Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome
Abstract
:1. Overview
2. Physical Activity and the Metabolic Syndrome
2.1. Observational Studies Associating Physical Activity Patterns with Metabolic Risk
2.2. Exercise Intervention Studies and the Metabolic Syndrome
2.3. Meta-Analyses of Exercise and Cardiometabolic Risk
2.4. Synopsis—Physical Activity and the Metabolic Syndrome
3. Cardiorespiratory Fitness and the Metabolic Syndrome
Synopsis—Cardiorespiratory Fitness and the Metabolic Syndrome
4. Mechanisms Underlying the Metabolic Syndrome and Implications for Physical Activity and Fitness
4.1. Pathophysiology of Metabolic Syndrome
4.2. Insulin Resistance
4.3. Adipose Fuel Metabolism
4.4. Inflammation
4.5. Genetics/Epigenetics
4.6. Circadian Disruption and Metabolic Syndrome
5. Summary
Funding
Conflicts of Interest
References
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am. J. Public Health 2016, 106, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Haller, H. Epidemiology and associated risk factors of hyperlipoproteinemia. Zeitschrift für Sie Gesamte Innere Medizin und Ihre Grenzgebiete 1977, 32, 124–128. [Google Scholar]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Sperling, L.S.; Mechanick, J.I.; Neeland, I.J.; Herrick, C.J.; Després, J.P.; Ndumele, C.E.; Vijayaraghavan, K.; Handelsman, Y.; Puckrein, G.A.; Araneta, M.R.; et al. The CardioMetabolic Health Alliance: Working toward a new care model for the metabolic syndrome. J. Am. Coll. Cardiol. 2015, 66, 1050–1067. [Google Scholar] [CrossRef] [PubMed]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk. A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D.; Filipp, S.L.; Gurka, M.J. Use of a metabolic syndrome severity z score to track risk during treatment of prediabetes: An analysis of the diabetes prevention program. Diabetes Care 2018, 41, dc181079. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; McAuley, P.; Lavie, C.; Despres, J.P.; Arena, R.; Kokkinos, P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: Their independent and interwoven importance to health status. Prog. Cardiovasc. Dis. 2015, 57, 306–314. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Physical Activity: Facts and Statistics. Available online: https://www.hhs.gov/fitness/resource-center/facts-and-statistics/index.html (accessed on 27 January 2019).
- Chau, J.; Chey, T.; Burks-Young, S.; Engelen, L.; Bauman, A. Trends in prevalence of leisure time physical activity and inactivity: Results from Australian National Health Surveys 1989 to 2011. Aust. N. Z. J. Public Health 2017, 41, 617–624. [Google Scholar] [CrossRef]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Duncan, G.E. Exercise, fitness, and cardiovascular disease risk in type 2 diabetes and the metabolic syndrome. Curr. Diab. Rep. 2006, 6, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Church, T. Exercise in obesity, metabolic syndrome, and diabetes. Prog. Cardiovasc. Dis. 2011, 53, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, X.; Liu, Y.; Sun, X.; Wang, B.; Ren, Y.; Zhao, Y.; Zhou, J.; Han, C.; Yin, L.; et al. Leisure-time physical activity and incident metabolic syndrome: A systematic review and dose-response meta-analysis of cohort studies. Metabolism 2017, 75, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B. Physical activity in obesity and metabolic syndrome. Ann. N. Y. Acad. Sci. 2013, 1281, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.; Goenka, S.; Lambert, V.; Pratt, M. Physical Activity for the Prevention of Cardiometabolic Disease. In Cardiovascular, Respiratory, and Related Disorders, 3rd ed.; Prabhakaran, D., Anand, S., Gaziano, T.A., Mbanya, J.C., Wu, Y., Nugent, R., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; Chapter 5. [Google Scholar]
- Myers, J. The new AHA/ACC guidelines on cardiovascular risk: When will fitness get the recognition it deserves? Mayo Clin. Proc. 2014, 89, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A. physical activity to combat chronic diseases and escalating health care costs: The unfilled prescription. Curr. Sports Med. Rep. 2008, 7, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Sallis, R.E.; Matuszak, J.M.; Baggish, A.L.; Franklin, B.A.; Chodzko-Zajko, W.; Fletcher, B.J.; Gregory, A.; Joy, E.; Matheson, G.; McBride, P.; et al. Call to Action on Making Physical Activity Assessment and Prescription a Medical Standard of Care. Curr. Sports Med. Rep. 2016, 15, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Berra, K.; Rippe, J.; Manson, J.E. Making Physical Activity Counseling a Priority in Clinical Practice: The Time for Action Is Now. JAMA 2015, 314, 2617–2618. [Google Scholar] [CrossRef] [PubMed]
- Omura, J.D.; Bellissimo, M.P.; Watson, K.B.; Loustalot, F.; Fulton, J.E.; Carlson, S.E. Primary care providers’ physical activity counseling and referral practices and barriers for cardiovascular disease prevention. Prev. Med. 2018, 108, 115–122. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2018.
