Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages
Abstract
:1. Introduction
2. Mammalian Milk Alternatives
2.1. Buffalo Milk
2.2. Goat’s Milk
2.3. Sheep’s Milk
2.4. Milk from Horse and Donkey
- Donkey’s milk does not contain trans-FA and conjugated linoleic (CLA);
- Mare’s milk contains trans-FA and CLA in negligible quantities;
- Mare’s milk contains up to 15 mg of acid ascorbic/100 g, much more than CM.
2.5. Milk from Dromedary and Camel
2.6. Musk Ox Milk
2.7. Yak Milk
2.8. Mithun Milk
2.9. Milk from Llama and Alpaca
2.10. Milk from Reindeer and Elk
2.11. Mammalians’ Milk Micronutrients
- Buffalo’s milk has higher amounts of fat and therefore gives more energy than cow’s milk (CM). The protein level is slightly higher than that of CM, while the amount of lactose is comparable.
- Goat’s milk has quantities of lipids and proteins similar to CM. It is deficient of vitamin B12 and folate.
- Sheep’s milk has higher amounts of lipids, proteins, and lactose than CM.
- Horses’ milk (donkey, mare) has similar quantities of protein and lactose as that of breast milk, but a lower concentration of lipid (qualitatively it contains, however, more polyunsaturated fatty acids (PUFA) than saturated). Mare’s milk has a higher content of vitamin C.
- Milk of dromedary and camel have a composition similar to CM. Concerning proteins’ content, β-lactoglobulin levels are not measurable (similar to breast milk); the most common serum protein is α-lactalbumin; the main casein is β-casein (similar to breast milk). Camel’s milk also has a higher vitamin D content.
- Yak’s milk has a composition similar to buffalo’s milk. Compared to CM, yak’s milk has an almost double quantity of β-lactoglobulin, and 2 to 6 times higher levels of lactoferrin.
- Reindeer and elk milk have higher amounts of proteins and lipids and less lactose than CM (about 50% less).
- In conclusion, these mammalian milk alternatives are not suitable for infant nutrition.
3. Cow’s Milk Protein Allergy: Special Formulas and Milk Alternatives
3.1. Extensively Hydrolyzed Cow’s Milk Formula
3.2. Amino Acid-Based Formula
- lack of response or reacting to EHF;
- allergic symptoms while exclusively breastfed;
- faltering growth, in particular with multisystem involvement (gastrointestinal tract and/or skin) and multiple food allergies/eliminations;
3.3. Soy-Based Formula
3.4. Rice-Based Hydrolyzed Formula
3.5. Supplementation with Calcium and Vitamin D in Individuals with Cow’s Milk Allergy on Elimination Diet
3.6. Unsuitable Mammalian Milk Substitutes in Children with Cow’s Milk Allergy
- Casein or whey protein-based extensively hydrolyzed formulas (EHFs) are recommended as the formula of choice in infants with cow’s milk protein allergy (CMPA), with no history of anaphylaxis or symptoms while exclusively breastfed.
- Soy formula can be used as a second choice in infants with CMPA older than six months of age and with no gastrointestinal symptoms.
- Rice-based hydrolysate formula can be used as the second choice in infants with CMPA who refuse an EHF.
- In children with IgE-mediated CMPA at high risk for anaphylactic reactions (prior history of anaphylaxis and currently not using an EHF), an amino acid formula (AAF) should be suggested rather than an EHF.
- Goat and sheep’s milk are unsuitable milk substitutes for infants with CMPA.
- Regarding milk with a low cross-reactivity (i.e., equine’s, mare’s and donkey’s milk), they are unsuitable during the first year of life in infants with CMPA if not “nutritionally modified.” Even if modified, each cow’s milk substitute should be nutritionally adequate and tested in clinical trials.
4. Plant-Based Beverages
4.1. Soy Drinks
4.2. Almond Milk
4.3. Rice Drink
4.4. Coconut Milk
4.5. Oat Drink
4.6. Plant-Based Beverages versus Cow’s Milk
- All the plant-based drinks should not be used as a substitute for cow’s milk (CM) in children <24 months old. Additionally, some of these beverages contain added sugars and sweeteners.
- Soy drink contains fewer sugars and fats, especially trans fats, compared to CM. It contains isoflavones and phytosterols. It lacks calcium and vitamin B12. It does not contain cholesterol and lactose. It should not be given to children allergic to soy proteins.
- Almond milk is rich in vitamin E and trans fats, and it could be given as drink during snack time.
