Polygonaceae | + | - | [138] |
Ficus deltoidea var. angustifolia | Moraceae | + | - | [139] |
Ficus deltoidea var. deltoidea | Moraceae | + | - | [139] |
Formosa lambsquarters | Amaranthaceae | + | - | [138] |
Glycine max | Fabaceae | + | - | [140] |
Glycyrrhiza uralensis | Fabaceae | + | - | [141] |
Haplophyllum perforatum | Rutaceae | + | - | [111] |
Helicteres hirsuta | Malvaceae | + | - | [142] |
Hertia angustifolia | Asteraceae | + | - | [111] |
Hibiscus sabdariffa | Malvaceae | + | + | [143] |
Leucaena leucocephala | Fabaceae | + | - | [123] |
Lysimachia ciliata | Primulaceae | + | - | [144] |
Malmea depressa | Annonaceae | + | - | [123] |
Maytenus royleana | Celastraceae | + | + | [145] |
Medicago sativa | Fabaceae | + | - | [111] |
Melissa officinalis | Lamiaceae | + | - | [146,147] |
Mentha arvensis | Lamiaceae | + | - | [148] |
Mentha spicata | Lamiaceae | + | - | [148] |
Mentha viridis | Lamiaceae | + | - | [148] |
Moringa oleifera | Moringaceae | + | - | [110] |
Nepeta cataria | Lamiaceae | + | - | [149] |
Nigella sativa | Ranunculaceae | + | - | [131,150] |
Oryza sativa | Poaceae | + | - | [151] |
Paeonia lactiflora | Paeoniaceae | + | - | [152]. |
Paramignya trimera | Rutaceae | + | - | [153] |
Phyllanthus amarus | Phyllanthaceae | + | - | [154] |
Phyllanthus niruri | Phyllanthaceae | + | - | [154] |
Phyllanthus urinaria | Phyllanthaceae | + | - | [154] |
Phyllanthus watsonii | Phyllanthaceae | + | - | [154] |
Plumbago zeylanica | Plumbaginaceae | + | - | [155] |
Polygonatum sp | Asparagaceae | + | - | [156] |
Pseudocedrela kotchyi | Meliaceae | + | - | [137] |
Psidium guajava | Myrtaceae | + | + | [138,157,158] |
Punica granatum | Lythraceae | + | + | [5,159,160,161] |
Quisqualis indica | Combretaceae | + | + | [162] |
Remotiflori radix | Campanulaceae | + | + | [163] |
Salvia multicaulis Vahl | Lamiaceae | + | - | [111] |
Salvia trilobal | Lamiaceae | + | - | [164] |
Sigesbeckia orientalis | Asteraceae | + | - | [165] |
Sophora alopecuroides | Fabaceae | + | - | [111] |
Sutherlandia frutescens | Fabaceae | + | + | [166] |
Terminalia bellerica | Combretaceae | + | - | [110] |
Terminalia catappa | Combretaceae | + | - | [123] |
Urtica dioica | Urticaceae | + | - | [111,167] |
Vitis rotundifolia | Vitaceae | + | - | [168] |
Wedelia chinensis | Asteraceae | - | + | [169,170] |
Withania coagulans | Solanaceae | - | + | [171] |
Xylopia aethiopica | Annonaceae | + | - | [172] |
Zanthoxyli fructus | Rutaceae | + | + | [173] |
Zingiber officinale | Zingiberaceae | + | + | [131,174,175] |
Bioactive Compounds | In Vitro | In Vivo | References |
---|---|---|---|
Alkaloids | |||
(−)-Anonaine | + | - | [182] |
(−)-Caaverine | + | - | [182] |
(−)-Nuciferine | + | - | [182] |
6-Hydroxycrinamine | + | - | [183] |
7-Hydroxydehydronuciferine | + | - | [182] |
Capsaicin | + | - | [184] |
Crinamine | + | - | [183] |
Emetine | + | + | [185,186] |
Liriodenine | + | - | [182] |
Lycorine | + | + | [183,187] |
Matrine | + | - | [188] |
Oxymatrine | + | - | [188] |
Oxysophocarpine | + | - | [188] |
Schisanspheninal A | + | - | [189] |
Sophocarpine | + | - | [188] |
Tetrandrine | + | - | [190] |
Carotenoids | |||
Crocetin | + | - | [133] |
Crocin | + | - | [132] |
Fatty acid | |||
(E)-ethyl 8-methylnon-6-enoate | + | - | [123] |
Phenolic compounds | |||
α-Mangostin | + | + | [191]. |
γ-Tocopherol | + | - | [192] |
δ-Tocotrienol | + | - | [192] |
(-)-5,7-Difluoroepicatechin-3-O-gallate | + | - | [193] |
(-)-Epicatechin-3-O-gallate | + | - | [193] |
10-Gingerol | + | - | [175] |
6-Gingerol | + | - | [175] |
6-Prenylnaringenin | + | - | [194] |
6-Shogoal | + | - | [175] |
7-o-Galloyl catechin | + | - | [195] |
8-Gingerol | + | - | [175] |
8-Prenylnaringenin | + | - | [194] |
Afzelin | + | - | [196] |
Altholactone | + | - | [197] |
Apigenin | + | [198] | |
Camptothin B | + | - | [141] |
Catechin | + | - | [195] |
Catechin-3-o-gallate | + | - | [195] |
Chlorogenic acid | + | - | [130] |
Chrysin | + | - | [199] |
Cinnamaldehyde | + | - | [200] |
Cornusiin A | + | - | [141] |
Cornusiin H | + | - | [141] |
Curcumin | + | + | [201,202,203,204] |
Decursin | + | - | [117] |
Decursinol angelate | + | - | [117] |
Dehydrozingerone | + | - | [205] |