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar]
- Henriksen, E.J. Effects of acute exercise and exercise training on insulin resistance. J. Appl. Physiol. 2002, 93, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Thune, I.; Njølstad, I.; Løchen, M.L.; Førde, O.H. Physical activity improves the metabolic risk profiles in men and women: The Tromsø Study. Arch. Intern. Med. 1998, 158, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, D.E.; Lakka, H.M.; Salonen, J.T.; Niskanen, L.K.; Rauramaa, R.; Lakka, T.A. Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 2002, 25, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Sisson, S.B.; Camhi, S.M.; Church, T.S.; Tudor-Locke, C.; Johnson, W.D.; Katzmarzyk, P.T. Accelerometer-determined steps/day and metabolic syndrome. Am. J. Prev. Med. 2010, 38, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Griffin, S.J.; Wareham, N.J. Physical activity and metabolic risk in individuals with a family history of type 2 diabetes. Diabetes Care 2007, 30, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 2013, 369, 145–154. [Google Scholar] [CrossRef]
- Stewart, K.J.; Bacher, A.C.; Turner, K.; Lim, J.G.; Hees, P.S.; Shapiro, E.P.; Tayback, M.; Ouyang, P. Exercise and risk factors associated with metabolic syndrome in older adults. Am. J. Prev. Med. 2005, 28, 9–18. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Leon, A.S.; Wilmore, J.H.; Skinner, J.S.; Rao, D.C.; Rankinen, T.; Bouchard, C. Targeting the metabolic syndrome with exercise: Evidence from the HERITAGE Family Study. Med. Sci. Sports Exerc. 2003, 35, 1703–1709. [Google Scholar] [CrossRef]
- Balducci, S.; Zanuso, S.; Massarini, M.; Corigliano, G.; Nicolucci, A.; Missori, S.; Cavallo, S.; Cardelli, P.; Alessi, E.; Pugliese, G.; et al. The Italian Diabetes and Exercise Study (IDES): Design and methods for a prospective Italian multicentre trial of intensive lifestyle intervention in people with type 2 diabetes and the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 585–595. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Orchard, T.J.; Temprosa, M.; Goldberg, R.; Haffner, S.; Ratner, R.; Marcovina, S.; Fowler, S. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: The Diabetes Prevention Program randomized trial. Ann. Intern. Med. 2005, 142, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Roumen, C.; Feskens, E.J.; Corpeleijn, E.; Mensink, M.; Saris, W.H.; Blaak, E.E. Predictors of lifestyle intervention outcome and dropout: The SLIM study. Eur. J. Clin. Nutr. 2011, 65, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Den Boer, A.T.; Herraets, I.J.; Stegen, J.; Roumen, C.; Corpeleijn, E.; Schaper, N.C.; Feskens, E.; Blaak, E.E. Prevention of the metabolic syndrome in IGT subjects in a lifestyle intervention: Results from the SLIM study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1147–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wewege, M.A.; Thom, J.M.; Rye, K.A.; Parmenter, B.J. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis 2018, 274, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Naci, H.; Ioannidis, J.P. Comparative effectiveness of exercise and drug interventions on mortality outcomes: Metaepidemiological study. BMJ 2013, 347, f5577. [Google Scholar] [CrossRef] [PubMed]