- Rice drink has fewer lipids (especially polyunsaturated fatty acids) and proteins than CM. It has a higher vitamin A and D content. It contains arsenic, so it is not recommended in babies and younger children.
- Coconut milk has higher amounts of fats, potassium, magnesium, iron, zinc, vitamin C and E and a lower amount of protein, sugars, and fiber compared to bovine milk.
- Oat drink has a lower amount of fats, proteins, and calcium than CM. It contains an antinutrient that hampers some nutrients’ absorption. It has cholesterol-lowering properties.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muehlhoff, E.; Bennet, A.; McMahon, D.; Food and Agriculture Organisation of the United Nations (FAO). Milk and Dairy Products in Human Nutrition (2013). Dairy Technol. 2014, 67, 303–304. [Google Scholar] [CrossRef]
- Munblit, D.; Peroni, D.G.; Boix-Amorós, A.; Hsu, P.S.; Land, B.V.; Gay, M.C.L.; Kolotilina, A.; Skevaki, C.; Boyle, R.J.; Collado, M.C.; et al. Human Milk and Allergic Diseases: An Unsolved Puzzle. Nutrients 2017, 9, 894. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Martorell-Aragonés, A.; Echeverría-Zudaire, L.; Alonso-Lebrero, E.; Boné-Calvo, J.; Martín-Muñoz, M.F.; Nevot-Falcó, S.; Piquer-Gibert, M.; Valdesoiro-Navarrete, L. Position document: IgE-mediated cow’s milk allergy. Allergol. Immunopathol. 2015, 43, 507–526. [Google Scholar]
- Crittenden, R.G.; Bennett, L.E. Cow’s Milk Allergy: A Complex Disorder. J. Am. Coll. Nutr. 2005, 24, 582S–591S. [Google Scholar] [CrossRef] [PubMed]
- Comberiati, P.; Cipriani, F.; Schwarz, A.; Posa, D.; Host, C.; Peroni, D.G. Diagnosis and treatment of pediatric food allergy: An update. Ital. J. Pediatr. 2015, 41, 668. [Google Scholar] [CrossRef] [PubMed]
- Groetch, M.; Nowak-Węgrzyn, A.; Nowak-Wegrzyn, A. Practical approach to nutrition and dietary intervention in pediatric food allergy. Pediatr. Allergy Immunol. 2013, 24, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.G.; Piacentini, G.L.; Bodini, A.; Pigozzi, R.; Boner, A.L. Transforming growth factor-beta is elevated in unpasteurized cow’s milk. Pediatr. Allergy Immunol. 2009, 20, 42–44. [Google Scholar] [CrossRef]
- Rigotti, E.; Piacentini, G.L.; Ress, M.; Pigozzi, R.; Boner, A.L.; Peroni, D.G. Transforming growth factor-beta1 and interleukin-10 in breast milk and development of atopic diseases in infants. Clin. Exp. Allergy 2006, 36, 614–618. [Google Scholar] [CrossRef]
- Minniti, F.; Comberiati, P.; Munblit, D.; Piacentini, G.L.; Antoniazzi, E.; Zanoni, L.; Boner, A.L.; Peroni, D.G. Breast-milk characteristics protecting against allergy. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 9–15. [Google Scholar] [CrossRef]
- Fiocchi, A.; Dahda, L.; Dupont, C.; Campoy, C.; Fierro, V.; Nieto, A. Cow’s milk allergy: Towards an update of DRACMA guidelines. World Allergy Organ. J. 2016, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; duToit, G.; Eigenmann, P.; et al. EAACI food allergy and anaphylaxis guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, S.; Niggemann, B.; Arato, A.; Dias, J.A.; Heuschkel, R.; Husby, S.; Mearin, M.L.; Papadopoulou, A.; Ruemmele, F.M.; Staiano, A.; et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Miraglia Del Giudice, M.; D’Auria, E.; Peroni, D.; Palazzo, S.; Radaelli, G.; Comberiati, P.; Galdo, F.; Maiello, N.; Riva, E. Flavor, relative palatability and components of cow’s milk hydrolysed formulas and amino acid-based formula. Ital. J. Pediatr. 2015, 41, 42. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Castrellón, P.G.; Rivas, R.; Gutiérrez, C.J.; Garcia, L.D.; Jimenez, J.E.; Anzo, A.; Hegar, B.; Alarcón, P. Safety of soya-based infant formulas in children. Br. J. Nutr. 2014, 111, 1340–1360. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Fiocchi, A.; Riva, E.; Terracciano, L.; Sarratud, T.; Martelli, A.; Lodi, F.; D’Auria, E.; Zuccotti, G.; Giovannini, M. Growth of infants with IgE-mediated cow’s milk allergy fed different formulas in the complementary feeding period. Pediatr. Allergy Immunol. 2007, 18, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Carey, M.P.; Turner, P.J.; Meharg, A.A. Low inorganic arsenic in hydrolysed rice formula used for cow’s milk protein allergy. Pediatr. Allergy Immunol. 2018, 29, 561–563. [Google Scholar] [CrossRef] [PubMed]
- SINU. Tabelle LARN 2014. Available online: http://www.sinu.it/html/pag/tabelle_larn_2014_rev.asp (accessed on 26 May 2019).