Delphinidin | + | + | [206,207] |
Ellagic acid | + | + | [208,209] |
Eugenol | + | - | [200] |
Fisetin | + | + | [210] |
Flavokawain A | + | + | [211] |
Flavopiridol | + | + | [212] |
Garcinol | + | + | [213,214] |
Ginkgetin | + | + | [215] |
Hesperetin | + | - | [216] |
Hirsutenone | + | - | [217] |
HLBT-100 or HLBT-001 (5,3′-dihydroxy- 6,7,8,4′-tetramethoxyflavanone) | + | - | [218] |
Honokiol | + | - | [219] |
Icarisid II | + | - | [220] |
Isoangustone A | + | - | [221,222] |
Isovitexin | + | - | [139] |
Juglone | + | - | [223] |
Licoricidin | + | - | [221,222] |
Magnolol | + | - | [224] |
Mangiferin | + | + | [225,226] |
Maysin | + | - | [227] |
Methyl gallate | + | - | [195] |
Osthol | + | - | [4,228] |
Oxyfadichalcones A | + | - | [229] |
Oxyfadichalcones B | + | - | [229] |
Oxyfadichalcones C | + | - | [229] |
Oxyfadichalcones D | + | - | [229] |
Oxyfadichalcones E | + | - | [229] |
Oxyfadichalcones F | + | - | [229] |
Oxyfadichalcones G | + | - | [229] |
Paeonol | + | + | [230] |
Peperotetraphin | + | - | [231] |
Physangulatins I | + | - | [232] |
Plumbagin | + | + | [155,233] |
Punicalagin | + | - | [234] |
Quercetin | + | + | [235,236,237] |
Resveratrol | + | + | [238,239,240] |
Rutin | + | - | [241] |
Tannic acid | + | - | [242] |
Tricin | + | - | [243] |
Xanthohumol | + | - | [188,244] |
Protein | |||
Agglutinin | + | + | [245] |
Diffusa cyclotide 1 | + | - | [246] |
Diffusa cyclotide 2 | + | - | [246] |
Diffusa cyclotide 3 | + | + | [246] |
Lectin ConBr | + | - | [247] |
Lectin ConM | + | - | [247] |
Lectin DLasiL | + | - | [247] |
Lectin DSclerL | + | - | [247] |
Terpenoids | |||
α-Santalol | + | + | [248] |
4S,5R,9S,10R-Labdatrien-6,19-olide | + | - | [249] |
(20R)-Dammarane-3β,12β,20,25-tetrol (25-OH-PPD) | + | + | [250] |
Andrographolide | + | + | [251] |
Celastrol | + | + | [252] |
Citral | + | - | [135] |
Diosgenin | + | - | [253]. |
Euphol | + | - | [254] |
Isocuparenal | + | - | [189] |
Jungermannenone A | + | - | [255] |
Jungermannenone B | + | - | [255] |
Muricins M | + | - | [256] |
Muricins N | + | - | [256] |
Nummularic acid | + | - | [257] |
Oenotheralanosterol B | + | - | [258] |
Plectranthoic acid | + | - | [259] |
Sutherlandioside D | + | - | [166]. |
Widdaranal A | - | [189] | |
Widdaranal B | + | - | [189] |
Widdarol peroxide | + | - | [189] |
Withaferin A | + | - | [260] |
Phytochemicals/Formulae | Bioactive Effect | Reference |
---|---|---|
Danshen (Salvia miltiorrhiza) | Protective effects; Improved survival (5–10%) | [266] |
TCM formulae (Chai-Hu-Jia-Long-Gu-Mu-Li-Tang) | Improved survival | [267] |
Pomegranate juice | Extension of PSA doubling time, with no adverse effects | [268,269,270] |
Pomegranate, green tea, broccoli, turmeric | Decreased PSA levels | [271] |
Resveratrol | Decreased the circulating levels of androgen precursors | [273] |
Extension of PSA doubling time, with no adverse effects | [274] | |
PC-SPEC | Decreased PSA levels | [275] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, B.; Fokou, P.V.T.; Yamthe, L.R.T.; Tali, B.T.; Adetunji, C.O.; Rahavian, A.; Mudau, F.N.; Martorell, M.; Setzer, W.N.; Rodrigues, C.F.; et al. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019, 11, 1483. https://doi.org/10.3390/nu11071483
Salehi B, Fokou PVT, Yamthe LRT, Tali BT, Adetunji CO, Rahavian A, Mudau FN, Martorell M, Setzer WN, Rodrigues CF, et al. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients. 2019; 11(7):1483. https://doi.org/10.3390/nu11071483
Chicago/Turabian StyleSalehi, Bahare, Patrick Valere Tsouh Fokou, Lauve Rachel Tchokouaha Yamthe, Brice Tchatat Tali, Charles Oluwaseun Adetunji, Amirhossein Rahavian, Fhatuwani Nixwell Mudau, Miquel Martorell, William N. Setzer, Célia F. Rodrigues, and et al. 2019. "Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents" Nutrients 11, no. 7: 1483. https://doi.org/10.3390/nu11071483
APA StyleSalehi, B., Fokou, P. V. T., Yamthe, L. R. T., Tali, B. T., Adetunji, C. O., Rahavian, A., Mudau, F. N., Martorell, M., Setzer, W. N., Rodrigues, C. F., Martins, N., Cho, W. C., & Sharifi-Rad, J. (2019). Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients, 11(7), 1483. https://doi.org/10.3390/nu11071483