- Ostman, C.; Smart, N.A.; Morcos, D.; Duller, A.; Ridley, W.; Jewiss, D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2017, 16, 110. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, L.; Carnethon, M.R.; Wang, Y.; Hanley, A.J.; Fortmann, S.P.; Haffner, S.M.; Wagenknecht, L. Predictors of the incident metabolic syndrome in adults: The Insulin Resistance Atherosclerosis Study. Diabetes Care 2004, 27, 788–793. [Google Scholar] [CrossRef] [PubMed]
- LaMonte, M.J.; Ainsworth, B.E. Quantifying energy expenditure and physical activity in the context of dose response. Med. Sci. Sports Exerc. 2001, 33, S370–S378. [Google Scholar] [CrossRef]
- Hassinen, M.; Lakka, T.; Savonen, K.; Litmanen, H.; Kiviaho, L.; Laaksonen, D.E.; Komulainen, P.; Rauramaa, R. Cardiorespiratory Fitness as a Feature of Metabolic Syndrome in Older Men and Women. Diabetes Care 2008, 31, 1242–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, E.; Imboden, M.T.; Harber, M.P.; Finch, H.; Kaminsky, L.A.; Whaley, M.H. Cardiorespiratory Fitness Is Inversely Associated with Clustering of Metabolic Syndrome Risk Factors: The Ball State Adult Fitness Program Longitudinal Lifestyle Study. Mayo Clin. Proc. Innov. Qual. Outcomes 2018, 2, 155–164. [Google Scholar] [CrossRef] [PubMed]
- LaMonte, M.J.; Barlow, C.E.; Jurca, R.; James, B.; Kampert, J.B.; Church, T.S.; Blair, S.N. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: A prospective study of men and women. Circulation 2005, 112, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Adams-Campbell, L.L.; Dash, C.; Kim, B.H.; Hicks, J.C.; Makambi, K.; Hagberg, J.M. Cardiorespiratory fitness and metabolic syndrome in postmenopausal African-American women. Int. J. Sports Med. 2016, 37, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Hassinen, M.; Lakka, T.; Hakola, L.; Savonen, K.; Komulainen, P.; Litmanen, H.; Kiviniemi, V.; Kouki, R.; Heikkilá, H.; Rauramaa, R. Cardiorespiratory fitness and metabolic syndrome in older men and women. Diabetes Care 2010, 33, 1655–1657. [Google Scholar] [CrossRef] [PubMed]
- Carnethon, M.R.; Gidding, S.S.; Nehgme, R.; Sidney, S.; Jacobs, D.R., Jr.; Liu, K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA 2003, 290, 3092–3100. [Google Scholar] [CrossRef]
- Franks, P.W.; Ekelund, U.; Brage, S.; Wong, M.-Y.; Wareham, N.J. Does the association of habitual activity with the metabolic syndrome differ by level of cardiorespiratory fitness? Diabetes Care 2004, 27, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Artero, C.G.; Sui, X.; Church, T.S.; Blair, S.N. Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, metabolic syndrome in the aerobics center longitudinal study. Mayo Clin. Proc. 2013, 88, 259–270. [Google Scholar] [CrossRef]
- Ingle, L.; Mellis, M.; Brodie, D.; Sandercock, G.R. Associations between cardiorespiratory fitness and the metabolic syndrome in British men. Heart 2017, 103, 524–528. [Google Scholar] [CrossRef]
- Cheal, K.L.; Abbasi, F.; Lamendola, C.; McLaughlin, T.; Reaven, G.M.; Ford, E.S. Relationship to insulin resistance of the adult treatment panel III diagnostic criteria for identification of the metabolic syndrome. Diabetes 2004, 53, 1195–2000. [Google Scholar] [CrossRef]