- Giovannini, M.; D’Auria, E.; Caffarelli, C.; Verduci, E.; Barberi, S.; Indinnimeo, L.; Iacono, I.D.; Martelli, A.; Riva, E.; Bernardini, R. Nutritional management and follow up of infants and children with food allergy: Italian Society of Pediatric Nutrition/Italian Society of Pediatric Allergy and Immunology Task Force Position Statement. Ital. J. Pediatr. 2014, 40, 1. [Google Scholar] [CrossRef]
- Ribeiro, A.; Ribeiro, S. Specialty products made from goat milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Tripodi, S.; Comberiati, P.; Di Rienzo Businco, A.; Bianchi, A.; Bondanini, F.; Sargentini, V.; Pingitore, G.; Ballabio, C.; Restani, P.; Miceli Sopo, S. Severe anaphylaxis to sheep’s milk cheese in a child desensitized to cow’s milk through specific oral tolerance induction. Eur. Ann. Allergy Clin. Immunol. 2013, 45, 56–60. [Google Scholar]
- Restani, G.; Fiocchi, A.; Poiesi, V.; Ugazio, P.; Beretta, C.; Galli, C.L. Cross-reactivity between milk proteins from different animal species. Clin. Exp. Allergy 1999, 29, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Maryniak, N.Z.; Hansen, E.B.; Ballegaard, A.-S.; Sancho, A.I.; Bøgh, K.L. Comparison of the Allergenicity and Immunogenicity of Camel and Cow’s Milk—A Study in Brown Norway Rats. Nutrients 2018, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Schünemann, H.J.; Brozek, J.; Restani, P.; Beyer, K.; Troncone, R.; Martelli, A.; Terracciano, L.; Bahna, S.L.; Rancé, F.; et al. Diagnosis and Rationale for Action Against Cow’s Milk Allergy (DRACMA): A summary report. J. Allergy Clin. Immunol. 2010, 126, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Le Louer, B.; Lemale, J.; Garcette, K.; Orzechowski, C.; Chalvon, A.; Girardet, J.P.; Tounian, P. Severe nutritional deficiencies in young infants with inappropriate plant milk consumption. Arch. Pediatr. Organe Off. Soc. Fr. Pediatr. 2014, 21, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.G.; Bonomo, B.; Casarotto, S.; Boner, A.L.; Piacentini, G.L. How changes in nutrition have influenced the development of allergic diseases in childhood. Ital. J. Pediatr. 2012, 38, 22. [Google Scholar] [CrossRef] [PubMed]
- Hojsak, I.; Braegger, C.; Bronsky, J.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; Mis, N.F.; Mihatsch, W.; et al. Arsenic in rice: A cause for concern. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 142–145. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef]
Composition in 100 g | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Human | Cow | Buffal | Goat | Sheep | Yak | Mare | Donkey | Dromedary | Camel | Mithun | Musk ox | Llama | Alpaca | Reindeer | Elk | |
Energy (kcal) | 70 | 62 | 99 | 66 | 100 | 100 | 48 | 37 | 56 | 76 | 122 | 85 | 78 | 71 | 196 | 129 |
Water (g) | 87.5 | 87.7 | 83.2 | 87.7 | 82.1 | 82.6 | 89.8 | 90.8 | 89 | 84.8 | 78.6 | 83.6 | 84.8 | 83.7 | 67.9 | 76.8 |