- Meigs, J.B.; Wilson, P.W.; Fox, C.S.; Vasan, R.S.; Nathan, D.M.; Sullivan, L.M.; D’Agostino, R.B. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab. 2006, 91, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Himsworth, H.P. Diabetes mellitus: Its differentiation into insulin sensitive and insulin insensitive types. Lancet 1936, 1, 127–130. [Google Scholar] [CrossRef]
- Yalow, R.S.; Berson, S.A. Plasma insulin concentrations in nondiabetic and early diabetic subjects. Determinations by a new sensitive immuno-assay technique. Diabetes 1960, 9, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.; Olefsky, J.M.; Reaven, G.M. Further evidence that insulin resistance exists in patients with chemical diabetes. Diabetes 1974, 23, 674–678. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef] [PubMed]
- Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med. 1993, 329, 1988–1992. [Google Scholar] [CrossRef]
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Haffner, S.M.; Valdez, R.A.; Hazuda, H.P.; Mitchell, B.D.; Morales, P.A.; Stern, M.P. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992, 41, 715–722. [Google Scholar] [CrossRef]
- Rewers, M.; Zaccaro, D.; D’Agostino, R.; Haffner, S.; Saad, M.F.; Selby, J.V.; Bergman, R.; Savage, P. Insulin sensitivity, insulinemia, and coronary artery disease: The Insulin Resistance Atherosclerosis Study. Diabetes Care 2004, 27, 781–787. [Google Scholar] [CrossRef]
- Solymoss, B.C.; Bourassa, M.G.; Campeau, L.; Sniderman, A.; Marcil, M.; Lespérance, J.; Lévesque, S.; Varga, S. Effect of increasing metabolic syndrome score on atherosclerotic risk profile and coronary artery disease angiographic severity. Am. J. Cardiol. 2004, 93, 159–164. [Google Scholar] [CrossRef]
- Jones, C.N.; Pei, D.; Staris, P.; Polonsky, K.S.; Chen, Y.D.; Reaven, G.M. Alterations in the glucose-stimulated insulin secretory dose-response curve and in insulin clearance in nondiabetic insulin-resistant individuals. J. Clin. Endocrinol. Metab. 1997, 82, 1834–1838. [Google Scholar] [CrossRef]
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Nolan, C.J.; Prentki, M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diabetes Vasc. Dis. Res. 2019, 16, 118–127. [Google Scholar] [CrossRef]
- Sylow, L.; Kleinert, M.; Richter, E.A.; Jensen, T.E. Exercise-stimulated glucose uptake regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 2017, 13, 133–148. [Google Scholar] [CrossRef]
- Poehlman, E.T.; Dvorak, R.V.; DeNino, W.F.; Brochu, M.; Ades, P.A. Different mechanisms leading to the stimulation of muscle glucose transport: Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: A controlled randomized trial. J. Clin. Endocrinol. Metab. 2000, 85, 2463–2468. [Google Scholar]
- Kylin, E. Studien über das Hypertonie-Hyperglykämie- Hyperurikämiesyndrom. Zentralblatt für Innere Medizin 1923, 44, 105–127. [Google Scholar]
- Vague, J. The degree of masculine differentiation of obesities. Am. J. Clin. Nutr. 1956, 4, 20–34. [Google Scholar] [CrossRef]
- Kaplan, N.M. The Deadly Quartet. Upper-Body Obesity, Glucose Intolerance, Hypertriglyceridemia, and Hypertension. Arch. Intern. Med. 1989, 149, 1514–1520. [Google Scholar] [CrossRef]
- Després, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathiu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef]
- McLaughlin, T.; Lamendola, C.; Liu, A.; Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 2011, 96, E1756–E1760. [Google Scholar] [CrossRef]
- Bays, H.E. Adiposopathy: Is “sick fat” a cardiovascular disease? J. Am. Coll. Cardiol. 2011, 57, 2461–2473. [Google Scholar] [CrossRef]
- Kim, M.K.; Reaven, G.M.; Chen, Y.D.; Kim, E.; Kim, S.H. Hyperinsulinemia in individuals with obesity: Role of insulin clearance. Obesity 2015, 23, 2430–2434. [Google Scholar] [CrossRef] [Green Version]
- Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1, 785–789. [Google Scholar] [CrossRef]
- Cnop, M.; Ladriere, L.; Hekerman, P.; Ortis, F.; Cardozo, A.K.; Dogusan, Z.; Flamez, D.; Boyce, M.; Yuan, J.; Eizirik, D.L. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J. Biol. Chem. 2007, 282, 3989–3997. [Google Scholar] [CrossRef]
- Conley, S.M.; Zhu, X.Y.; Eirin, A.; Tang, H.; Lerman, A.; van Wijnen, A.J.; Lerman, L.O. Metabolic syndrome alters expression of insulin signaling-related genes in swine mesenchymal stem cells. Gene 2018, 20, 101–106. [Google Scholar] [CrossRef]
- Dutheil, F.; Lac, G.; Lesourd, B.; Chapier, R.; Walther, G.; Vinet, A.; Sapin, V.; Verney, J.; Ouchchane, L.; Duclos, M.; et al. Different modalities of exercise to reduce visceral fat mass and cardiovascular risk in metabolic syndrome: The RESOLVE randomized trial. Int. J. Cardiol. 2013, 168, 3634–3642. [Google Scholar] [CrossRef]
- Kundu, N.; Domingues, C.C.; Nylen, E.S.; Paal, E.; Kokkinos, P.; Sen, S. Endothelium-derived factors influence Differentiation of Fat-Derived Stromal Cells Post-Exercise in Subjects with Prediabetes. Metab. Syndr. Relat. Disord. 2019. [Google Scholar] [CrossRef]
- Lemieux, I.; Pascot, A.; Prud’homme, D.; Almeras, N.; Bogaty, P.; Nadeau, A.; Bergeron, J.; Despres, J.P. Elevated C-reactive protein: Another component of the atherothrombotic profile of abdominal obesity. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 961–967. [Google Scholar] [CrossRef]
- Festa, A.; D’Agostino, R., Jr.; Howard, G.; Mykkanen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef]
- Lee, W.Y.; Park, J.S.; Noh, S.Y.; Rhee, E.J.; Sung, K.C.; Kim, B.S.; Kang, J.H.; Kim, S.W.; Lee, M.H.; Park, J.R. C-reactive protein concentrations are related to insulin resistance and metabolic syndrome as defined by the ATP III report. Int. J. Cardiol. 2004, 97, 101–106. [Google Scholar] [CrossRef]
- Ridker, P.M.; Buring, J.E.; Cook, N.R.; Rifai, N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: An 8-year follow-up of 14 719 initially healthy American women. Circulation 2003, 107, 391–397. [Google Scholar] [CrossRef]
- Demidowich, A.P.; Levine, J.A.; Onyekaba, G.I.; Khan, S.M.; Chen, K.Y.; Brady, S.M.; Broadney, M.M.; Yanovski, J.A. Effects of colchicine in adults with metabolic syndrome: A pilot randomized controlled trial. Diabetes Obes. Metab. 2019, 21, 1642–1651. [Google Scholar] [CrossRef]
- Wedell-Neergaard, A.S.; Krogh-Madsen, R.; Petersen, G.L.; Hansen, Å.M.; Pedersen, B.K.; Lund, R.; Bruunsgaard, H. Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS ONE 2018, 13, e0194991. [Google Scholar] [CrossRef]
- Stensvold, D.; Slørdahl, S.A.; Wisløff, U. Effect of exercise training on inflammation status among people with metabolic syndrome. Metab. Syndr. Relat. Disord. 2012, 10, 267–272. [Google Scholar] [CrossRef]
- Povel, C.M.; Boer, J.M.; Feskens, E.J. Shared genetic variance between the features of the metabolic syndrome: Heritability studies. Obes. Rev. 2011, 12, 952–957. [Google Scholar] [CrossRef]