Total protein (g) | 1.0 | 3.3 | 4 | 3.4 | 5.6 | 5.2 | 2 | 1.6 | 3.1 | 3.9 | 6.5 | 5.3 | 4.1 | 5.8 | 10.4 | 10.5 |
Total fat (g) | 4.4 | 3.3 | 7.5 | 3.9 | 6.4 | 6.8 | 1.6 | 0.7 | 3.2 | 5 | 8.9 | 5.4 | 4.2 | 3.2 | 16.1 | 8.6 |
Lactose | 6.9 | 4.7 | 4.4 | 4.4 | 5.1 | 4.8 | 6.6 | 6.4 | 4.3 | 4.2 | 4.4 | 4.1 | 6.3 | 5.1 | 2.9 | 2.6 |
Ash | 0.2 | 0.7 | 0.8 | 0.8 | 0.9 | 0.8 | 0.4 | 0.4 | 0.8 | 0.9 | 0.9 | 0.16 | 0.7 | 1.6 | 1.5 | 1.6 |
Minerals | ||||||||||||||||
Calcium (mg) | 32 | 112 | 191 | 118 | 190 | 129 | 95 | 91 | 114 | 154 | 88 | 195 | 320 | 280 | ||
Iron (mg) | 0.1 | 0.2 | 0.3 | 0.1 | 0.6 | 0.1 | 0.2 | 0.3 | ||||||||
Magnesium (mg) | 3 | 11 | 12 | 14 | 18 | 10 | 7 | 4 | 13 | 8 | 15 | 19 | 23 | |||
Phosphorus (mg) | 14 | 91 | 185 | 100 | 144 | 106 | 58 | 61 | 86 | 132 | 147 | 122 | 270 | 276 | ||
Potassium (mg) | 51 | 145 | 112 | 202 | 148 | 95 | 51 | 50 | 151 | 186 | 120 | 156 | 111 | |||
Sodium (mg) | 17 | 42 | 47 | 44 | 39 | 29 | 16 | 22 | 66 | 66 | 27 | 48 | 78 | |||
Zinc (mg) | 0.2 | 0.4 | 0.5 | 0.3 | 0.6 | 0.9 | 0.2 | 0 | 0.6 | 0.7 | 1.1 | 0.6 | ||||
Copper (mg) | 0.1 | 0.1 | 0.1 | 0.1 | 0 | 0.2 | 0.3 | |||||||||
Selenium (μg) | 1.8 | 1.8 | 1.1 | 1.7 | 11 | |||||||||||
Manganese (μg) | 8 | 18 | 18 | 106 | 1 | |||||||||||
Vitamins | ||||||||||||||||
Retinol (μg) | 60 | 35 | 69 | 45 | 64 | |||||||||||
Carotene (μg) | 7 | 16 | 13 | |||||||||||||
Vitamin A (μg RE) | 61 | 37 | 69 | 48 | 64 | 97 | ||||||||||
Vitamin E (mg) | 0.08 | 0.08 | 0.19 | 0.05 | 0.11 | 0.15 | ||||||||||
Thiamine (mg) | 0.01 | 0.04 | 0.05 | 0.06 | 0.07 | 0.03 | 0.06 | 0.01 | ||||||||
Riboflavina (mg) | 0.04 | 0.2 | 0.11 | 0.13 | 0.34 | 0.02 | 0.03 | 0.06 | 0.12 | |||||||
Niacin (mg) | 0.18 | 0.13 | 0.17 | 0.24 | 0.41 | 0.07 | 0.09 | |||||||||
Panthotenic acid (mg) | 0.22 | 0.43 | 0.15 | 0.3 | 0.43 | |||||||||||
Vitamin B6 (mg) | 0.04 | 0.33 | 0.05 | 0.07 | 0.05 | |||||||||||
Folate (μg) | 5 | 8.5 | 0.6 | 1 | 6 | |||||||||||
Biotin (μg) | 2 | 13 | 2.5 | 2.5 | ||||||||||||
Vitamin B12 (μg) | 0.05 | 0.51 | 0.4 | 0.07 | 0.66 | |||||||||||
Vitamin C (mg) | 5 | 1 | 2.5 | 1.1 | 4.6 | 4.3 | 3.8 | 3 | ||||||||
Vitamin D (μg) | 0.1 | 0.2 | 0.1 | 0.2 | 1.6 |
Energy | Similar to Human Milk |
---|---|
Proteins | Within normal recommended ranges, but cow’s milk protein are hydrolysate, or whole proteins different than human milk proteins; some supplemented with lysine, threonine or tryptophan |
Fats | Only 15% have α-linolenic acid in similar amounts to human milk; 31% have more linoleic acid than human milk; 46% do not include docosahexaenoic acid (DHA); one includes 25% palmitic acid in β position |
Carbohydrates | 70% of special formulae are without lactose; all have a content of carbohydrates higher than human milk |
Micronutrients | Iron ≤ than in human milk (risk of iron-deficiency). Content of other minerals should be reviewed considering other factors |