- Stancakova, A.; Laakso, M. Genetics of metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15, 243–252. [Google Scholar] [CrossRef]
- Povel, C.M.; Boer, J.M.; Reiling, E.; Feskens, E.J. Genetic variants and the metabolic syndrome: A systematic review. Obes. Rev. 2011, 12, 952–967. [Google Scholar] [CrossRef]
- Palizban, A.; Rezaei, M.; Khanahmad, H.; Fazilati, M. Transcription factor 7-like 2 polymorphism and context-specific risk of metabolic syndrome, type 2 diabetes, and dyslipidemia. J. Res. Med. Sci. 2017, 15, 2–24. [Google Scholar] [CrossRef]
- Baudrand, R.; Goodarzi, M.O.; Vaidya, A.; Underwood, P.C.; Williams, J.S.; Jeunemaitre, X.; Hopkins, P.N.; Brown, N.; Raby, B.A.; Lasky-Su, J.; et al. A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism 2015, 64, 1674–1681. [Google Scholar] [CrossRef] [Green Version]
- Castellano-Castillo, D.; Moreno-Indias, I.; Fernández-García, J.C.; Alcaide-Torres, J.; Moreno-Santos, I.; Ocaña, L.; Gluckman, E.; Tinahones, F.; Queipo-Ortuño, M.I.; Cardona, F. Adipose tissue LPL methylation is associated with triglyceride concentrations in the metabolic syndrome. Clin. Chem. 2018, 64, 210–218. [Google Scholar] [CrossRef]
- Turcot, V.; Tchernof, A.; Deshaies, Y.; Pérusse, L.; Bélisle, A.; Marceau, S.; Biron, S.; Lescelleur, O.; Biertho, L.; Vohl, M.C. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin. Epigenetics 2012, 4, 10. [Google Scholar] [CrossRef]
- Castellano-Castillo, D.; Moreno-Indias, I.; Sanchez-Alcoholado, L.; Ramos-Molina, B.; Alcaide-Torres, J.; Morcillo, S.; Ocaña-Wilhelmi, L.; Tinahones, F.; Queipo-Ortuño, M.I.; Cardona, F. Altered adipose tissue DNA methylation status in metabolic syndrome: Relationships between global DNA methylation and specific methylation at adipogenic, lipid metabolism and inflammatory candidate genes and metabolic variables. J. Clin. Med. 2019, 8, 87. [Google Scholar] [CrossRef]
- Gidlund, E.K. Exercise and mitochondria. In Cardiorespiratory Fitness in Cardiometabolic Diseases Prevention and Management in Clinical Practice; Kokkinos, P., Narayan, P., Eds.; Springer: Basel, Switzerland, 2019. [Google Scholar]
- Alibegovic, A.C.; Sonne, M.P.; Højbjerre, L.; Bork-Jensen, J.; Jacobsen, S.; Nilsson, E.; Færch, K.; Hiscock, N.; Mortensen, B.; Friedrichsen, M.; et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am. J. Physiol. Endocrinol. Metab. 2010, 299, 752–763. [Google Scholar] [CrossRef]
- Ling, C.; Rönn, T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Gomez-Abellan, P.; Hernandez-Morante, J.J.; Lujan, J.A.; Madrid, J.A.; Garaulet, M. Clock genes are implicated in the human metabolic syndrome. Int. J. Obes. 2008, 32, 121–128. [Google Scholar] [CrossRef]
- Chaput, J.P.; McNeil, J.; Després, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with an increased risk of developing features of the metabolic syndrome in adults. Prev. Med. 2013, 57, 872–877. [Google Scholar] [CrossRef]
- Xi, B.; He, D.; Zhang, M.; Xue, J.; Zhou, D. Short sleep duration predicts risk of metabolic syndrome: A systematic review and meta-analysis. Sleep Med. Rev. 2014, 18, 293–297. [Google Scholar] [CrossRef]
- Lian, Y.; Yuan, Q.; Wang, G.; Tang, F. Association between sleep quality and metabolic syndrome: A systematic review and meta-analysis. Psychiatry Res. 2019, 274, 66–74. [Google Scholar] [CrossRef]
- Iftikhar, I.H.; Donley, M.A.; Mindel, J.; Pleister, A.; Soriano, S.; Magalang, U.J. Sleep duration and metabolic syndrome. An updated dose-risk meta-analysis. Ann. Am. Thorac. Soc. 2015, 12, 1364–1372. [Google Scholar] [CrossRef]
- Chaput, J.P.; McNeil, J.; Després, J.P.; Bouchard, C.; Tremblay, A. Seven to eight hours of sleep a night is associated with a lower prevalence of the metabolic syndrome and reduced overall cardiometabolic risk in adults. PLoS ONE 2013, 8, e72832. [Google Scholar] [CrossRef]
- Dollet, L.; Zierath, J.R. Interplay between diet, exercise and the molecular circadian clock in orchestrating metabolic adaptations of adipose tissue. J. Physiol. 2019, 597, 1439–1450. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, B.M.; Zierath, J.R. Circadian rhythms and exercise—Re-setting the clock in metabolic disease. Nat. Rev. Endocrinol. 2019, 15, 197–206. [Google Scholar] [CrossRef]
- Chamarthi, B.; Gaziano, J.M.; Blonde, L.; Vinik, A.; Scranton, R.E.; Ezrokhi, M.; Rutty, D.; Cincotta, A.H. Timed Bromocriptine-QR therapy reduces progression of cardiovascular disease and dysglycemia in subjects with well-controlled type 2 diabetes mellitus. J. Diabetes Res. 2015, 2015, 157698. [Google Scholar] [CrossRef]
Observational Studies | |||
Author, Year; (Reference) | N (Men/Women), Mean Age | Assessment | Key Results |
Thune, 1998; [25] | 5220/5869 34.4 and 33.7 years, respectively | PA self-report | Higher PA associated with better lipid profile, overall metabolic risk profile over 7 years |
Laaksonen, 2002; [26] | 612 men 51.4 years | Assessment of LTPA over previous 12 months among high risk men; followed for 4 years | >3 h/week moderate to vigorous LTPA half as likely as sedentary men to have MetSyn Men in top 33% VO2max 75% less likely than unfit men to develop MetSyn over 4 years |
Sisson, 2010; [27] | 697/749 47.5 years | Accelerometry | MetS prevalence decreased as steps/day increased; odds of having MetSyn were 10% lower for each additional 1000 steps/day |
Healy, 2008; [28] | 67/102 53.4 years | Accelerometer evaluation of time spent in sedentary, light, moderate-to-vigorous, and mean activity intensity in participants with diabetes and obesity | Moderate-to-vigorous activity associated with lower triglycerides. Sedentary time, light-intensity time, and exercise intensity associated with waist circumference and clustered metabolic risk |
Ekelund, 2007; [29] | 103/155 40.8 years | Accelerometry, exercise test, biometric measures on adults with a family history of type 2 diabetes | Total body movement inversely associated with triglycerides, insulin, HDL and clustered metabolic risk; moderate-and vigorous-intensity PA inversely associated with clustered metabolic risk |
Exercise Intervention Studies | |||
Author, Year | N | Intervention | Key Results |
Look AHEAD, 2013; [30] | 3063/2082 58.8 years | Subjects with type 2 diabetes randomly assigned to intensive lifestyle intervention or diabetes support and education | Intervention group had greater reductions in weight loss, glycated hemoglobin and greater initial improvements in exercise capacity and all cardiovascular risk factors (except LDL) |
Stewart, 2004; [31] | 53/62 63.6 years | 6 months of exercise training in subjects with or at high risk for MetSyn | Exercise group improved peak VO2, muscle strength, and lean body mass; reductions in total and abdominal fat related to improved CVD risk |