Vitamins A, E, D | Need to be reviewed the doses depending on other factors (>25% of children consumed <2/3 of the Recommended dietary intake (RDI) of calcium, vitamins D and E) |
Nucleotides | 77% have nucleotides |
Choline | Big variability in choline levels between different formulae |
Taurine | 92% have taurine |
Carnitine | 92% have carnitine |
Prebiotics | 15% include fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) |
Probiotics | 8% include probiotic |
Whole Cream Cow’s Milk (FAO/IEO) | Soy-Based Beverages (IEO) | Coconut Milk (IEO) | Almond Milk (IEO) | Rice-Based Beverages (USDA) | |
---|---|---|---|---|---|
Energy, kcal | 62 | 32 | 236 | 56 | 47 |
Total Proteins (g) | 3.3 | 2.9 | 2.3 | 1.3 | 0.28 |
Total Fats (g) | 3.3 | 1.9 | 23.8 | 3.3 | 0.97 |
Cholesterol (mg) | 11 | 0 | 0 | 0 | 0 |
Available Carbohydrates (g) | 4.7 | 0.8 | 3.3 | 5.5 | 9.17 |
Total Dietary Fibres (g) | 0 | 0 | 2.2 | 0.8 | 0.3 |
Water (g) | 87.8 | 89.7 | 67.6 | 89.2 | 89.28 |
Fatty Acids | |||||
Total Saturates (g) | 2.11 | 0.21 | 21.14 | 0.28 | 0 |
Lauric Acid, (g) | 0.11 | 10.58 | 0 | ||
Myristic Acid, (g) | 0.37 | 4.18 | 0 | ||
Palmitic Acid, (g) | 0.92 | 2.02 | 0.21 | ||
Stearic Acid, (g) | 0.39 | 1.23 | 0.06 | ||
Total Monounsaturates (g) | 1.1 | 0.33 | 1.01 | 2.37 | 0.625 |
Oleic Acid (g) | 0.93 | 0.32 | 1.01 | 2.34 | |
Total Polyunsaturates (g) | 0.12 | 0.83 | 0.26 | 0.65 | 0.313 |
Linoleic Acid (g) | 0.07 | 0.73 | 0.26 | 0.63 | |
Linolenic Acid (g) | 0.05 | 0.1 | 0 | 0.02 | |
Micronutrients | |||||
Calcium (mg) | 112 | 13 | 16 | 14 | 118 |
Sodium (mg) | 42 | 32 | 15 | 1 | 39 |
Potassium (mg) | 145 | 120 | 263 | 47 | 27 |
Magnesium (mg) | 11 | 37 | 16 | 11 | |
Iron (mg) | 0.1 | 0.4 | 1.6 | 0.2 | 0.2 |
Zinc (mg) | 0.4 | 0.2 | 0.67 | 0.16 | 0.13 |
Vitamin A (µg) | 37 | 1 | 0 | 0 | 63 |
β-carotene (µg) | 16 | 0 | 0 | ||
Total Folates (µg) | 8.5 | 19 | 16 | 3 | 2 |
Vitamin B12 (µg) | 0.5 | 0 | 0 | 0.63 | |
Vitamin B6 (µg) | 0.04 | 0.07 | 0.03 | 0.1 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. https://doi.org/10.3390/nu11081739
Verduci E, D’Elios S, Cerrato L, Comberiati P, Calvani M, Palazzo S, Martelli A, Landi M, Trikamjee T, Peroni DG. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients. 2019; 11(8):1739. https://doi.org/10.3390/nu11081739
Chicago/Turabian StyleVerduci, Elvira, Sofia D’Elios, Lucia Cerrato, Pasquale Comberiati, Mauro Calvani, Samuele Palazzo, Alberto Martelli, Massimo Landi, Thulja Trikamjee, and Diego G Peroni. 2019. "Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages" Nutrients 11, no. 8: 1739. https://doi.org/10.3390/nu11081739
APA StyleVerduci, E., D’Elios, S., Cerrato, L., Comberiati, P., Calvani, M., Palazzo, S., Martelli, A., Landi, M., Trikamjee, T., & Peroni, D. G. (2019). Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients, 11(8), 1739. https://doi.org/10.3390/nu11081739