Katzmarzyk, 2003; [32] | 288/333 31.6 | 20 weeks of supervised aerobic exercise training | Of 105 patients with MetSyn, 30.5% were no longer classified as having metabolic syndrome after exercise training |
Balducci, 2008; [33] | 329/234 | Twice weekly aerobic & resistance training for 1 year | Exercise group improved fitness, HbA1c, and CVD risk profile |
Diabetes Prevention Program Research Group, 2002; [34] | 3234 50.6 | Lifestyle intervention (150 min/week PA and nutritional counseling) vs. Metformin vs. placebo | Lifestyle intervention group achieved a 38% reversal of MetSyn and a 41% reduction of new onset MetSyn. |
Author, Year; (Reference) | N (Men/Women) | Key Results |
---|---|---|
Carnethon, 2003; [49] | 4487 (2029/2458) | Only men and women in the highest 40% of maximal treadmill performance were protected against developing MetSyn. |
Franks, 2004; [50] | 847 men | A strong inverse association between physical activity and MetSyn. The magnitude of the association between physical activity and the MetSyn was >3-fold greater than for VO2max. |
LaMonte, 2005; [46] | 10,498 (9007/1491) | An independent and progressive decline in the risk of developing MetSyn with higher CRF for men and women. Also, 20% to 26% lower risks occurred among participants with moderate CRF and 53% to 63% lower risks observed in highest CRF categories vs. the lowest CRF category. |
Hassinen, 2008; [44] | 1347 (671/676) | Men and women in the lowest third of VO2max had 10.2 times (men) and 10.8 times (women) higher risk of having MetSyn than those in the highest VO2max category. |
Hassinen, 2010; [48] | 1226 (589/637) | Risk of developing MetSyn within 2 years of follow-up was 44% lower for each 1-SD increase in VO2 max. Each 1-SD higher VO2 max from baseline resulted in 1.8 times higher likelihood to resolve MetSyn during 2 years of follow-up. |
Earnest, 2013; [51] | 38,659 (30,927/7732) | CRF demonstrated a strong inverse relationship with MetSyn in both genders. The association was strongest in those with lower waist circumference and fasting glucose, in both genders. |
Adams-Campbell, 2016; [47] | 170 women | CRF was inversely related to the prevalence of the metabolic syndrome in overweight/obese African-American postmenopausal women. |
Ingle, 2017; [52] | 9666 men | The likelihood of developing MetSyn was approximately 50% lower in fit men compared to unfit, independent of BMI particularly in men <50 years. |
Kelly, 2018; [45] | 3636 (2007/1629) | Significant, inverse and graded association between VO2max and MetSyn. Highest fit had >20 times lower risk of having MetSyn compared to least-fit individuals. The difference in VO2max between those with MetSyn and those without was ≈ 2.5 METs. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. https://doi.org/10.3390/nu11071652
Myers J, Kokkinos P, Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients. 2019; 11(7):1652. https://doi.org/10.3390/nu11071652
Chicago/Turabian StyleMyers, Jonathan, Peter Kokkinos, and Eric Nyelin. 2019. "Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome" Nutrients 11, no. 7: 1652. https://doi.org/10.3390/nu11071652
APA StyleMyers, J., Kokkinos, P., & Nyelin, E. (2019). Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients, 11(7), 1652. https://doi.org/10.3390/nu11071652